—— МАТЕРИАЛЫ —

УДК 621.382

МОДИФИЦИРОВАНИЕ ДИЭЛЕКТРИЧЕСКИХ СВОЙСТВ МОНОКРИСТАЛЛА ТІGaS₂ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРОННОГО ОБЛУЧЕНИЯ

© 2020 г. С. М. Асадов^{*a*}, С. Н. Мустафаева^{*b*, *}, В. Ф. Лукичев^{*c*, **}

^аИнститут катализа и неорганической химии Национальной академии наук Азербайджана,

пр. Г. Джавида, 113, г. Баку, AZ-1143 Азербайджан

^bИнститут физики Национальной академии наук Азербайджана, пр. Г. Джавида, 131, г. Баку, AZ-1143 Азербайджан

^сФизико-технологический институт им. К.А. Валиева Российской академии наук,

Нахимовский пр-т, 36, корп. 1, г. Москва, 117218 Россия

E-mail: solmust@gmail.com* *E-mail: lukichev@ftian.ru* Поступила в редакцию 16.01.2020 г. После доработки 27.01.2020 г. Принята к публикации 13.02.2020 г.

Изучены диэлектрические свойства и ас-проводимость электронно-облученного слоистого монокристалла TlGaS₂ в диапазоне частот $5 \times 10^4 - 3.5 \times 10^7$ Гц. Установлено, что электронное облучение образцов монокристалла TlGaS₂ дозами $2 \times 10^{12} - 2.4 \times 10^{13}$ э/см² приводит к уменьшению действительной составляющей (є') комплексной диэлектрической проницаемости в области высоких частот ($f > 10^6$ Гц), увеличению ее мнимой составляющей (є''), тангенса угла диэлектрических потерь (tg\delta) и ас-проводимости (σ_{ac}) поперек слоев во всей изученной области частот. При дозах облучения $2 \times 10^{12} - 2.4 \times 10^{13}$ э/см² в TlGaS₂ имеют место потери сквозной проводимости и по мере накопления дозы электронного облучения значительно увеличивается дисперсия є'' и tgδ. В области частот $f = 5 \times$ $\times 10^4 - 2 \times 10^7$ Гц в облученных образцах TlGaS₂ ас-проводимость изменялась по закону $\sigma_{ac} \sim f^n$ (где n = 0.7 - 0.8), характерному для прыжкового механизма переноса заряда по локализованным состояниям вблизи уровня Ферми. Оценены параметры локализованных состояний в TlGaS₂ в зависимости от дозы электронного облучения: плотность состояний вблизи уровня Ферми и их энергетический разброс.

DOI: 10.31857/S054412692004002X

введение

Двумерные соединения (2D) класса А^{III}В^{VI} имеют многообразные кристаллические модификации, проявляющие уникальные физические свойства. Это связано с особенностью строения электронных оболочек их атомов, позволяющих образовывать соединения с различной структурой [1-5]. Зонная структура 2D соединений класса А^{ШВVI} резко изменяется при переходе от объемных к пленочным образцам. Меняется структура запрещенной зоны, переходя от непрямой щели в объемных материалах А^{ШВVI} к прямой щели в монослоях. Это указывает на важную роль межслойной связи в 2D материалах. Их электронные свойства чувствительны к внешним воздействиям, таким как электрическое поле, температура, давление, ионизирующее излучение [5–10].

Тройные аналоги $A^{III}B^{VI}$, в частности, соединение $TIGaS_2$, относятся к числу 2D кристаллов. Монокристалл $TIGaS_2$ является высокоомным по-

лупроводником и проявляет чувствительность к видимой и рентгеновской области спектра [11, 12], а также к γ-облучению [13]. В [14, 15] изучены диэлектрические свойства, dc и ас-проводимость монокристалла TlGaS₂.

Диэлектрические свойства и ас-проводимость монокристалла $TlGaS_2$ под воздействием электронного облучения до настоящего времени не изучены.

Цель настоящей работы – выяснение природы диэлектрических потерь и механизма переноса заряда на переменном токе электронно облученного монокристалла TlGaS₂.

МЕТОДИКА ЭКСПЕРИМЕНТА

Согласно T-x диаграмме системы Ga₂S₃-Tl₂S в ней образуется соединение состава TlGaS₂. Поликристаллы TlGaS₂ синтезировали из высокочистых химических элементов Ga, Tl (\geq 99.999%) и

Рис. 1. Частотная дисперсия диэлектрической проницаемости монокристалла TlGaS₂ до (кривая *1*) и после электронного облучения дозами D, $\mathfrak{I}/\mathfrak{cm}^2$: $2 - 2 \times 10^{12}$; $3 - 6 \times 10^{12}$; $4 - 2.4 \times 10^{13}$.

S (ОСЧ-17-3) в вакууме до 10^{-2} Па кварцевой ампуле [16]. Индивидуальность синтезированного TIGaS₂ контролировали методом рентгенофазового анализа. TIGaS₂ имеет структуру с параметрами решетки: *a* = 10.2917; *b* = 10.2843; *c* = 15.1753 Å; β = 99.603° (пространственная группа C2/c) при комнатной температуре.

По данным дифференциально-термического анализа $TIGaS_2$ плавится конгруэнтно при 1160 К. Из поликристаллов $TIGaS_2$ выращивали монокристаллы методом Бриджмена—Стокбаргера. Монокристаллы $TIGaS_2$ скалывали на пластинки толщиной ~300 мкм и готовили образцы, на которые наносили контакты из серебряной пасты. Площадь контактов составляла ~0.25 см². $TIGaS_2$ является слоистым полупроводником с высоким удельным сопротивлением. Измеряли электрические и диэлектрические характеристики монокристаллических образцов из $TIGaS_2$.

Диэлектрическую проницаемость (є'), тангенс угла диэлектрических потерь (tgδ) и ас-проводимость (σ_{ac}) образцов измеряли резонансным методом в диапазоне частот 50 кГц—35 МГц при T == 300 K [2]. Измеряемые образцы TlGaS₂ помещали в экранированную ячейку. Перед измерениями образцы TlGaS₂ облучали потоком электронов (e^-) с энергией 4 МэВ на электронном ускорителе марки ЭЛУ-4. Дозу e^- -облучения (D) образцов варыровали в пределах от 2 × 10¹² до 2.4 × 10¹³ э/см².

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены частотные зависимости диэлектрической проницаемости образца TIGaS₂ до и после e^- облучения различными дозами. Кривые зависимости $\varepsilon'(f)$ до и после e^- облучения характеризовались спадом в области частот 5 × 10⁴-6 × × 10⁶ Гц. Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости монокристалла TIGaS₂ с ростом частоты свидетельствует о релаксационной дисперсии. При частотах $f > 6 × 10^6$ Гц на кривых 1-4 рис. 1 спадающие ветви зависимости $\varepsilon'(f)$ сменялись возрастающими. По мере накопления дозы e^- облучения от 2 × 10¹² до 2.4 × 10¹³ э/см² диэлектрическая проницаемость монокристалла TIGaS₂ уменьшалась в области высоких частот.

Уменьшение значений ε' монокристалла TlGaS₂ наблюдалось также под действием γ -облучения [13]. Причиной такого поведения ε' в TlGaS₂ авторы считали радиационно-стимулированное старение образцов, связанное с активизацией процесса миграции естественных дефектов под влиянием γ -облучения. С этим, видимо, и связан характер зависимости параметра ε' образца TlGaS₂ от дозы e^- -облучения.

В отличие от є' мнимая составляющая (є") комплексной диэлектрической проницаемости монокристалла TlGaS₂, измеренная во всей области частот от 5 × 10⁴ до 3.5 × 10⁷ Гц, возрастала после e^{-} -облучения (рис. 2). При этом по мере накопле-

Рис. 2. Частотные зависимости мнимой составляющей комплексной диэлектрической проницаемости монокристалла TIGaS₂ до электронного облучения (*1*) и после электронного облучения дозами D, $3/cm^2$: $2 - 2 \times 10^{12}$; $3 - 6 \times 10^{12}$; $4 - 2.4 \times 10^{13}$.

ния дозы в образце значительно возрастала также дисперсия є".

На рис. 3 приведена дозовая зависимость є" (D) монокристалла TlGaS₂ при различных частотах. Наиболее крутая дозовая зависимость є" имела место при низкой частоте (кривая *1*, рис. 3). Видно, что при при $f=5 \times 10^4$ Гц после максимальной дозы e^- облучения (D = 2.4×10^{13} э/см²) значение є" увеличивалось более чем в 6 раз по сравнению с є" необлученного образца TlGaS₂. С ростом частоты зависимость є" (D) становилась более пологой (кривые 2 и 3, рис. 3).

После электронного облучения увеличивался также тангенс угла диэлектрических потерь в TlGaS₂ во всем изученном диапазоне частот (рис. 4). Наиболее существенное изменение tg δ за счет e^- -облучения наблюдалось при $f = 5 \times 10^4$ Гц, а при $f > 10^7$ Гц изменение tg δ было слабым. Характер частотной зависимости tg δ в монокристалле TlGaS₂ до и после e^- -облучения свидетельствует о потерях сквозной проводимости.

На рис. 5 представлены частотные зависимости ас-проводимости поперек слоев монокристалла TlGaS₂ до (кривая *1*) и после e^- облучения различными дозами (кривые 2–4).

Отметим, что ас-проводимость существенно превышала dc-проводимость монокристалла TIGaS₂ [15]. Из рис. 5 видно, что ас-проводимость монокристалла TlGaS₂ после электронного облучения увеличивается.

МИКРОЭЛЕКТРОНИКА том 49 № 4 2020

Во всей изученной области частот ас-проводимость монокристалла TlGaS₂ как до, так и после e^- -облучения изменяется по закону $\sigma_{ac} \sim f^n$. В области частот $f = 5 \times 10^4 - 2 \times 10^5$ Гц ас-проводимость TlGaS₂ возрастала с частотой по закону $f^{0.6}$, а при $f > 2 \times 10^5$ Гц –по закону $f^{0.8}$ вплоть до $f = 2 \times$

283

Рис. 3. Дозовые (электронное облучение) зависимости мнимой составляющей комплексной диэлектрической проницаемости монокристалла TIGaS₂ на частотах f, Гц: $1 - 5 \times 10^4$; $2 - 2 \times 10^5$; $3 - 1.6 \times 10^6$.

Puc. 4. Частотные зависимости tgδ в монокристалле TlGaS₂ до (*1*) и после электронного облучения дозами D, $3/cm^2$: 2 - 2 × 10¹²; 3 - 6 × 10¹²; 4 - 2.4 × 10¹³.

Рис. 5. Ас-проводимость монокристалла TlGaS₂ в зависимости от частоты: 1 - до электронного облучения; 2, 3 и 4 -после электронного облучения дозами D, э/см²: $2 - 2 \times 10^{12}$; $3 - 6 \times 10^{12}$; $4 - 2.4 \times 10^{13}$.

× 10⁷ Гц. Далее наблюдался квадратичный участок $\sigma_{ac} \sim f^2$. Такого типа высокочастотная проводимость обусловлена оптическими переходами в полупроводниках [17].

После *e*⁻-облучения дозами D = 2 × 10¹² и 6 × × 10¹² э/см² частотная зависимость ас-проводимости монокристалла TlGaS₂ подчинялась закономерности $\sigma_{ac} \sim f^{0.7-0.8}$ при $f = 5 \times 10^4 - 2 \times 10^7$ Гц, а при $f > 2 \times 10^7$ Гц имел место закон $\sigma_{ac} \sim f^{1.6}$. После *e*⁻-облучения дозой 2.4 × 10¹³ э/см² во всей изу-

ченной области частот $\sigma_{ac} \sim f^{0.7}$ (кривая 4, рис. 5). Полученный нами вид зависимости $\sigma_{ac} \sim f^{0.7-0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным вблизи уровня Ферми [17].

По экспериментально найденным значениям $\sigma_{ac}(f)$ с помощью формулы [17]

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 k T N_F^2 a^5 f \left[\ln\left(\frac{\nu_{\rm \Phi}}{f}\right) \right]^4, \tag{1}$$

МИКРОЭЛЕКТРОНИКА том 49 № 4 2020

Доза электронного облучения, D, [э/см ²]	$N_{\rm F}$, [э ${ m B}^{-1}\cdot{ m cm}^{-3}$]	ΔE , [\Im B]
0	5.9×10^{18}	0.15
2×10^{12}	8.4×10^{18}	0.106
6×10^{12}	9.5×10^{18}	0.094
2.4×10^{13}	1.5×10^{19}	0.066

Таблица 1. Параметры локализованных состояний в запрещенной зоне монокристалла TlGaS₂, полученные из высокочастотных диэлектрических измерений

(где e – заряд электрона; k – постоянная Больцмана, $N_{\rm F}$ – плотность локализованных состояний вблизи уровня Ферми, a – радиус локализации, $v_{\rm \phi}$ – фононная частота) вычислили плотность локализованных состояний $N_{\rm F}$ для монокристалла TIGaS₂.

Значения $N_{\rm F}$ до и после e^- -облучения монокристалла TlGaS₂ приведены в табл. 1. При вычислениях $N_{\rm F}$ для радиуса локализации монокристалла TlGaS₂ взято значение a = 14 Å по аналогии с бинарными сульфидами [14]. Значение v_{ϕ} для TlGaS₂ порядка 10¹² Гц [18]. Из таблицы видно, что $N_{\rm F}$ в TlGaS₂ по мере роста дозы e^- -облучения увеличивается.

По теории прыжковой проводимости в переменных электрических полях среднее расстояние прыжков (R) определяется по формуле [17]

$$R = \left(\frac{1}{2\alpha}\right) \ln\left(\frac{\mathbf{v}_{\phi}}{f}\right),\tag{2}$$

где α — постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$, $\alpha = 1/a$ (a радиус локализации); $1/f = \tau$ — среднее время прыжков. Для образца TIGaS₂ до и после e^{-} -облучения дозами 2×10^{12} и 6×10^{12} э/см² вычисленное по формуле (2) значение R составляло ~81 Å, а среднее время прыжков $\tau = 10^{-7}$ с. После e^{-} -облучения дозой 2.4×10^{13} э/см² для R получено значение 78 Å, а для $\tau - 6.6 \times 10^{-8}$ с.

По формуле [17]:

$$\Delta E = \frac{3}{2\pi R^3 N_F} \tag{3}$$

оценили энергетический разброс локализованных вблизи уровня Ферми состояний (ΔE) в TlGaS₂ до и после e^{-} -облучения (табл. 1).

Данные табл. 1 показывают, что по мере накопления дозы *e*⁻-облучения в образце энергетическая полоса локализованных вблизи уровня Ферми состояний сужается. Как известно, облучение монокристалла не только вызывает рождение радиационных дефектов, но и стимулирует отжиг и миграцию имеющихся в кристалле дефектов [19]. Это и приводит, по-видимому, к

МИКРОЭЛЕКТРОНИКА том 49 № 4 2020

энергетическому перераспределению локальных состояний в окрестности уровня Ферми, в частности, их уплотнению. Сужение полосы ΔE имело место также после гамма-облучения изоструктурного монокристалла TlInS₂ [20].

ЗАКЛЮЧЕНИЕ

Таким образом, облучение монокристалла TlGaS₂ потоком электронов с энергией 4 МэВ и дозами D = 2×10^{12} -2.4 × 10^{13} э/см² приводит к изменению диэлектрических коэффициентов и аспроводимости поперек слоев. Управление указанными параметрами за счет *e*⁻облучения создает возможности применения монокристалла TlGaS₂ для детектирования потока быстрых электронов.

Настоящая работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики (гранты № EİF-BGM-3-BRFTF-2+/2017-15/05/1-М-13 и EİF-BGM-4-RFTF-1/2017-21/05/1-М-07).

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Лукичев В.Ф., Амиров И.И. Исследования и разработки в области микро- и наносистемной техники // История науки и техники. 2018. № 8. С. 92–99.
- Asadov S.M., Mustafaeva S.N., Lukichev V.F., Guseinov D.T. Effect of the Composition on the Dielectric Properties and Charge Transfer in 2D GaS_{1-x}Se_x Materials // Russian Microelectronics. 2019. V. 48. № 4. P. 203–207.
- 3. Asadov S.M., Mustafaeva S.N., Lukichev V.F. Charge transport in layer gallium monosulfide in direct and alternate electric fields // Russian Microelectronics. 2019. V. 48. № 6. P. 422–427.
- Gamal G.A., Azad M.I. Photoelectric studies of gallium monosulfide single crystals // J. Phys. Chem. Solids. 2005. V. 66. P. 5–10.
- 5. *Shigetom S., Sakai K., Ikari T.* Impurity Levels in Layered Semiconductor GaS Doped with Cu // Jpn. J. Appl. Phys. 2005. V. 44. № 3. P. 1306–1309.
- 6. Мустафаева С.Н., Асадов М.М., Исмаилов А.А. Перенос заряда по локализованным состояниям в

монокристалле TIS // ФТТ. 2008. Т. 50. № 11. С. 1958–1960.

- 7. Мустафаева С.Н., Асадов М.М., Исмайлов А.А. Перенос заряда по локализованным состояниям в монокристаллах InSe и InSe(Sn) // Физика низких температур. 2010. Т. 36. № 4. С. 394–397.
- 8. Мустафаева С.Н., Асадов М.М., Исмаилов А.А. Влияние легирования таллием на параметры локализованных состояний в монокристаллах p-GaSe // Неорганические материалы. 2011. Т. 47. № 9. С. 1040–1043.
- 9. Мустафаева С.Н., Асадов М.М. Комплексная диэлектрическая проницаемость и Ас-проводимость монокристаллов GaSe, выращенных из газовой фазы // Журн. радиоэлектроники. 2011. № 8. С. 1–9.
- Mustafaeva S.N., Asadov M.M., Ismailov A.A. Dielectric and baric characteristics of TIS single crystal // PhysicaB: Physics of Condensed Matter. 2014. V. 453. P. 158–160.
- Мустафаева С.Н. Фотоэлектрические и рентгендозиметрические свойства монокристаллов TlGaS₂(Yb) // ФТТ. 2005. Т. 47. № 11. С. 1937–1940.
- 12. *Мустафаева С.Н.* Фотоэлектрические и рентгенодозиметрические свойства монокристаллов TlGa_{0.97}Mn_{0.03}S₂ // Неорганические материалы. 2009. Т. 45. № 6. С. 659–662.
- 13. Шелег А.Н., Иодковская К.В., Курилович Н.Ф. Влияние γ-облучения на диэлектрическую проницае-

мость и элекропроводность кристаллов TlGaS₂ // ФТТ. 2003. Т. 45. № 2. С. 68–70.

- Мустафаева С.Н. Частотная дисперсия диэлектрических коэффициентов слоистых монокристаллов TlGaS₂ // ФТТ. 2004. Т. 46. № 6. С. 979–981.
- Мустафаева С.Н., Алиев В.А., Асадов М.М. Прыжковая проводимость на постоянном токе в монокристаллах TIGaS₂ и TIInS₂ // ФТТ. 1998. Т. 40. № 4. С. 612-615.
- 16. Mustafaeva S.N., Asadov M.M., Kyazimov S.B., Gasanov N.Z. T-x phase diagram of the TlGaS₂-TlFeS₂ system and band gap of TlGa_{1-x}Fe_xS₂ ($0 \le x \le 0.01$) single crystals // Inorganic Materials. 2012. V. 48. Nº 10. P. 984–986.
- Mott N., Davis E. Electronic Processes in Non-Crystalline Materials. 2nd ed. Oxford: Clarendon Press; New York: Oxford University Press. 1979. 590 p.
- Аллахвердиев К.Р., Виноградов Е.А., и др. Колебательный спектр кристалллов TlGaS₂, TlGaSe₂ и β-TlInS₂. В кн.: Физические свойства сложных полупроводников. Баку: Элм, 1982. С. 55–63.
- Вавилов В.С., Кекелидзе Н.П., Смирнов Л.С. Действие излучений на полупроводники. М.: Наука, 1988. 191 с.
- Мустафаева С.Н., Асадов М.М., Исмайлов А.А. Влияние γ-облучения на диэлектрические свойства и ас-проводимость монокристалла TlInS₂ // ФТТ. 2009. Т. 51. № 11. С. 2140–2143.