__ ПЛАЗМЕННЫЕ ТЕХНОЛОГИИ

УДК 537.525

ПАРАМЕТРЫ ПЛАЗМЫ И КИНЕТИКА АКТИВНЫХ ЧАСТИЦ В СМЕСИ СНF₃ + O₂ + Ar

© 2020 г. А. М. Ефремов^{а, *} Д. Б. Мурин^а, К.-Н. Кwon^b

^аФедеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет", кафедра технологии приборов и материалов электронной техники, Шереметевский проспект, 7, г. Иваново, Россия

^bKorea University, Department of Control and Instrumentation Engineering, Sejong, 339-700 South Korea

**E-mail: efremov@isuct.ru* Поступила в редакцию 01.11.2019 г. После доработки 01.11.2019 г. Принята к публикации 02.12.2019 г.

Изучено влияние соотношения компонентов O_2/Ar в смеси CHF₃ + O_2 + Ar на электрофизические параметры плазмы, кинетику активных и их стационарные концентрации в условиях индукционного ВЧ (13.56 МГц) разряда. При совместном использовании методов диагностики и моделирования плазмы: 1) выявлены особенности состава плазмы в бескислородной системе CHF₃ + Ar; 2) установлены механизмы влияния кислорода на стационарные концентрации активных частиц через кинетику процессов при электронном ударе и реакции атомно-молекулярного взаимодействия; и 3) проведен модельный анализ кинетики гетерогенных процессов (травление, полимеризация, деструкция полимерной пленки), определяющих режим травления и его выходные характеристики.

DOI: 10.31857/S0544126920030035

1. ВВЕДЕНИЕ

Фторуглеродные газы вида $C_x H_v F_z$ активно используются в технологии интегральной микро- и наноэлектроники, электроники при проведении процессов реактивно-ионного травления кремния и его соединений [1-3]. Выходные характеристики процесса травления в плазме таких газов в значительной степени зависят от соотношения числа атомов фтора к числу атомов углерода в исходной молекуле, которое определяет соотношение концентраций F/CF_x в газовой фазе и, как следствие, баланс скоростей процессов травления и поверхностной полимеризации. Широкое применение, в частности, получили плазмообразующие смеси на основе CF₄, который в силу высокого значения F/C = 4 обеспечивает доминирование травления над полимеризацией [3, 4]. Это позволяет высокие скорости травления и чистоту обрабатываемой поверхности. Тем не менее, в работах [5-7] было показано, что трифторметан (CHF₃) существенно превосходит CF₄ по селективности травления в системе SiO₂/Si. Это обуславливает высокий интерес к практическому использованию и, как следствие, к изучению физико-химических свойств плазменных систем на основе CHF₃.

На протяжении последних лет было опубликовано несколько работ, посвященных исследованию электрофизических параметров и состава плазмы CHF₃ [8–12]. По их результатам: 1) определены механизмы процессов, формирующих стационарный состав плазмы; 2) выявлены зависимости концентраций нейтральных и заряженных частиц от условий возбуждения разряда; и 3) скомпонованы кинетические схемы (наборы процессов и соответствующих констант скоростей), обеспечивающие адекватное описание кинетики плазмохимических реакций. К сожалению, все эти данные относятся либо к плазме чистого CHF₃, либо к смесям CHF₃ + Ar фиксированного или переменного состава. В то же время, хорошо известно, что добавка кислорода к фторуглеродному газу является эффективным инструментом регулирования кинетики травления и полимеризации за счет увеличения скорости генерации атомов фтора, связывания фторуглеродных радикалов в соединения вида CF_xO_v и травление пленки атомами кислорода [4]. Так, например, в работе [13] было показано, что варьирование соотношений различных компонентов в смеси $CF_4 + O_2 + Ar$ позволяет получать комбинации параметров плазмы и концентраций активных частиц, не доступные в соответствующих бинарных смесях. Этот факт и определил направление исследований в данной работе.

Целью данной работы являлось исследование электрофизических параметров и состава плазмы индукционного ВЧ (13.56 МГц) разряда в смеси $CHF_3 + O_2 + Ar$. Основное внимание было направлено на 1) выявление механизмов влияния соотношения компонентов O_2/Ar на кинетику и концентрации активных частиц; и 2) установление взаимосвязей между параметрами газовой фазы и гетерогенными характеристиками процесса травления.

2. МЕТОДИЧЕСКАЯ ЧАСТЬ

2.1. Оборудование и методики эксперимента

Эксперименты проводились при возбуждении индукционного ВЧ (13.56 МГц) разряда в смеси $CHF_3 + O_2 + Ar$ в реакторе планарного типа сцилиндрической (r = 13 см, l = 16 см) рабочей камерой из анодированного алюминия [14]. В качестве неизменных параметров процесса выступали общее давление и расход плазмообразующего газа $(p = 10 \text{ мторр}, q = 40 \text{ станд. см}^3/мин), вкладыва$ емая мощность (W = 700 Br) и мощность смещения ($W_{dc} = 200$ Вт). В качестве варьируемого параметра использовалось соотношение начальных концентраций Ar/O2, которое устанавливалось изменением индивидуальных расходов этих компонентов при постоянном $q_{CHF_3} = 20$ станд. см³/мин. Таким образом, содержание CHF₃ в смеси всегда составляло 50%, при этом изменение $q_{0_2} = 0 -$ 40 станд. см³/мин ($y_{O_2} = q_{O_2}/q = 0-0.5$, или 0-50%) соответствовало полному замещению аргона на кислород.

Диагностика плазмы осуществлялась двойным зондом Лангмюра DLP2000 (Plasmart Inc., Korea). Для минимизации погрешности измерений зондовых вольт-амперных характеристик (ВАХ) изза полимеробразования на зондах применялась система импульсной очистки зондов ионной бомбардировкой. Предварительные эксперименты показали отсутствие значимых искажений ВАХ, последовательно измеряемых в системах 50% CHF₃ + 50% Ar и 50% CHF₃ + 50% O₂ в течение ~5 мин после зажигания разряда. Обработка зондовых ВАХ базировалась на известных положениях теории двойного зонда [15-17] с использованием максвелловской функции распределения электронов по энергиям (ФРЭЭ). Результатом обработки выступали данные по температуре электронов (T_{e}) и плотности ионного тока (J_{+}) . Суммарная концентрация положительных ионов (n_{+}) определялась из соотношения $J_{+} \approx 0.61 en_{+} v_{B}$ [16, 17], где $v_B \approx \sqrt{eT_e/m_i}$ — скорость ионов на внешней границе двойного электрического слоя у поверхности зонда без учета отрицательных ионов. Допустимость такого подхода показана в наших работах [18, 19]. Эффективная масса ионов (m_i) оценивалась по соотношению $m_i = (\sum y_{X_i^+} / m_{X_i^+})^{-1}$, где $y_{X_i^+}$ и $m_{X_i^+}$ – парциальные мольные доли и массы ионов. Для каждого типа положительного иона полагалось, что $y_{X^+} \sim k_{iz} y_X / \sqrt{1/m_{X^+}}$, где k_{iz} и y_X – константа скорости ионизации и мольная доля соответствующей нейтральной частицы.

Величина отрицательного смещения на нижнем электроде $-U_{dc}$ при W_{dc} = const измерялась высоковольтным зондом AMN-CTR (YoungsinEng, Korea). В предварительных экспериментах было установлено, что варьирование W_{dc} в пределах 0–200 Вт не оказывает влияния на вид зондовых ВАХ и, следовательно, на параметры газовой фазы разряда.

2.2. Моделирование плазмы

Для получения данных по стационарному составу плазмы использовалась кинетическая 0-мерная модель, оперирующая усредненными по объему реактора величинами [18, 19]. Кинетическая схема (набор реакций и соответствующих констант скоростей) для нейтральных частиц, представленная в табл. 1, была сформирована по результатам предшествующих исследований систем CHF₃ + Ar [8, 11], О₂ + Ar [20, 21] и СНF₃ + О₂ + Ar [22]. В последней работе было отмечено, что стационарные концентрации нейтральных частиц при комбинировании CHF₃ и O₂ в одной смесив значительной степени определяются процессами ступенчатой диссоциации вида $CHF_x + O \rightarrow COF_x + H$ и $CF_x +$ $+ O \rightarrow COF_{x-1} + F$. На основании этого кинетическая схема была дополнена реакциями образования и гибели атомов О и O(1D) с участием метастабильных молекул $O_2(a^1\Delta)$ и $O_2(b^1\Sigma)$. Алгоритм моделирования базировался на совместном решении уравнений химической кинетики нейтральных и заряженных частиц с учетом следующих допушений:

1) Энергетическое распределение электронов в условиях высоких степеней ионизации газа $(n_+/N \sim 10^{-4}, \text{где } N = p/k_B T_{gas} - \text{общая концен-трация частиц при температуре } T_{gas}$) формируется при существенном вкладе равновесныхэлектронэлектронных соударений. Таким образом, константы скоростей процессов R1–R34 могут быть найдены по соотношениям вида $k = AT_e^B \exp(-C/T_e)$ [8, 9, 20], полученным при интегрировании сечений соответствующих процессов с Максвелловской ФРЭЭ.

2) Варьирование начального состава смеси $CHF_3 + O_2 + Ar в условиях <math>p, W = const не conpo-вождается существенными изменениями темпе-$

ПАРАМЕТРЫ ПЛАЗМЫ И КИНЕТИКА АКТИВНЫХ ЧАСТИЦ

Реакция		<i>k</i> , см ³ /с		Реакция	<i>k</i> , см ³ /с	
1.	$CHF_3 + e \rightarrow F + CHF_2 + e$	$f(T_e)$	60.	$CF_2 + O(^1D) \rightarrow CO + 2F$	3.98×10^{-12}	
2.	$CHF_3 + e \rightarrow H + CF_3 + e$	$f(T_e)$	61.	$CF + F \rightarrow CF_2$	5.01×10^{-15}	
3.	$CHF_3 + e \rightarrow HF + CF_2 + e$	$f(T_e)$	62.	$CF + H \rightarrow C + HF$	1.20×10^{-11}	
4.	$CHF_2 + e \rightarrow CHF + F + e$	$f(T_e)$	63.	$CF + O \rightarrow CO + F$	6.31×10^{-11}	
5.	$CHF_2 + e \rightarrow H + CF_2 + e$	$f(T_e)$	64.	$CF + O(^{1}D) \rightarrow CO + F$	2.00×10^{-11}	
6.	$CHF + e \rightarrow H + CF + e$	$f(T_e)$	65.	$CF + O_2 \rightarrow CFO + O$	3.16×10^{-11}	
7.	$CF_4 + e \rightarrow CF_3 + F + e$	$f(T_e)$	66.	$\rm CH + \rm HF {\rightarrow} \rm CF + \rm H_2$	3.23×10^{-11}	
8.	$CF_4 + e \rightarrow CF_2 + 2F + e$	$f(T_e)$	67.	$CH + O \rightarrow CO + H$	1.06×10^{-10}	
9.	$CF_4 + e \rightarrow CF_3^+ + F + 2e$	$f(T_e)$	68.	$CH + F \rightarrow C + HF$	1.02×10^{-12}	
10.	$CF_3 + e \rightarrow CF_2 + F + e$	$f(T_e)$	69.	$H_2 + F \rightarrow HF + H$	1.60×10^{-11}	
11.	$CF_2 + e \rightarrow CF + F + e$	$f(T_e)$	70.	$FO + O \rightarrow F + O_2$	2.51×10^{-11}	
12.	$CF_2 + e \rightarrow C + 2F + e$	$f(T_e)$	71.	$FO + O(^{1}D) \rightarrow F + O_{2}$	5.01×10^{-11}	
13.	$CF + e \rightarrow C + F + e$	$f(T_e)$	72.	$FO + FO \rightarrow 2F + O_2$	2.51×10^{-12}	
14.	$HF + e \rightarrow H + F + e$	$f(T_e)$	73.	$2FO \rightarrow F_2 + O_2$	2.51×10^{-16}	
15.	$F_2 + e \rightarrow 2F + e$	$f(T_e)$	74.	$CFO + CF_3 \rightarrow CF_4 + CO$	1.00×10^{-11}	
16.	$H_2 + e \rightarrow 2H + e$	$f(T_e)$	75.	$CFO + CF_3 \rightarrow CF_2O + CF_2$	1.00×10^{-11}	
17.	$CH + e \rightarrow C + H + e$	$f(T_e)$	76.	$CFO + CF_2 \rightarrow CF_3 + CO$	3.16×10^{-13}	
18.	$O_2 + e \rightarrow 2O + e$	$f(T_e)$	77.	$CFO + CF_2 \rightarrow CF_2O + CF$	3.16×10^{-13}	
19.	$O_2 + e \rightarrow O + O(^1D) + e$	$f(T_e)$	78.	$CFO + O \rightarrow CO_2 + F$	1.00×10^{-10}	
20.	$O + e \rightarrow O(^1D) + e$	$f(T_e)$	79.	$CFO + O(^{1}D) \rightarrow CO_{2} + F$	1.00×10^{-10}	
21.	$O_2 + e \rightarrow O_2(a) + e$	$f(T_e)$	80.	$2CFO \rightarrow CF_2O + CO$	1.00×10^{-11}	
22.	$O_2 + e \rightarrow O_2(b) + e$	$f(T_e)$	81.	$CFO + F \rightarrow CF_2O$	7.94×10^{-11}	
23.	$O_2(a) + e \rightarrow O_2 + e$	$f(T_e)$	82.	$CF_2O + O(^1D) \rightarrow F_2 + CO_2$	2.00×10^{-11}	
24.	$O_2(a) + e \rightarrow 2O + e$	$f(T_e)$	83.	$C + O_2 \rightarrow CO + O$	1.58×10^{-11}	
25.	$O_2(a) + e \rightarrow O + O(^1D) + e$	$f(T_e)$	84.	$CO + F \rightarrow CFO$	1.29×10^{-11}	
26.	$O_2(a) + e \rightarrow O_2(b) + e$	$f(T_e)$	85.	$F \rightarrow F_{ads}$	$f(\gamma)$	
27.	$O_2(b) + e \rightarrow O_2 + e$	$f(T_e)$		$F_{ads} + CHF_x \rightarrow CHF_{x+1}$	$\gamma = 0.02$	
28.	$O_2(b) + e \rightarrow 2O + e$	$f(T_e)$		$F_{ads} + CF_x \rightarrow CF_{x+1}$		
29.	$O_2(b) + e \rightarrow O + O(^1D) + e$	$f(T_e)$		$F_{ads} + F \rightarrow F_2$		
30.	$CO_2 + e \rightarrow CO + O + e$	$f(T_e)$		$F_{ads} + C \rightarrow CF$		
31.	$CO + e \rightarrow C + O + e$	$f(T_e)$]	$F_{ads} + O \rightarrow FO$		
32.	$FO + e \rightarrow F + O + e$	$f(T_e)$	1	$F_{ads} + H \rightarrow HF$		
33.	$CFO + e \rightarrow CO + F + e$	$f(T_e)$	86.	$H \rightarrow H_{ads}$	$f(\mathbf{\gamma})$	
34.	$CF_2O + e \rightarrow CFO + F + e$	$f(T_e)$	1	$H_{ads} + CF_x \rightarrow CHF_x$	$\gamma = 0.05$	

Таблица 1. Реакции с участием нейтральных частиц в плазме смеси CHF₃ + O₂ + Ar

Реакция		<i>k</i> , см ³ /с	Реакция		<i>k</i> , см ³ /с
35.	$CHF_3 + F \rightarrow HF + CF_3$	1.58×10^{-13}		$H_{ads} + F \rightarrow HF$	
36.	$CHF_3 + H \rightarrow H_2 + CF_3$	1.60×10^{-19}		$H_{ads} + C \rightarrow CH$	
37.	$CHF_2 + F \rightarrow HF + CF_2$	3.16×10^{-11}		$H_{ads} + H \rightarrow H_2$	
38.	$CHF_2 + H \rightarrow HF + CHF$	3.22×10^{-10}	87.	$CF_3 \rightarrow CF_{3ads}$	$f(\mathbf{\gamma})$
39.	$CHF_2 + H \rightarrow CF_2 + H_2$	3.20×10^{-14}		$CF_{3ads} + F \rightarrow CF_4$	$\gamma = 0.05$
40.	$CHF_2 + CF_3 \rightarrow CHF_3 + CF_2$	1.58×10^{-12}		$CF_{3ads} + H \rightarrow CHF_3$	
41.	$CHF_2 + O \rightarrow CF_2O + H$	1.05×10^{-11}	88.	$CF_2 \rightarrow CF_{2ads}$	$f(\mathbf{\gamma})$
42.	$CHF + F \rightarrow HF + CF$	3.25×10^{-11}		$CF_{2ads} + F \rightarrow CF_3$	$\gamma = 0.1$
43.	$CHF + H \rightarrow HF + CH$	3.10×10^{-10}		$CF_{2ads} + H \rightarrow CHF_2$	
44.	$CHF + O \rightarrow HF + CO$	3.25×10^{-11}		$CF_{2ads} + O \rightarrow CF_2O$	
45.	$F_2 + CF_3 \rightarrow CF_4 + F$	6.31×10^{-14}	89.	$CF \rightarrow CF_{ads}$	$f(\mathbf{\gamma})$
46.	$F_2 + CF_2 \rightarrow CF_3 + F$	7.94×10^{-14}		$CF_{ads} + F \rightarrow CF_2$	$\gamma = 0.1$
47.	$F_2 + CF \rightarrow CF_2 + F$	3.98×10^{-12}		$CF_{ads} + H \rightarrow CHF$	
48.	$F_2 + H \rightarrow HF + F$	8.20×10^{-12}		$CF_{ads} + O \rightarrow CFO$	
49.	$F_2 + O(^1D) \rightarrow FO + F$	7.94×10^{-12}	90.	$C \rightarrow C_{ads}$	$f(\mathbf{\gamma})$
50.	$F_2 + CFO \rightarrow CF_2O + F$	5.01×10^{-14}		$C_{ads} + F \rightarrow CF$	$\gamma = 1$
51.	$CF_3 + F \rightarrow CF_4$	1.00×10^{-12}		$C_{ads} + H \rightarrow CH$	
52.	$CF_3 + H \rightarrow CF_2 + HF$	7.94×10^{-11}		$C_{ads} + O \rightarrow CO$	
53.	$CF_3 + O \rightarrow CF_2O + F$	3.16×10^{-11}	91.	$O \rightarrow O_{ads}$	$f(\mathbf{\gamma})$
54.	$CF_3 + O(^1D) \rightarrow CF_2O + F$	3.16×10^{-11}		$O_{ads} + O \rightarrow O_2$	$\gamma = 0.1$
55.	$CF_2 + F \rightarrow CF_3$	4.17×10^{-13}		$O_{ads} + F \rightarrow FO$	
56.	$CF_2 + H \rightarrow HF + CF$	3.20×10^{-11}		$O_{ads} + C \rightarrow CO$	
57.	$CF_2 + O \rightarrow CFO + F$	3.16×10^{-11}		$O_{ads} + CF_x \rightarrow CF_x O$	
58.	$CF_2 + O(^1D) \rightarrow CFO + F$	3.16×10^{-11}	92.	$O(^{1}D) \rightarrow O$	$f\left(\gamma ight)$
59.	$CF_2 + O \rightarrow CO + 2F$	3.98×10^{-12}			$\gamma = 1$

Таблица 1. Окончание

Примечание: $O_2(a) = O_2(a^1 \Delta), O_2(b) = O_2(b^1 \Sigma).$

ратуры газа. Это позволяет пренебречь влиянием соотношения Ar/O_2 на константы скоростей объемных атомно-молекулярных процессов R35–R84. Значения последних брали из открытой базы данных [23] для $T_{gas} = 600$ К.

3) Гетерогенная рекомбинация атомов и радикалов подчиняется механизму Или-Ридила. Соответственно, константы скоростей процессов R85–R92 могут быть определены как $k \approx \gamma v_T/2r$, где r – радиус рабочей камеры реактора, $v_T = (8k_B T_{gas}/\pi m)^{1/2}$ и γ вероятность рекомбинации [8, 9, 22]. Концентрация электронов оценивалась по измеренному значению n_+ с использованием соотношения

$$n_e \approx \frac{k_{ii} n_+^2}{v_{da} + k_{ii} n_+}$$

полученного при совместном решении кинетического уравнения для отрицательных ионов и уравнения квазинейтральности плазмы [11]. Константы скоростей ион-ионной рекомбинации k_{ii} принимались равными для всех типов положительных ионов [11, 13]. При расчете суммарной частоты диссоциативного прилипания $v_{da} = N \sum y k_{da}$ (где

y_{O_2}	CHF ₃	CF ₄	CF ₃	CF ₂	F ₂	HF	F	Ar	O ₂	CF ₂ O	CO ₂
0%	5.64	13.4	21.8	20.1	1.84	3.96	4.18	25.2	10.4	6.30	16.9
50%	0.51	1.15	5.0	4.70	0.15	0.46	0.58	2.66	1.82	1.45	2.39

Таблица 2. Константы скоростей ионизации (k_{iz} , 10^{-10} см³/с) основных нейтральных частиц в плазме смеси СНF₃ + O₂ + Ar

у — мольная доля частицы, характеризующейся константой скорости диссоциативного прилипания k_{da}) принимались во внимание HF, CHF_x (x = 1-3), CF_x (x = 1-3), O₂, CO₂ и CF₂O.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Из данных рис. 1а можно видеть, что замещение Ar на O₂ в смеси CHF₃ + O₂ + Ar при y_{CHF_3} = = const вызывает монотонное снижение средней энергии (температуры) электронов в диапазоне 4.8-3.0 эВ при 0-50% О2. Причиной данного эффекта является увеличение потерь энергии электронами в процессах низкопорогового (колебательного, электронного) возбуждения О₂ и молекулярных продуктов плазмохимических реакций. Действительно, первый потенциал возбуждения атомов Ar составляет ~11.6 эВ, в то время как кислород, например, характеризуется непрерывным спектром не упругого рассеяния электронов, начиная с ~0.2 эВ [24]. Последнее обеспечивается колебательным возбуждением молекул O_2 (ε_{th} = = 0.16 эВ, где ε_{th} – пороговая энергия возбуждения), а также образованием метастабильных электронно-возбужденных состояний $O_2(a^1\Delta)$ с $\varepsilon_{th} = 0.98 \ ЭB$ и $O_2(b^1\Sigma) \ c\varepsilon_{th} = 1.64 \ ЭB$ [24]. Результаты диагностики плазмы показали также, что замещение аргона на кислород приводит к снижению суммарной концентрации положительных ионов ($n_{+} = 6.2 \times 10^{10} - 3.0 \times 10^{10} \,\mathrm{cm}^{-3}$ при 0-50% O₂, см. рис. 1*a*) и плотности ионного тока (J_+ = = 1.94-0.86 мА/см² при 0-50% О₂, см. рис. 1б). Расчетное значение n_e следует поведению n_+ и изменяется в диапазоне $6.2 \times 10^{10} - 2.5 \times 10^{10} \,\mathrm{cm^{-3}}$ при 0-50% О₂. Такое изменение концентраций заряженных частиц обусловлено уменьшением скоростей их генерации из-за снижения эффективной частоты ионизации $v_{iz} = N \sum y k_{iz}$ (1.6 × 10⁵-1.2 × × 10⁴ с⁻¹, или в ~1.3 раза при 0–50% О₂) и скорости ионизации $v_{iz}n_e$ (9.6 × 10¹⁵—2.9 × 10¹⁴ см⁻³ с⁻¹, или в ~ 3.3 раза при 0–50% О₂). Причинами здесь являются 1) снижение констант скоростей ионизации нейтральных частиц, k_{iz} , из-за снижения T_e (табл. 2); и 2) увеличение доли нейтральных частиц с низкими k_{iz} (рис. 2 и табл. 2). Было найдено

также, что замещение аргона на кислород сопровождается увеличением абсолютной ($n_{-} = 2.3 \times 10^8 - 5.2 \times 10^9$ при 0–50% О₂) и относительной ($n_{-}/n_e = 0.04 - 0.21$ при 0–50% О₂) концентрации отрицательных ионов. Оба эффекта связаны с ростом суммарной частоты и скорости диссоциативного прилипания из-за увеличения концентраций электроотрицательных кислородсодержащих частиц. Отметим, что выполнение условия $n_{-}/n_e \ll 1$ подтверждает применимость допущения $n_e \approx n_+$, использованного в работе [12] при моделировании плазмы в смеси CHF₃ + Ar.

Расчеты показали, что основными компонентами газовой фазы в плазме 50% CHF₃ + 50% Ar являются HF, CHF_x (x = 1, 3) и CF_x (x = 1-4) (рис. 2). Доминирование HF над другими типами частиц (что не противоречит экспериментальным данным [25, 26]) обеспечивается 1) прямым образование HF из исходных молекул CHF₃ по R3; и 2) высокими скоростями объемных процессов $CHF_x + F \rightarrow CF_x + HF$ (R35, R37, R42), $CHF_x +$ $+ H \rightarrow CHF_{x-1} + HF$ (R38, R43) и $CF_x + H \rightarrow$ \rightarrow CF_{x-1}+ HF (R52, R56). Отметим также, что эффективная генерация радикалов CF_x (x = 1-3) по реакциям R35, R37 и R42 в сочетании с гетерогенными процессами вида $CF_x + F \rightarrow CF_{x+1}$ (R85, R88 и 89) обуславливает выполнение условия *n*_{CF} > *n*_{CHF} для суммарных концентраций этих частиц. Основными каналами образования атомов фтора являются процессы электронного удара с участием CF_x (R9–R11) и HF (R14) при определяющей (~50% от общей скорости, в силу $n_{\rm HF} > n_{\rm CF}$) роли R14 (рис. 3*a*). Пренебрежимо малый (менее 1% от общей скорости) вклад молекул СНF₃ через R1 обусловлен низким значением константы скорости данного процесса ($3.4 \times 10^{-11} \text{ см}^3/\text{с}$ vs. 4.9×10^{-10} см³/с для R10 и 1.4×10^{-9} см³/с для R14) из-за высокой пороговой энергии (~13.0 эВ vs. ~3.8 эВ для R10 и ~5.9 эВ для R14). Характерной особенностью кинетики гибели атомов фтора в исследованном диапазоне условий является заметный (~25% от общей скорости) вклад объемных процессов R35, R37, R42 (рис. 36). Последний эффект является основной причиной значительно более низких концентраций атомов фтора

Рис. 1. Экспериментальные (точки + сплошные линии) и расчетные (пунктир) параметры плазмы в смеси $CHF_3 + O_2 + Ar$: 1 - температура электронов; 2 - суммарная концентрация положительных ионов; 3 - концентрация электронов; 4 плотность ионного тока; 5 - отрицательное смещение на нижнем электроде в условиях $W_{dc} =$ const.

по сравнению с плазмой CF₄ в аналогичном диапазоне условий [11].

Замещение Ar на O_2 в смеси CHF₃ + O_2 + Ar сопровождается существенными изменениями концентраций (рис. 2) и кинетики (рис. 3) нейтральных частиц, наиболее значимыми из которых являются снижение эффективности процессов при электронном ударе, резкое падение концентраций компонентов вида CF_x и CHF_x, а также увеличение концентрации атомов фтора. Резкое падение $n_{\rm CF_2}$ (6.3 × 10¹²-7.0 × 10⁹ см⁻³, или в ~900 раз при 0–50% O₂) и $n_{\rm CF_2}$ (7.3 × 10¹²–5.3 × 10⁹ см⁻³, или в ~1400 раз при 0–50% O₂) обусловлено сочетанием двух факторов, а именно: 1) ростом скоростей гибели этих частиц за счет процессов вида $CF_x + O \rightarrow CF_{x-1}O + F$ (R53, R57) и $CF_x + O(^1D) \rightarrow$ \rightarrow CF_{x-1}O + F (R54, R58); и 2) снижением скоростей их образования по механизмам R35, R37 и R42 из-за аналогичного изменения концентраций CHF_x. Причиной последнего эффекта также являются объемные процессы с участием атомов кислорода R41 и R44. Поэтому, принимая во внимание снижение частот диссоциирующих столкновений электронов (например, $k_{11}n_e = 148 - 17 \text{ c}^{-1}$ при 0-50% O_2), увеличение y_{O_2} эффективно подавляет образование атомов фтора по механизмам R9-R11 (рис. 3a). Отметим, что высокая скорость генерации молекул HF по R44 вызывает незначительный рост концентрации этих частиц $(2.4 \times 10^{13} - 4.0 \times 10^{13} \text{ см}^{-3}$, или в ~1.7 раз при 0-50% О₂, см. рис. 2) и обуславливает более медленное снижение R14 сравнению с R9-R11. Тем не менее, суммарная скорость генерации атомов фтора в процессах R9-R11 и R14 монотонно снижается (4.2×10^{15} - 3.3×10^{14} см⁻³ с⁻¹, или в ~13 раз при 0-50% O₂), при этом величина снижения не компенсируется появлением дополнительных механизмов генерации атомов с участием молекул F_2 (R15) и кислородсодержащих частиц (R32, R34, R70). Причиной резкого роста скорости R15 является аналогичное изменение $n_{\rm F_2}$ (8.2 × 10¹⁰— 9.3×10^{12} см⁻³, или в ~115 раз при 0–50% О₂, см. рис. 2) обусловленное эффективным образованием этих молекул по R82 с участием CF₂O. Поэтому скорости R15 и R34 в кислородсодержащей плазме фактически лимитируются скоростью об-

Рис. 2. Стационарные концентрации нейтральных компонентов газовой фазы в плазме смеси $CHF_3 + O_2 + Ar$.

разования CF₂O в объемных (R81) и гетерогенных (R89, R90 и R91) процессах. Расчеты показали, что суммарная скорость образования и концентрация CF₂O имеют максимальные значения в области 20–30% O₂ из-за противоположного изменения концентраций обеспечивающих частиц – CF_x и CHF_x с одной стороны и O и O(¹D) с другой. Аналогично, невысокая эффективность генерации атомов фтора по R32 и R70 является следствием лимитирования образования FO скоростями гетерогенных процессов R85 и R91. Последние, в свою очередь, ограничиваются низкими концентрациями атомов кислорода, которые активно гибнут в объеме плазмы при взаимодействии с CHF_x (R41, R44) и CF_x (R53, R57, R59). Таким об-

разом, замещение Ar на O₂ в условиях y_{CHF_3} = const приводит к уменьшению суммарной скорости генерации атомов фтора (4.5 × 10¹⁵-2.0 × 10¹⁵ см⁻³ с⁻¹, или в ~2.3 раза при 0–50% O₂, см. рис. 3*a*). В то же время, снижение концентраций CHF_x и CF_x обуславливает еще более резкое падение частот гибели атомов фтора в объемных (R35, R37, R42) и гетерогенных (R87–R90) процессах (рис. 3*б*). Данный эффект и является причиной роста концентрации атомов F, отмеченного на рис. 2. Аналогичным образом изменяется и плотность потока атомов на обрабатываемую поверхность Γ_F (рис. 4).

Известно, что при проведении процессов травления в плазме галогенсодержащих газов, ха-

Рис. 3. Кинетика атомов фтора в плазме смеси CHF₃ + O₂ + Ar: *a* – скорости процессов образования атомов фтора и суммарная скорость образования; *б* – частоты процессов гибели атомов фтора и суммарная частота гибели. Цифры на кривых соответствуют номерам реакций в табл. 1. Пунктиром показаны гетерогенные процессы.

рактер зависимости скорости травления от условий обработки определяется не только плотностью потока атомов галогенов, но зависит от ряда факторов, влияющих на эффективную вероятность взаимодействия атомов с обрабатываемой поверхностью [4]. Кроме температуры поверхности, во фторуглеродной плазме к таким и факторам относят процессы, затрудняющие доступ атомов фтора к поверхностным активным центрам: образование труднолетучих продуктов взаимодействия и маскирование поверхности фторуглеродной полимерной пленкой. Предшествующие исследования механизмов ионно-стимулированной химической реакции в полимеробразующей фторсодержащей плазме (например — [27—32]) могут быть обобщены в виде следующих положений:

1) Процессы взаимодействия ионов с поверхностью характеризуется скоростью $Y_S\Gamma_+$ [31, 32], где Y_S – выход процесса (атом/ион) и Γ_+ – плотность потока ионов. В диапазоне $\varepsilon_i < 500$ эВ можно полагать, что $Y_S \sim \sqrt{m_i}\varepsilon_i$ или $\sqrt{M_i}\varepsilon_i$ [11–13], где $\varepsilon_i = e \left| -U_f - U_{dc} \right|$ – энергия бомбардирующих ионов, $-U_f \approx 0.5T_e \ln(m_e/2.3m_i)$ – плавающий потенциал, $-U_{dc}$ – отрицательное смещение на под-

Рис. 4. Плотности потоков (сплошные линии) и отношения плотностей потоков (пунктир) активных частиц в плазме смеси CHF₃ + O₂ + Ar: $I - \Gamma_+$; $2 - \Gamma_F$; $3 - \Gamma_{pol} = \Gamma_{CF_2} + \Gamma_{CF} + \Gamma_{CHF}$; $4 - \Gamma_0$; $5 - \Gamma_{pol}/\Gamma_F$; $6 - \Gamma_{pol}/\sqrt{M_i \varepsilon_i} \Gamma_+ \Gamma_F$ (×10⁻¹⁷); $7 - \Gamma_{pol}/\Gamma_F \Gamma_0$ (×10⁻¹⁷).

ложкодержателе при $W_{dc} = \text{const}$, и M_i эффективная молярная масса ионов, определяемая аналогично m_i . Таким образом, изменение скорости любого ионного процесса при варьировании условий обработки отслеживается параметром $\sqrt{M_i \varepsilon_i} \Gamma_+$ [12, 13].

2) Образование полимерной пленки обеспечивается CH_xF_y радикалами с $x + y \le 2$, при этом вероятность полимеризации увеличивается при снижении концентрации атомов фтора [27, 28]. Поэтому изменение скорости связывания радикалов с поверхностью отслеживается отношением Γ_{pol}/Γ_F , где Γ_{pol} – суммарная плотность потока полимеробразующих радикалов. Деструкция полимерной пленки происходит за счет ионного распыления и травления атомами кислорода [4, 30]. Таким образом, относительное изменение толщины пленки h_{pol} за счет действия физического и химического факторов характеризуется параметрами $\Gamma_{pol}/\sqrt{\varepsilon_i}\Gamma_+\Gamma_F$ и $\Gamma_{pol}/\Gamma_0\Gamma_F$ соответственно, где Γ_0 – плотность потока атомов кислорода.

3) Скорость взаимодействия атомов фтора с обрабатываемой поверхностью определяется соотношением $\gamma_R \Gamma_F$, где $\gamma_R - эффективная$ вероятность взаимодействия. При постоянной температуре поверхности можно полагать, что в области $h_{pol} \le 2$ нм справедливо соотношение $\gamma_R \sim 1/h_{pol}$ [27].

Расчеты показали, что замещение Ar на O₂ в смеси CHF₃ + O₂ + Ar вызывает резкое снижение как плотности потока полимеробразующих радикалов $\Gamma_{pol} = \Gamma_{CF_2} + \Gamma_{CF} + \Gamma_{CHF} (3.1 \times 10^{17} - 1.5 \times 10^{14} \text{ см}^{-2} \text{ c}^{-1}$, или в ~2000 раз при 0–50% O₂) изза аналогичного изменения концентраций соответствующих частиц, так и параметра Γ_{pol}/Γ_F (4.1–0.0005, или в ~8000 раз при 0–50% O₂) (рис. 4). Данный факт однозначно свидетельствует о снижении полимеризационной нагрузки газовой фазы на контактирующие с ней поверхности. Существенное падение плотности потока ионов с ростом y_{O_2} не компенсируется ростом их энергии ($-U_{dc} = 190-254$ В и $\varepsilon_i = 219-272$ эВ при 0–50% O₂, см. рис. 16), что обуславливает монотонное снижение параметра $\sqrt{M_i \varepsilon_i} \Gamma_+$ (1.8 × 10¹⁷–8.8 ×

 $\times 10^{16}$ эВ^{1/2} см⁻² с⁻¹, или в ~2 раза при 0–50% О₂). Тем не менее, формальное снижение эффективности деструкции полимерной пленки по физическому механизму не означает роста толщины пленки на обрабатываемой поверхности. Во-первых, снижение $\sqrt{M_i} \varepsilon_i \Gamma_+$ (фактически — плотности потока энергииионов) с избытком компенсируется еще более резким падением полимеризационной активности газовой фазы. Соответственно, характер изменения отношения $\Gamma_{pol} / \sqrt{M_i \varepsilon_i} \Gamma_+ \Gamma_F$ (2.2 × 10⁻¹⁷-5.3 × 10⁻²¹ эВ^{-1/2} см² с при 0-50% О₂. см. рис. 4) однозначно свидетельствует о смещении баланса скоростей процессов осаждения и распыления полимерной пленки в направлении уменьшения ее толщины. И, во-вторых, рост плотности потока атомов кислорола обеспечивает увеличение скорости химической деструкции полимера, что также способствует снижению h_{nol} . Это подтверждается соответствующим изменением параметра $\Gamma_{nol}/\Gamma_0\Gamma_F$ (рис. 4).

На основании выше сказанного можно с достаточной степенью уверенности полагать, что замещение Ar на O_2 в смеси CHF₃ + O_2 + Ar сопровождается снижением *h*_{pol}. Предположение о пропорциональном характере изменения величин $\Gamma_{pol}/\sqrt{M_i \varepsilon_i} \Gamma_+ \Gamma_F$ и $\Gamma_{pol}/\Gamma_0 \Gamma_F$ с одной стороны и толщины полимерной пленки с другой, позволяет говорить о снижении h_{pol} до двух порядков величины при $y_{0_2} \sim 20\%$. Очевидно, что такая ситуация способствует протеканию процесса травления в кинетическом режиме при отсутствии определяющего влияния *h*_{pol} на эффективную вероятность взаимодействия атомов фтора. Фактически, это соответствует "классическому" режиму ионно-стимулированной химической реакции, в котором характер зависимости скорости травления от условий обработки формируется только изменениями $\Gamma_{\rm F}$ и $\sqrt{M_i \varepsilon_i} \Gamma_+$. На наш взгляд, использование более богатых кислородом смесей может вызвать ухудшение выходных характеристик процесса травления из-за увеличения отношения $\Gamma_{\rm F}/\sqrt{M_i\varepsilon_i}\Gamma_+$ (0.43–3.6 эВ^{-1/2} при 0–50% О₂), отражающего вклады спонтанного и ионно-стимулированного химического взаимолействия в обшую скорость процесса. Согласно многочисленным экспериментальным данным [2, 3], более высокие значения параметра $\Gamma_{\rm F}/\sqrt{M_i\varepsilon_i}\Gamma_+$ отвечают низкой анизотропии травления и высокой шероховатости обработанных поверхностей.

4. ЗАКЛЮЧЕНИЕ

Проведено исследование электрофизических параметров плазмы, кинетики плазмохимиче-

ских процессов и стационарного состава газовой фазы в системе $CHF_3 + O_2 + Ar$ с переменным соотношением компонентов О2/Аг в условиях индукционного ВЧ (13.56 МГц) разряда. Показано, что в бескислородной системе CHF₃ + Ar выполняется условие $n_{\rm HF}$ > $n_{\rm CF_x}$ > $n_{\rm CHF_x}$, которое обеспечивается эффективным протеканием про-цессов вида $CHF_x + F \rightarrow CF_x + HF$, $CHF_x + H \rightarrow$ $\rightarrow CHF_{x-1} + HF$ и $CF_x + H \rightarrow CF_{x-1} + HF$. Установлено, что замещение аргона на кислород сопровождается резким снижением концентраций компонентов СНF_x и CF_x из-за их диссоциации при взаимодействии с атомами кислорода, а также ростом концентрации атомов фтора по причине снижения частоты гибели этих частиц в объемных процессах. При модельном анализе кинетики гетерогенных процессов подтверждено, что увеличение доли кислорода в плазмообразующей смеси приводит к снижению полимеризационной нагрузки газовой фазы на контактирующие с ней поверхности, а также вызывает резкое (до двух порядков величины при ~20% О₂) уменьшение толщины фторуглеродной полимерный пленки.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта 19-07-00804А.

СПИСОК ЛИТЕРАТУРЫ

- Wolf S., Tauber R.N. Silicon Processing for the VLSI Era. Volume 1. Process Technology. Lattice Press, New-York, 2000. 416 p.
- 2. *Rooth J.R.* Industrial Plasma Engineering. IOP Publishing LTD. Philadelphia. 2001. 658 p.
- 3. Roosmalen A.J., Baggerman J.A.G., Brader S.J.H. Dry etching for VLSI. Plenum Press, New-York, 1991. 490 p.
- Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. John Wiley & Sons Inc., New-York, 1994. 757 p.
- Yeom G.Y., Kushner M.J. Si/SiO₂ etch properties using CF₄ and CHF₃ in radio frequency cylindrical magnetron discharges // Appl. Phys. Lett. 1990. V. 56. P. 857–859.
- 6. *Rossnagel S.M., Cuomo J.J., Westwood W.D.* (Eds.). Handbook of plasma processing technology. Noyes Publications, ParkRidge, 1990. 338 p.
- Cartry F.G., Peignon M.-C., Cardinaud Ch. Selective and deep plasma etching of SiO₂: Comparison between different fluorocarbon gases (CF₄, C₂F₆, CHF₃) mixed with CH₄ or H₂ and influence of the residence time // J. Vac. Sci. Technol. B. 2002. V. 20. P. 1514–1521.
- Ho P, Johannes J.E., Buss R.J. Modeling the plasma chemistry of C₂F₆ and CHF₃ etching of silicon dioxide, with comparisons to etch rate and diagnostic data // J. Vac. Sci. Technol. A. 2001.V. 19. P. 2344–2367.
- Bose D., Rao M.V.V.S., Govindan T.R., Meyyappan M. Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF₃ plasma // Plasma Sources Sci. Technol. 2003. V. 12. P. 225–234.

- Proshina O., Rakhimova T.V., Zotovich A., Lopaev D.V., Zyryanov S.M., Rakhimov A.T. Multifold study of volume plasma chemistry in Ar/CF₄ and Ar/CHF₃ CCP discharges // Plasma Sources Sci. Technol. 2017. V. 26. P. 075005.
- Ефремов А.М., Мурин Д.Б., Кwon К.-Н. Параметры плазмы и кинетика активных частиц в смесях CF₄ (CHF₃) + Аг переменного начального состава // Микроэлектроника. 2018. Т. 47. № 6. С. 414–423.
- 12. Ефремов А.М., Мурин Д.Б., Кwon К.-Н.Особенности кинетики объемных и гетерогенных процессов в плазме смесей CHF₃ + Ar и C₄F₈ + Ar // Микро-электроника. 2019. Т. 48. № 2. С. 125–133.
- Efremov A., Lee J., Kim J. On the control of plasma parameters and active species kinetics in CF₄ + O₂ + Ar gas mixture by CF₄/O₂ and O₂/Ar mixing ratios // Plasma Chem. PlasmaProcess. 2017. V. 37. P. 1445–1462.
- 14. Son J., Efremov A., Yun S.J., Yeom G.Y., Kwon K.-H. Etching characteristics and mechanism of SiNxfilms for Nano-Devices in CH₂F₂/O₂/Ar inductively coupled plasma: Effect of O₂ mixing ratio // J. Nanosci. Nanotech. 2014. V. 14. P. 9534–9540.
- Johnson E.O., Malter L. A floating double probe method for measurements in gas discharges // Phys. Rev. 1950. V. 80. P. 58–70.
- 16. *Shun'ko V.* Langmuir probe in theory and practice. Universal Publishers. Boca Raton. 2008. 245 p.
- Caneses J.F., Blackwell B. RF compensation of double Langmuir probes: modelling and experiment. Plasma Sources Sci. Technol. 2015. V. 24. P. 035024.
- Kwon K.-H., Efremov A., Kim M., Min N.K., Jeong J., Kim K. A model-based analysis of plasma parameters and composition in HBr/X (X = Ar, He, N₂) inductively coupled plasmas // J. Electrochem. Soc. 2010. V. 157. P. H574–H579.
- Efremov A., Min N.K., Choi B.G., Baek K.H., Kwon K.-H. Model-based analysis of plasma parameters and active species kinetics in Cl₂/X (X = Ar, He, N₂) inductively coupled plasmas // J. Electrochem. Soc. 2008. V. 155. P. D777–D782.
- Hsu C.C., Nierode M.A., Coburn J.W., Graves D.B. Comparison of model and experiment for Ar, Ar/O₂ and Ar/O₂/Cl₂ inductively coupled plasmas // J. Phys. D. Appl. Phys. 2006. V. 39. № 15. P. 3272–3284.
- Lee B.J., Efremov A., Yang J.W., Kwon K.-H. Etching characteristics and mechanisms of MoS₂ 2D Crystals in

O₂/Ar inductively coupled plasma // J. Nanosci. Nanotechnol. 2016. V. 16. № 11. P. 11201–11209.

- Lim N., Efremov A., Yeom G.Y., Kwon K.-H. On the etching characteristics and mechanisms of HfO₂ thin films in CF₄/O₂/Ar and CHF₃/O₂/Ar Plasma for Nano-Devices // J. Nanosci. Nanotechnol. 2014. V. 14. № 12. P. 9670–9679.
- 23. NIST Chemical Kinetics Database. https://kinetics. nist.gov/kinetics/welcome.jsp
- 24. *Chistophorou L.G., Olthoff J.K.* Fundamental electron interactions with plasma processing gases. Springer Science + Business Media. New York. 2004. 780 p.
- 25. *Turban G., Grolleau B., Launay P., Briaud P.* A mass spectrometric diagnostic of C₂F₆ and CHF₃ plasmas during etching of SiO₂ and Si // Revue Phys. Appl. 1985. V. 20. P. 609–620.
- Takahashi K., Hori M., Goto T. Characteristics of fluorocarbon radicals and CHF₃ molecule in CHF₃ electron cyclotron resonance downstream plasma // Jpn. J. Appl. Phys. 1994. V. 33. P. 4745–4758.
- Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide // J. Vac. Sci. Technol. A. 2004. V. 22. P. 53–60.
- Stoffels W.W., Stoffels E., Tachibana K. Polymerization of fluorocarbons in reactive ion etching plasmas // J. Vac. Sci. Tech. A. 1998. V. 16. P. 87–95.
- Kay E., Coburn J., Dilks A. Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization. In: Veprek S., Venugopalan M. (eds) Plasma Chemistry III. Topics in Current Chemistry. V. 94. Springer, Berlin, Heidelberg. 1980.
- Jansen M., Gardeniers H., de Boer M., Elwenspoek M., Fluitman J. A survey on the reactive ion etching of silicon in microtechnology // J. Micromech. Microeng. 1996. V. 6. P. 14–28.
- Gray D.C., Tepermeister I., Sawin H.H. Phenomenological modeling of ion enhanced surface kinetics in fluorine-based plasma etching // J. Vac. Sci. Technol. B. 1993. V. 11. P. 1243–1257.
- Lee C., Graves D.B., Lieberman M.A. Role of etch products in polysilicon etching in a high-density chlorine discharge // Plasma Chem. Plasma Proc. 1996. V. 16. P. 99–118.