ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ МИКРО- И НАНОЭЛЕКТРОНИКИ

УДК 621.315.592.4

ВЛИЯНИЕ РЕЖИМОВ ИМПУЛЬСНОГО ЛАЗЕРНОГО ОСАЖДЕНИЯ НА СВОЙСТВА НАНОКРИСАТАЛЛИЧЕСКИХ ПЛЕНОК LiNbO₃

© 2019 г. З. Е. Вакулов^{1, *}, Ю. Н. Варзарев¹, Е. Ю. Гусев¹, А. В. Скрылев², А. Е. Панич², А. В. Мяконьких³, И. Э. Клементе³, К. В. Руденко³, Б. Г. Коноплев¹, О. А. Агеев¹

¹Научно-образовательный центр "Нанотехнологии" Южного федерального университета Россия, 347922, г. Таганрог, ул. Шевченко, 2, ЮФУ

²Институт высоких технологий и пьезотехники Южного федерального университета

Россия, 344090 г. Ростов-на-Дону, ул. Мильчакова, 10

³Физико-технологический институт имени К.А. Валиева Российской академии наук

Россия, 117218, г. Москва, Нахимовский проспект, д. 34

**E-mail: zvakulov@sfedu.ru*

Поступила в редакцию 23.10.2018 г.

В работе представлены результаты исследования влияния длительности импульсного лазерного осаждения пленок ниобата лития на их свойства. Показано, что при увеличении длительности осаждения от 90 до 360 мин толщина пленок LiNbO₃ изменяется от (47.5 \pm 3.8) до (197.9 \pm 15.8) нм, при этом шероховатость поверхности пленок и диаметр зерна увеличивается от (3.57 \pm 0.17) до (32.7 \pm 2.32) нм и от (235 \pm 22) до (346 \pm 33) нм соответственно. Проведены исследования фазового состава, электрофизических и оптических свойств нанокристаллических пленок LiNbO₃. Установлено, что с увеличением толщины пленки от (110.1 \pm 8.8) до (143.8 \pm 7.0) нм зависимости поляризации от напряженности поля обладают гистерезисом, что характеризует данные пленки, как сегнетоэлектрические, и позволяет применять их для изготовления перспективной электронной элементной базы акустооптики и пьезотехники.

DOI: 10.1134/S0544126919020091

ВВЕДЕНИЕ

Благодаря уникальному сочетанию электрооптических, акустооптических, сегнетоэлектрических и пьезоэлектрических свойств ниобат лития (LiNbO₃) широко используется при разработке акустооптических и пьезоэлектрических устройств [1-3]. Некоторые исследовательские группы при разработке и изготовлении устройств интегральной оптики используют тонкие срезы монокристалла LiNbO3 с определенной кристаллической ориентацией [4, 5]. Несмотря на очевидные преимущества данного метода, недостатки в виде высоких шероховатости поверхности и себестоимости процесса получения срезов, трудности при проведении операции легирования существенно затрудняют интеграцию LiNbO3 с существующими технологиями микро- и наноэлектроники. Использование тонких пленок сегнетоэлектрических материалов позволяет преодолеть эти недостатки [6, 7].

В отличие от гибридных устройств, планарные структуры обладают малыми габаритами, возможностью быстрого электронного управления и низкими управляющими мощностями. Тем не менее, создание устройств на основе сегнетоэлектрических пленок на современном этапе развития технологии затруднено, из-за большого разнообразия конструктивных решений, используемых материалов и методов изготовления и связанных с этим проблемами технологической совместимости и воспроизводимости. Кроме того, использование многокомпонентных оксидов с высокой температурой кристаллизации при создании устройств по интегральной технологии приводит к существенному усложнению технологического процесса и необходимости разрабатывать десятки сопутствующих операций. Поэтому, несмотря на значительный прогресс в этой области, проблему формирования сегнетоэлектрических тонкопленочных структур, удовлетворяющих требованиям технологической совместимости и воспроизводимости, нельзя считать полностью решенной.

На сегодняшний день пленки LiNbO₃ получают с помощью эпитаксии [8], осаждением из газовой фазы [9], магнетронным распылением [10], зольгель методом [11] и импульсным лазерным осаждением (ИЛО) [12–17]. Использование ИЛО позволяет получать тонкие сегнетоэлектрические пленки с контролируемым стехиометрическим составом, в широком диапазоне управляя структурно-фазовыми свойствами. Однако, недостаточно исследованным остаются механизмы влияния режимов ИЛО на свойства и параметры пленок LiNbO₃.

Целью данной работы является исследование влияния длительности импульсного лазерного осаждения на морфологию, фазовый состав и электро-

Рис. 1. Зависимость толщины нанокристаллических пленок LiNbO3 от количества лазерных импульсов и времени осаждения.

Рис. 2. АСМ изображение (*a*) и профилограмма (*b*) пленки LiNbO₃ с толщиной (143.8 \pm 7.0) нм.

физические параметры нанокристаллических пленок LiNbO₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение нанокристаллических пленок LiNbO₃ проводилось на установке ИЛО Pioneer 180 (Neocera Co., США), входящей в состав кластерного нанотехнологического комплекса НАНОФАБ HTK-9 ("HT-MДТ", Россия). Абляция мишени LiNbO₃ чистотой 99.99% (Kurt J. Lesker Co., США) проводилась эксимерным KrF лазером ($\lambda = 248$ нм) с плотностью энергии на поверхности мишени 2.0 Дж/см² и частотой следования импульсов 10 Гц, длительность осаждения изменялась от 90 до 360 мин. Расстояние мишень—подложка и температура подложки состав-

ляли 115 мм и 600°С соответственно. Формирование пленок проводилось на предварительно очищенных кремниевых подложках размером 1 × 1 см.

Изучение морфологии и фазового состава полученных пленок производилось методами атомносиловой (**ACM**) и растрово-электронной (**PЭM**) микроскопии с помощью зондовой нанолаборатории Ntegra ("HT-MДТ", Россия) и растрового электронного микроскопа Nova NanoLab 600 (FEI Co., Нидерланды) с приставкой для энергодисперсионного анализа EDAX. Определение электрофизических свойств пленок LiNbO₃ проводилось методом ЭДС Холла на установке Ecopia HMS-3000 (Ecopia Co., Корея). Измерения поляризационных характеристик проводились методом Сойера–Тауэра. Оптические характеристики

Рис. 3. Зависимости шероховатости поверхности (a) и диаметра зерна (δ) от толщины пленок LiNbO₃.

Рис. 4. РЭМ изображения пленок LiNbO₃ толщиной (47.5±3.8) нм (*a*) и (143.8±7.0) нм (*b*).

(показатели преломления *n* и поглощения *k*) были получены методом спектральной эллипсометрии на эллипсометре M2000X (Woollam J.A. Co, США) в диапазоне длин волн от 240 до 1000 нм с шагом 10 нм при угле падения луча 65° .

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 представлена зависимость толщины пленок LiNbO₃ от количества лазерных импульсов и времени осаждения, определенная методом ступеньки.

Установлено, что при увеличении количества лазерных импульсов от 50000 до 200000 (времени осаждения от 90 до 360 мин) толщина нанокристаллических пленок LiNbO₃ возрастает от (47.5 ± 3.8) нм до (197.9 ± 15.8) нм. Для всех пленок скорость осаждения составила (0.09 ± 0.02) Å/с. На рис.2 представлены ACM изображение и профилограмма пленки LiNbO₃ толщиной (143.8 ± 7.0) нм. На рис. 3 представлены зависимости шероховатости поверхности и диаметра зерна пленок LiNbO₃ от их толщины. Установлено, что при увеличении толщины от (47.5 ± 3.8) до (197.9 ± 15.8) нм шероховатость увеличивается с (3.57 ± 0.17) до (32.7 ± 2.32) нм. Полученные в ходе анализа ACM изображений зависимости подтверждаются результатами исследований пленок методом РЭМ (рис. 4).

Таблица 1. Результаты EDAX анализа пленок LiNbO3

N⁰	Толщина, нм	Содержание Nb, атм. %	Содержание О, атм %	Содержание Nb ₂ O ₅ , атм. %
1	47.5 ± 3.8	0.60	4.03	1.02
2	197.9 ± 15.8	6.27	32.11	11.77

Рис. 5. ЕDAX спектры пленок LiNbO₃ толщиной (47.5 ± 3.8) нм (*a*) и (197.9 ± 15.8) нм (*b*).

Увеличение шероховатости и диаметра зерна при увеличении толщины может быть связано с повышением интенсивности процессов массопереноса, фазообразования и фазовой сегрегации в формируемых нанокристаллических пленках LiNbO₃.

На рис. 5 представлены EDX спектры пленок LiNbO₃ различной толщины. В табл. 1 представлены результаты исследования пленок LiNbO₃ методом EDAX.

В результате проведенного EDX анализа установлено, что при увеличении толщины пленок LiNbO₃ содержание Nb в пленках возрастает с 0.60 до 6.47 атм. %. Появление углерода на спектрах пленок может быть связано с влиянием остаточной атмосферы в аналитической камере РЭМ.

На рис. 6 представлены зависимости поляризации от величины напряженности электрического поля.

Рис. 6. Зависимость поляризации от напряженности для нанокристаллических пленок LiNbO3 толщиной (143.8 ± 7.0) нм.

Рис. 7. Зависимости концентрации (*a*), подвижности (*б*) носителей заряда и удельного сопротивления (*в*) от толщины нанокристаллических пленок LiNbO₃.

При увеличении толщины пленки от (110.1 \pm 8.8) до (143.8 \pm 7.0) нм зависимости поляризации от напряженности поля обладают гистерезисом, что характеризует данные пленки, как сегнетоэлектрические со спонтанной поляризацией. Аналогичная за-

висимость для пленки с толщиной (47.5 ± 3.8) нм имеет форму эллипса, что свидетельствует о релаксационной поляризации. Более высокие, по сравнению с объемным материалом, значения остаточной поляризации могут быть связаны со смещением под-

МИКРОЭЛЕКТРОНИКА том 48 № 2 2019

Рис. 8. Спектральная зависимость коэффициентов *n* и *k*, восстановленная по образцам с толщинами от (47.5 ± 3.8) до (143.8 ± 7.0) нм.

решеток Li, Nb и O и изменением напряжений в пленках [18, 19].

На рис. 7 представлены зависимости электрофизических параметров нанокристаллических пленок LiNbO₃ от их толщины.

Установлено, что при увеличении толщины пленок от (47.5 ± 3.8) до (143.8 ± 7.0) нм концентрация носителей уменьшается от (4.400 ± 0.37) × 10¹⁹ до (4.912 ± 0.2) × 10¹⁸ см⁻³, а подвижность носителей заряда увеличивается от (15.24 ± 1.22) до (251 ± ± 18) см²/В с, при этом значение удельного сопротивления увеличивается от (0.013 ± 0.0011) до (0.0411 ± 0.003) Ом см.

На рис. 8 представлена спектральная зависимость показателей отражения (*n*) и поглощения (*k*), восстановленная по измерениям psi и дельта образцов с толщинами от (47.5 \pm 3.8) до (143.8 \pm 7.0) нм.

При моделировании оптических характеристик пленки была использована модель Тауца– Лоренца [20], применяемая как к диэлектрикам, так и к полупроводникам. Полученные оптические характеристики удовлетворяли соотношениям Крамерса–Кронига. Установлено, что результаты измерений не зависели от ориентации образцов, что говорит об изотропном характере оптических характеристик полученных пленок. Показано, что в видимой части спектра показатель преломления пленок изменяется от 2.18 до 1.97, при этом значение показателя поглащения не превышает 0.05.

ЗАКЛЮЧЕНИЕ

Показано, что при увеличении толщины пленок LiNbO₃ от (47.5 \pm 3.8) до (143.8 \pm 7.0) нм шероховатость поверхности пленок и диаметр зерна увеличивается от (3.57 ± 0.5) до (20.13 ± 1.4) нм и от (235 ± 22) до (431 ± 33) нм, соответственно. Установлено, что при увеличении толщины пленки от (110.1 \pm 8.8) до (143.8 \pm 7.0) нм зависимости поляризации от напряженности поля имеет вид гистерезиса, что характеризует данные пленки, как сегнетоэлектрические. Аналогичная зависимость для образца с пленкой толщиной 47.5 нм имеет форму эллипса. Полученные зависимости характеризуют образцы с толщиной (110.1 \pm 8.8) - (143.8 ± 7.0) нм, как пленки со спонтанной поляризашией, тогла как для образца с толшиной (47.5 \pm 3.8) нм. наблюдается релаксационный характер поляризации. Показано, что увеличение толщины пленок от (47.5 ± 3.8) до (143.8 ± 7.0) нм приводит к увеличению содержания ниобия в пленках от 0.60 до 6.47 at. %. Установлено, что при увеличении толщины пленок от (47.5 \pm 3.8) до (143.8 \pm 7.0) нм концентрация носителей уменьшается от 4.400 × 10¹⁹ ло 4.912×10^{18} см⁻³, а подвижность носителей заряда увеличивается от 15.24 до 251 см²/В с. При этом значение удельного сопротивления увеличивается от 0.013 до 0.0411 Ом см.

Полученные результаты могут быть использованы при разработке и изготовлении интегральных акустооптических и пьезоэлектрических устройств, а также чувствительных элементов сенсоров, использующих различные эффекты поверхностных акустических волн.

Исследование выполнено при финансовой поддержке РФФИ (проект № 18-29-11019 мк) и Южного федерального университета (проект № ВнГр-07/2017-02) с использованием оборудования Научно-Образовательного Центра и Центра Коллективного Пользования "Нанотехнологии" Южного Федерального Университета.

СПИСОК ЛИТЕРАТУРЫ

- Presti D.A., Guarepi V., Videla F., Fasciszewski A., Torchia G.A. Intensity modulator fabricated in LiNbO₃ by femtosecond laser writing // Opt. Lasers Eng. 2018. V. 111. P. 222–226.
- Huang B., Sun M., Peng D. Intrinsic energy conversions for photon-generation in piezo-phototronic materials: A case study on alkaline niobates // Nano Energy. 2018. V. 47. P. 150–171.
- Hossein-Zadeh M., Levi A.F.J. Self-homodyne RF-optical LiNbO₃ microdisk receiver // Solid State Electron. 2005. V. 49. № 8. P. 1428–1434.
- Mackwitz P., Rüsing M., Berth G., Widhalm A., Müller K., Zrenner A. Periodic domain inversion in x-cut singlecrystal lithium niobate thin film // 2016. V. 108. P. 152902-1–152902-4.
- 5. *Cai L., Kong R., Wang Y., Hu H.* Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film // 2015. V. 23. № 22. P. 29211–29221.
- Tumuluri A., Bharati M.S.S., Venugopal Rao S., James Raju K.C. Structural, optical and femtosecond third-order nonlinear optical properties of LiNbO₃ thin films // Mater. Res. Bull. 2017. V. 94. P. 342–351.
- Garmire E. Semiconductor components for monolithic applications // Integrated optics. V. 7. Ed. Tamir T. Springer Science & Business Media. Berlin. 2013. P. 243–304.
- Dubs C., Ruske J.P., Kräuβlich J., Tünnermann A. Rib waveguides based on Zn-substituted LiNbO₃ films grown by liquid phase epitaxy // Opt. Mater. 2009. V. 31. № 11. P. 1650–1657.
- Bartasyte A., Plausinaitiene V., Abrutis A., Stanionyte S., Margueron S., Kubilius V., Boulet P., Huband S., Thomas P.A. Thickness dependent stresses and thermal expansion of epitaxial LiNbO₃ thin films on C-sapphire // Mater. Chem. Phys. 2015. V. 149 – 150. P. 622 – 631.
- Zhukov R.N., Bykov A.S., Kiselev D.A., Malinkovich M.D., Parkhomenko Yu.N. Piezoelectric properties and surface potential behavior in LiNbO₃ thin films grown by the radio frequency magnetron sputtering // J. Alloys Compd. 2014. V. 586. P. S336–S338.

- 11. Satapathy S., Mukherjee C., Shaktawat T., Gupta P.K., Sathe V.G., Blue shift of optical band-gap in LiNbO₃ thin films deposited by sol-gel technique // Thin Solid Films. 2012. V. 520. № 21. P. 6510–6514.
- 12. *Shih W.C., Sun X.Y.* Preparation of C-axis textured LiNbO₃ thin films on SiO₂/Si substrates with a ZnO buffer layer by pulsed laser deposition process // Physica B Condens. Matter. 2010. V. 405. № 6. P. 1619–1623.
- Kilburger S., Chety R., Millon E., Di Bin P., Di Bin C., Boulle A., Guinebretière R. Growth of LiNbO₃ thin films on sapphire by pulsed-laser deposition for electro-optic modulators // Appl. Surf. Sci. 2007. V. 253. № 19. P. 8263–8267.
- Wang X., Liang Y., Tian S., Man W., Jia J. Oxygen pressure dependent growth of pulsed laser deposited LiNbO₃ films on diamond for surface acoustic wave device application // J. Cryst. Growth. 2013. V. 375. P. 73–77.
- Kilburger S., Millon E., Di Bin P., Boulle A., Guinebretière R., Di Bin C. Properties of LiNbO₃ based heterostructures grown by pulsed-laser deposition for optical waveguiding application // Thin Solid Films. 2010. V. 518. № 16. P. 4654–4657.
- Vakulov Z., Zamburg E., Golosov D.A., Zavadskiy S.M., Dostanko A.P., Miakonkikh A.V., Klemente I.E., Rudenko K.V., Ageev O.A. Influence of target-substrate distance during pulsed laser deposition on properties of LiNbO₃ thin films // J. Phys. Conf. Ser. 2017. V. 917. P. 032024-1–032024-5.
- Вакулов З.Е., Замбуре Е.Г., Голосов Д.А., Завадский С.М., Мяконьких А.В., Клементе И.Э., Руденко К.В., Достанко А.П., Агеев О.А. Влияние температуры подложки при импульсном лазерном осаждении на свойства нанокристаллических пленок LiNbO₃ // Известия РАН. Серия физическая. 2017. Т. 81. № 12. С. 1672–1676.
- Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Viehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., Spaldin N.A., Rabe K.M., Wuttig M., Ramesh R. Epitaxial BiFeO₃ multiferroic thin film heterostructures // Science. 2003. V. 299. № 5613. P. 1719–1722.
- Ederer C., Spaldin N.A. Effect of Epitaxial Strain on the Spontaneous Polarization of Thin Film Ferroelectrics // Phys. Rev. Lett. 2005. V. 95. № 25. P. 257601-1–257601-4.
- 20. *Jellison G.E., Modine F.A.* Parameterization of the optical functions of amorphous materials in the interband region // Appl. Phys. Lett. 1996. V. 69. № 3. P. 371–373.