—— МАТЕРИАЛЫ —

УДК 621.382

ВЛИЯНИЕ СОСТАВА НА ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА И ПЕРЕНОС ЗАРЯДА В 2D МАТЕРИАЛАХ GaS_{1 – r}Se_r

© 2019 г. С. М. Асадов¹, С. Н. Мустафаева^{2, *}, В. Ф. Лукичев^{3, **}, Д. Т. Гусейнов²

¹Институт катализа и неорганической химии Азербайджанской Республики НАН Азербайджан, 1145, Баку, пр. Г. Джавида, 131 ²Институт физики Азербайджанской Республики НАН, Азербайджан, 1141, Баку, пр. Г. Джавида, 33 ³Физико-технологический институт им. К.А. Валиева Российской АН, Россия, 117218, Москва, Нахимовский проспект, 36, к. 1 *E-mail: solmust@gmail.com **E-mail: lukichev@ftian.ru Поступила в редакцию 10.01.2019 г. После доработки 15.02.2019 г.

Принята к публикации 15.02.2019 г.

Изучено влияние состава твердых растворов со слоистой структурой системы GaS–GaSe на диэлектрические характеристики и проводимость на переменном токе в диапазоне частот $5 \times 10^4 - 3.5 \times 10^7$ Гц. Показано, что с увеличением содержания селена в монокристаллах GaS_{1 – x}Se_x действительная и мнимая составляющие комплексной диэлектрической проницаемости, тангенс угла диэлектрических потерь и проводимость на переменном токе существенно увеличиваются. Наблюдаемое в экспериментах уменьшение диэлектрической проницаемости изученных твердых растворов с ростом частоты от 5×10^4 до 3.5×10^7 Гц свидетельствует о релаксационной дисперсии. Установлены природа диэлектрических потерь в монокристаллах GaS_{1 – x}Se_x (потери сквозной проводимости) и прыжковый механизм переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены основные параметры локализованных состояний в запрещенной зоне GaS_{1 – x}Se_x.

DOI: 10.1134/S0544126919040021

введение

В последние годы наблюдается быстрый рост различных применений полупроводниковых низкоразмерных материалов, в частности 2D-халькогенидов, в микро- и наноэлектронике, фотонике и спинотронике [1-10]. Слоистые 2D-кристаллы на основе соединений А^{ШВVI} [1-10] обладают анизотропными свойствами, которые обусловлены наличием двух видов связей между атомами в кристалле. В таких кристаллах, например, в сульфиде галлия (GaS), каждый слой содержит четыре атомные плоскости S-Ga-Ga-S, расположенные перпендиуклярно оси С-кристалла. Внутри 2D-слоев связь имеет ионно-ковалентный характер, соседние слои связаны слабыми силами типа Ван-дер-Ваальса. Принимая во внимание практическое применение этих материалов важно модифицировать их свойства путем легирования или получения твердых растворов на их основе и установить концентрационные зависимости свойств образцов системы. В системе GaS-GaSe образуется непрерывный ряд твердых растворов. Обзор известных фаз в системе GaS-GaSe приведен в [11].

243

Цель настоящей работы — изучение влияния состава образцов 2D-системы GaS—GaSe на их диэлектрические свойства, выяснение механизма переноса заряда в них на переменном токе (ac) и определение параметров локализованных в запрещенной зоне состояний.

МЕТОДИКА ЭКСПЕРИМЕНТА

Исходные химические элементы Ga-5N галлий, B5 сера и OCЧ-17-3 селен с содержанием примесей не более 5×10^{-4} мас. % мы использовали без дополнительной очистки. Бинарные соединения GaS и GaSe получали по стехиометрическим навескам из соответствующих элементов. Образцы GaSe_{1-x}S_x (x = 0, 0.2, 0.3, 0.5, 0.8 и 1) синтезировали из стехиометрических количеств полученных 2D бинарных соединений GaS и GaSe [11–14].

Монокристаллы получали из синтезированных образцов $GaSe_{1-x}S_x$ методом Бриджмена. В процессе выращивания кристаллов $GaSe_{1-x}S_x$ в верхней зоне печи поддерживалась температура 1293 К, т.е. на 5 К выше температуры плавления

Рис. 1. Частотная дисперсия действительной составляющей комплексной диэлектрической проницаемости образцов GaS (I), GaS_{0.5}Se_{0.5} (2) и GaS_{0.3}Se_{0.7} (3).

GaS, в нижней зоне — 1161 K, т.е. на 50 K ниже температуры плавления GaS. Скорость перемещения ампулы в печи была 0.3-0.5 см/ч, градиент температуры у фронта кристаллизации составлял 25 ± 5 K [14].

Рентгенофазовый анализ образцов $GaSe_{1-x}S_x$ проведен на дифрактометре марки D8-ADVANCE в режиме $0.5^\circ < 2\Theta < 100^\circ$ (CuK_{α}-излучение, $\lambda = 1.5406$ Å) при 40 кВ и 40 мА.

Параметры элементарной ячейки изученных нами образцов на основе $GaSe_{1-x}S_x$ согласуются с данными для системы GaS-GaSe. Для GaSe гексагональной 2D-структуры получены следующие параметры ячейки:

$$a = 3.755 \pm 0.002$$
 Å, $c = 15.940 \pm 0.005$ Å

при комнатной температуре. Параметры элементарной ячейки 2D-структуры GaS имели следующие значения:

$$a = 3.583 \pm 0.002$$
 Å, $c = 15.475 \pm 0.005$ Å.

Диэлектрические коэффициенты монокристаллов системы GaS–GaSe измерены резонансным методом [12]. Диапазон частот переменного электрического поля составлял 5×10^4 – 3.5×10^7 Гц. Образцы системы GaS–GaSe для электрических измерений были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической *C*-оси монокристаллических образцов. В качестве электродов использована серебряная паста. Толщина изученных монокристаллических образцов составляла 200–700 мкм, а площадь обкладок – 7×10^{-2} см². Все диэлектрические измерения про-

ведены при 300 К. Воспроизводимость положения резонанса составляла по емкости $\pm 0.2 \, \mathrm{n}\Phi$, а по добротности (Q = 1/tg\delta) $\pm 1.0-1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3–4% для є' и 7% для tgδ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены частотные зависимости действительной составляющей комплексной диэлектрической проницаемости (є') образцов с 2D-структурой GaS, GaS₀, Se₀, и GaS₀, Se₀, Видно, что с увеличением содержания селена в твердых растворах $GaS_{1-x}Se_x$ значение ε' существенно увеличивается. В указанных монокристаллах во всем изученном диапазоне частот имеет место существенная дисперсия є'. Так, в GaS с увеличением частоты от 5 × 10^4 до 3.5 × 10^7 Гц значение є' уменьшалось в 1.5 раза, в GaS_{0.5}Se_{0.5} – в 1.7 раз, а в GaS_{0.3}Se_{0.7} – более, чем в 2 раза. Наблюдаемое в экспериментах уменьшение диэлектрической проницаемости в монокристаллах GaS, $GaS_{0.5}Se_{0.5}$ и GaS_{0.3}Se_{0.7} с ростом частоты от 5×10^4 до $3.5 \times$ × 10⁷ Гц свидетельствует о релаксационной дисперсии [15].

Частотные зависимости мнимой части комплексной диэлектрической проницаемости є" монокристаллов GaS, $GaS_{0.5}Se_{0.5}$ и $GaS_{0.3}Se_{0.7}$ приведены на рис. 2. Эти зависимости также носят спадающий характер с ростом частоты и свидетельствуют о релаксационной дисперсии. Наиболее существенная частотная дисперсия наблюдалась в кристаллах $GaS_{0.3}Se_{0.7}$ (кривая 3).

Рис. 2. Частотные зависимости мнимой части комплексной диэлектрической проницаемости образцов GaS (I), GaS_{0.5}Se_{0.5} (2) и GaS_{0.3}Se_{0.7} (3).

Puc. 3. Частотные зависимости тангенса угла диэлектрических потерь (tgδ) в монокристаллах GaS (1), GaS_{0.5}Se_{0.5} (2), GaS_{0.3}Se_{0.7} (3) и GaS_{0.2}Se_{0.8} (4).

На рис. 3 показаны частотные зависимости тангенса угла диэлектрических потерь (tg\delta) в изученных кристаллах. Видно, что с ростом содержания селена в образцах $GaS_{1-x}Se_x$ tgδ существенно увеличивается. Частотный ход кривых tg $\delta(f)$ свидетельствует о потерях сквозной проводимости в монокристаллах $GaS_{1-x}Se_x$ [15].

На рис. 4 представлены результаты изучения частотно-зависимой ас-проводимости (σ_{ac}) монокристаллов GaS_{1-x}Se_x при 300 K.

МИКРОЭЛЕКТРОНИКА том 48 № 4 2019

Как следует из рис. 4 увеличение содержания селена в образцах $GaS_{1-x}Se_x$ приводит к значительному возрастанию ас-проводимости, так при 5 × 10⁴ Гц проводимость монокристалла $GaS_{0.2}Se_{0.8}$ с наибольшим содержанием селена почти на два порядка превышает σ_{ac} монокристалла GaS. С увеличением частоты разница в значениях σ_{ac} изученных кристаллов несколько уменьшается.

Во всей изученной области частот ас-проводимость монокристаллов $GaS_{1-x}Se_x$ изменялась по

Рис. 4. Частотно-зависимая ас-проводимость монокристаллов GaS (1), GaS_{0.5}Se_{0.5} (2), GaS_{0.3}Se_{0.7} (3) и GaS_{0.2}Se_{0.8} (4) при 300 К.

степенному закону $\sigma_{ac} \sim f^n$, где $n \leq 1$. В GaS дисперсионная кривая $\sigma_{ac}(f)$ подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, а в GaS_{0.5}Se_{0.5} после участка $\sigma_{ac} \sim f^{0.8}$ при высоких частотах ($f \geq 6 \times 10^6$ Гц) наблюдалась линейная зависимость $\sigma_{ac} \sim f$. В кристаллах же GaS_{0.3}Se_{0.7} и GaS_{0.2}Se_{0.8} во всей области частот наблюдалась зависимость $\sigma_{ac} \sim f^{0.5}$. Ас-проводимость зонного типа, как известно, в основном частотно-независимая вплоть до $10^{10}-10^{11}$ Гц. Наблюдаемая нами экспериментальная зависимость $\sigma_{ac} \sim f^{0.8}$ в кристаллах GaS и GaS_{0.5}Se_{0.5} свидетельствует о том, что она обусловлена прыжками носителей заряда между локализованными в запрещенной зоне состояниями. Это могут быть локализованные вблизи краев разрешенных зон состояния или локализованные вблизи уровня Ферми состояния [16]. Так как в экспериментальных условиях проводимость по состояниям вблизи уровня Ферми всегда доминирует над проводимостью по состояниям вблизи краев разрешенных зон, полученный нами закон $\sigma_{ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми. Формула для такой проводимости имеет вид:

$$\sigma_{\rm ac}(f) = \frac{\pi^3}{96} e^2 k T N_{\rm F}^2 a^5 f \left[\ln\left(\frac{\nu_{\rm ph}}{f}\right) \right]^4, \tag{1}$$

где е — заряд электрона; k — постоянная Больцмана; $N_{\rm F}$ — плотность состояний вблизи уровня Ферми; $a = 1/\alpha$ — радиус локализации; α — постоянная спада волновой функции локализованного носителя заряда $\Psi \sim e^{-\alpha r}$; $v_{\rm ph}$ — фононная частота.

С помощью формулы (1) по экспериментально найденным значениям $\sigma_{ac}(f)$ образцов GaS и GaS_{0.5}Se_{0.5} вычислили плотность состояний на уровне Ферми:

$$N_{\rm F} = 8.8 \times 10^{18} \text{ M} 2 \times 10^{19} \text{ s}{\rm B}^{-1} \text{ cm}^{-3},$$

соответственно. При вычислениях $N_{\rm F}$ для радиуса локализации взято значение a = 14 Å, полученное экспериментально для монокристалла GaS [17]. Значение $v_{\rm ph}$ для GaS порядка 10^{12} Гц.

Согласно теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по формуле [16]:

$$R = \frac{1}{2\alpha} \ln\left(\frac{\nu_{\rm ph}}{f}\right). \tag{2}$$

В формуле (2) значение f соответствует средней частоте, при которой наблюдается $f^{0.8}$ – закон. Вычисленное по формуле (2) значение R для монокристалла GaS составляло 87 Å, для GaS_{0.5}Se_{0.5} – 90 Å. Это значение R примерно в 6 раз превышает среднее расстояние между центрами локализации носителей заряда в изученных монокристаллах. Значение R позволило по формуле

$$\tau^{-1} = v_{\rm ph} \exp(-2\alpha R) \tag{3}$$

определить среднее время прыжков в монокристаллах GaS и GaS_{0.5}Se_{0.5}:

$$\tau = 2 \times 10^{-7}$$
 и 3.3×10^{-7} с,

соответственно. По формуле [16]:

$$\Delta E = \frac{3}{2\pi R^3 N_{\rm F}} \tag{4}$$

в этих монокристаллах оценен энергетический разброс локализованных вблизи уровня Ферми состояний:

 $\Delta E = 82$ мэВ для GaS и 33 мэВ для GaS_{0.5}Se_{0.5}.

По формуле

$$N_{\rm t} = N_{\rm F} \Delta E \tag{5}$$

определена концентрация глубоких ловушек, ответственных за ас-проводимость в этих образцах:

$$N_{\rm t} = 7.3 \times 10^{17} \,{\rm cm}^{-3}$$
для GaS
и 6.6 × 10¹⁷ см⁻³ для GaS_{0.5}Se_{0.5}.

На дисперсионных кривых $\sigma_{ac}(f)$ образцов GaS_{0.3}Se_{0.7} и GaS_{0.2}Se_{0.8} (рис. 4, кривые *3* и *4*) нам не удалось достичь участка $\sigma_{ac} \sim f^{0.8}$, так как для этого требовались более высокие частоты (>3.5 × × 10⁷ Гц).

ЗАКЛЮЧЕНИЕ

В синтезированных нами монокристаллах твердых растворов со слоистой 2D-структурой $GaS_{1-x}Se_x$ (x = 0, 0.2, 0.3, 0.5, 0.8 u 1) изучены диэлектрические характеристики и проводимость на переменном токе в диапазоне частот $5 \times 10^4 - 3.5 \times 10^7$ Гц. Установлено, что с увеличением содержания селена в монокристаллах $GaS_{1-x}Se_x$ действительная и мнимая составляющие комплексной диэлектрической проницаемости, тангенс угла диэлектрических потерь и проводимость на переменном токе существенно увеличиваются. Уменьшение диэлектрической проницаемости твердых растворов $GaS_{1-x}Se_x$ с ростом частоты

МИКРОЭЛЕКТРОНИКА том 48 № 4 2019

от 5×10^4 до 3.5×10^7 Ги свидетельствует о релаксационной дисперсии. Установлено, что в монокристаллах GaS_{1- x}Se_x имеют место потери сквозной проводимости. Перенос носителей заряда в твердых растворах GaS_{1 – r}Se_r системы GaS–GaSe осушествляется прыжками по локализованным вблизи уровня Ферми состояниям. Оценены параметры локализованных состояний в запрещенной зоне $GaS_{1-x}Se_x$, такие как плотность $N_F = 8.8 \times$ $\times 10^{18} - 2 \times 10^{19} \ ЭB^{-1} \ см^{-3}$ и энергетический разброс $\Delta E = 33 - 82$ мэВ локализованных состояний в окрестности уровня Ферми, средняя длина R == 87–90 Å и время $\tau = (2-3.3) \times 10^{-7}$ с прыжков, а также концентрация $N_{\rm t} = (6.6-7.3) \times 10^{17} \,{\rm сm}^{-3}$ глубоких ловушек, ответственных за перенос заряда на переменном токе.

Настоящая работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской Республики (гранты № EİF-BGM-3-BRFTF-2+/2017-15/05/1-М-13 и № EİF-BGM-4-RFTF-1/2017-21/05/1-М-07) и РФФИ (проект "Аз_а"2018).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Madelung O*. Semiconductors Data Handbook, Springer-Verlag, Berlin, 2004.
- Terhell I.C.I. Polytypism in the III–VI layer compounds // Prog. Cryst. Growth Charact. Mater. 1983. 7. P. 55–110.
- Mustafaeva S.N., Asadov M.M. Currents of isothermal relaxation in GaS(Yb) single crystals // Solid State Communications. 1983. V. 45. P. 491–494.
- Mustafaeva S.N., Asadov M.M. High field kinetics of photocurrent in GaSe amorphous films // Materials Chemistry and Physics. 1986. V. 15. P. 185–189.
- Fernelius N.C. Properties of gallium selenide single crystal // Prog. Cryst. Growth and Charact. 1994. V. 28. P. 275–353.
- Nazarov M.M., Kosobutsky A.V., Sarkisov S.Yu., Brudnyi V.N., TolbanovO.P., Shkurinov A.P. Electronic properties and influence of doping on GaSe crystal nonlinear optical parameters for the applications in terahertz range // Intern. Conf. on Coherent and Nonlinear Optics. Proc. of SPIE. 2010. V. 7993 799326-1.
- Ni Y., Wu H., Huang C., Mao M., Wang Z., Cheng X. Growth and quality of gallium selenide (GaSe) crystals // J. Crystal Growth. 2013. V. 381. P. 10–14.
- 8. Asadov S.M., Mustafaeva S.N., Lukichev V.F. Transport phenomena and physical properties of low-dimensional solid solutions $TlGa_{1-x}Sb_xS_2//$ Book of Abstracts of III International Conference on Modern Problems in Physics of Surfaces and Nanostructures. Yaroslavl, Russia. 9–11 October, 2017. P2-25: P. 111.
- Асадов С.М., Мустафаева С.Н., Лукичев В.Ф. Явления переноса и диэлектрические свойства низкоразмерных твердых растворов // Сборник материалов Третьего Междисциплинарного Научного

Форума с Международным участием "Новые Материалы". Москва. 21–24 ноября, 2017. С. 244–246.

- Asadov S.M., Mustafaeva S.N., Lukichev V.F. Effect of doping with gallium on the electrical conductivity of TISbS₂ single crystals // Тезисы докладов Всероссийской конференции с международным участием "Химия твердого тела и функциональные материалы" и XII Всероссийского симпозиума с международным участием "Термодинамика и материаловедение". Санкт-Петербург. Россия. 21–27 мая 2018. С. 355.
- Asadov S.M., Mustafaeva S.N., Mammadov A.N. Thermodynamic assessment of phase diagram and concentration-temperature dependences of properties of solid solutions of the GaS–GaSe system // J. Thermal Analysis and Calorimetry. 2018. V. 133. № 2. P. 1135–1141.
- 12. *Мустафаева С.Н.* Методика измерения проводимости высокоомных материалов на переменном токе // Все материалы. Энциклопедический справочник. 2016. № 10. С. 74–79.

- Asadov S.M., Mustafaeva S.N. Dielectric losses and charge transfer in antimony-doped TlGaS₂ single crystal // Physics of the Solid State. 2018. V. 60. № 3. P. 499–503.
- Mustafaeva S.N., Asadov S.M., Kerimova E.M. Dielectric properties and conductivity of Ag-doped TlGaS₂ single crystals // Semiconductors. 2018. V. 52. № 2. P. 156–159.
- 15. Пасынков В.В., Сорокин В.С. Материалы электронной техники. СПб.-М.-Краснодар. 2004. 368 с.
- Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. Пер. с англ. 2-е изд., перераб. и доп. В 2-х томах. М.: Мир, 1982. Т. 1. 368 с. Т. 2. 664 с.
- Augelli V., Manfredotti C., Murri R., Piccolo R., Vasanelli L. Anomalous impurity conductivity in n-GaSeand n-GaS // NuovoCimentoSoc. Ital. Fis. B. 1977. V. 38. № 2. P. 327–336.