УЛК 532.65

УДАР МИКРОСТРУИ ВОДЫ ПО МИКРОВОЛОКНУ

© 2023 г. А. В. Базилевский^{а,*}, А. Н. Рожков^{а,**}

^а Институт проблем механики им. А.Ю. Ишлинского РАН, Москва, Россия

*E-mail: baz@ipmnet.ru

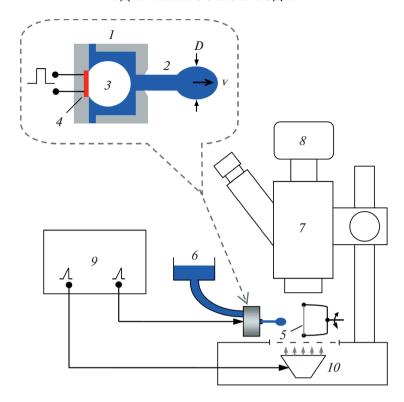
**E-mail: rozhkov@ipmnet.ru

Поступила в редакцию 02.06.2023 г.

После доработки 06.06.2023 г.

Принята к публикации 06.06.2023 г.

Исследуется поперечный удар импульсной микроструи воды по одиночным цилиндрическим волокнам. Методами высокоскоростной фотографии зафиксированы стадии выброса, распада и столкновения микроструи. Обнаружены значительное замедление микроструи волокном и ее расщепление на две части. Обсуждаются механизмы наблюдаемых явлений и влияние различных факторов.


Ключевые слова: струя, капля, волокно, удар, распад **DOI:** 10.31857/S1024708423600331, **EDN:** NNUINU

Удар жидкой капли или струи о твердое препятствие — фундаментальный гидродинамический процесс, часто встречающийся в природе и технике. Данный процесс представляет практический и научный интерес, так как имеет отношение к широкому кругу технологических приложений. Среди них — струйная печать, аддитивные технологии 3D печати, нанесение покрытий, капельная эрозия лопаток турбин, системы фильтрации выбросов и др. Известны многочисленные исследования удара капли о поверхности различной геометрии [1]. В основном изучались большие капли (диаметр 2-4 мм) и малые скорости удара (до 3 м/с), что объясняется относительной простотой проведения таких экспериментов. Задача усложняется для капель и струй диаметром 40-50 мкм, движущихся со скоростью более 3 м/с. Здесь уже требуются специальные методы генерации и визуализации струй. В последнее время актуальность исследований удара капель и струй связана с распространением COVID19, заражение которым зачастую происходит в результате чихания и кашля носителем вируса. Инфекция передается каплями (микроструями) ротовой жидкости. Типичные параметры процесса: диаметр капли ~ 50-100 мкм, скорость ее движения ~10 м/с [2, 3]. С другой стороны, важной характеристикой защитной медицинской маски, рабочий элемент которой – сетка из цилиндрических волокон, является ее способность задерживать/тормозить падающие на нее капли.

Целью данной работы являлись создание методики и экспериментальное моделирование столкновения микроструй с микропрепятствиями при параметрах столкновения, близких к реальным ситуациям.

1. ЭКСПЕРИМЕНТ

Для формирования микроструй использовалась демонстрационная печатающая головка Hewlett Packard ThinkJet, работающая на термоструйном принципе [4, 5]. Импульсное вытеснение жидкости осуществлялось быстрорастущим паровым пузырьком, который образовывался в результате локального разогрева жидкости микрорезистором (рис. 1). На микрорезистор подавался прямоугольный импульс напряжением 23.3 В и длительностью 4.5 мкс (энергия импульса $E=35\times 10^{-6}\,\rm Дж$). Диаметр выходного сопла 60 мкм. Рабочая жидкость (дистиллированная вода) через силиконовую трубку поступала в головку из небольшого (~10 мл) резервуара, установленного на возвышении 10-20 мм относительно уровня выходного сопла. Режим работы печатающей головки детерминирован ее конструкцией и не позволял существенно изменять скорость выброса струи, которая составляет v=9.5-13.3 м/с. Печатающая головка и импульсная лампа подсветки управлялись микропроцессорным генератором. Для визуализации процесса выброса

Рис. 1. Схема экспериментальной установки: I — печатающая головка, 2 — микроструя, 3 — паровой пузырь, 4 — микронагреватель, 5 — волокно, 6 — резервуар с водой, 7 — микроскоп, 8 — фотокамера, 9 — генератор управляющих импульсов с блоком задержки, 10 — импульсная лампа подсветки.

и удара микроструи головка расположена на столике микроскопа Motic SMZ143, оснащенного фотокамерой Canon 7D.

Препятствием для микроструи служило цилиндрическое стекловолокно диаметром d=9 и 25 мкм. Отрезок волокна длиной около 25 мм закреплялся с помощью клея на концах проволочного держателя, установленного на 3-х осевом столике для точной регулировки положения волокна относительно микроструи. Расстояние от выходного сопла до точки удара на волокне составляет 0.3-0.5 мм.

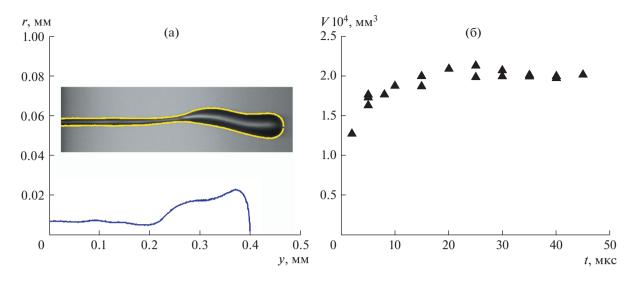
Выброс микроструи и ее удар по волокну фотографировались при импульсном освещении. Повторяемость процесса и точно задаваемая задержка светового импульса относительно начала выброса позволили проследить стадии движения струи с хорошим временным и пространственным разрешением: шаг установки времени задержки — 1 мкс, длительность светового импульса подсветки — 1 мкс, разрешение изображения струи — 3 пиксел/мкм.

Эксперименты проводились при окружающей температуре 20–22°C.

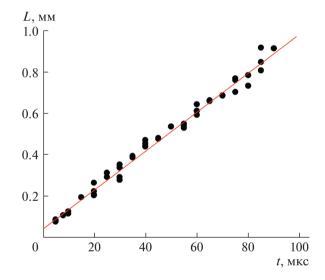
2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Выброс и распад микроструи

На рис. 2 представлены фотографии последовательных стадий выброса микроструи. Сначала струя имеет форму гриба, диаметр цилиндрической части которого близок диаметру сопла (на фотографиях видна только его фаска диаметром 100 мкм, в то время как само сопло имеет диаметр 60 мкм). Затем струя становится тоньше. Такая форма струи говорит о непостоянстве скорости истечения жидкости. Об этом свидетельствуют вычисления [6] и прямые измерения диаметра вытесняющего парового пузырька [7], а также полученная в данной работе зависимость объема струи V(t) от времени (рис. 36). Объем струи измерялся с помощью программы обработки изображений, разработанной на базе пакета MATLAB. Пример обработки фотографии струи представлен на рис. 3a. Средний объем струи составляет 2×10^{-4} мм³, а диаметр сферической капли эквивалентного объема -73 мкм. Максимальный диаметр струи в момент удара по волокну -D = 40-50 мкм.


Рис. 2. Выброс и распад микроструи воды. Скорость струи $10\,$ м/с. Здесь и далее t- время, прошедшее после начала выброса струи.

Из рис. Зб следует, что скорость истечения жидкости из сопла (она пропорциональна расходу dV/dt) нарастает на начальной стадии выброса (t < 2 мкс), а потом уменьшается ($d^2V/dt^2 < 0$) вплоть до его завершения при $t \approx 10-15$ мкс (о завершении выброса свидетельствует постоянство объема струи, dV/dt = 0). На стадии нарастания скорости истечения арьергардные слои жидкости догоняют передние слои, что приводит к аккумулированию жидкости в головной части струи аналогично тому, как это имеет место в пульсирующих струях [8] или радиальных всплесках [9]. На следующей затем стадии замедления и остановки истечения головная часть струи движется быстрее хвостовой, что вызывает удлинение и утончение струи. В конце концов, образуется струя каплевидной формы, где основная часть жидкости сосредоточена в ее головной части (рис. 2). Заметим, что закон изменения скорости истечения определяется динамикой роста газового пузыря, вытесняющего жидкость из печатающей головки.


Интересно отметить, что сравнение кинетической энергии микроструи $E_k = (\rho V)v^2/2 = 10^{-10}$ Дж с электрической энергией управляющего импульса $E = 35 \times 10^{-6}$ Дж показывает, что на движение жидкости расходуется очень малая часть (0.028%) подаваемой на микронагреватель энергии.

На рис. 4 показана траектория движения передней кромки струи. Видно, что скорость струи остается приблизительно постоянной. Заметим, что небольшой разброс скорости истечения жидкости неизбежно приводит к разбросу положения головы струи, который увеличивается с расстоянием от сопла. Чтобы улучшить повторяемость картины удара, волокно-мишень следует устанавливать по возможности ближе к выходному соплу.

Струя неустойчива и распадается на капли по инерционно-капиллярному механизму Рэлея [10]. Характерное время распада составляет $t_b \sim (\rho D^3/\gamma)^{1/2}$, что в случае воды и D=50 мкм дает

Рис. 3. Профиль (а) и объем (б) струи, полученные путем обработки изображений; r — радиус, x — расстояние от социа

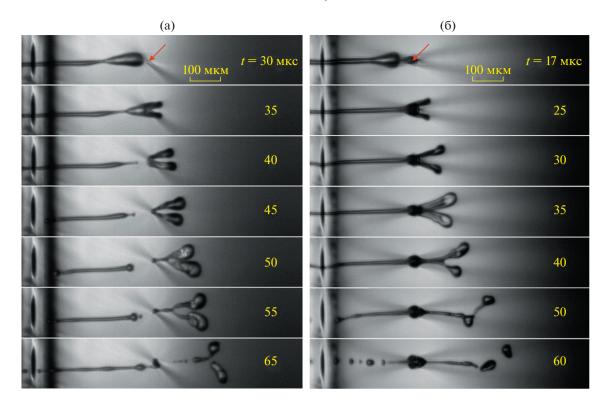


Рис. 4. Зависимость расстояния между передней кромкой струи и выходным соплом от времени. Линия — аппроксимирующая функция L=0.0395+0.00945t. Скорость струи $9.45\,\mathrm{m/c}$.

 $t_b \sim 40$ мкс. Наблюдаемые в эксперименте времена распада струи согласуются по порядку величины с данной оценкой. Она также позволяет оценить расстояние от сопла $L_0 \sim v t_b = v (\rho D^3/\gamma)^{1/2} = 0.4$ мм, на котором следует устанавливать препятствие (мишень), чтобы на него натекала еще сплошная струя.

2.2. Удар микроструи по волокну

На рис. 5 и 6 показаны стадии столкновения микроструи с волокнами разных диаметров. При лобовом поперечном ударе струи по волокну, во всех случаях наблюдается разделение струи на две приблизительно симметричные части. При этом не происходит обтекания волокна струей с сохранением ее сплошности, как это часто имеет место при ударе свободно падающих капель диаметром 2-3 мм по цилиндрическим мишеням [11-13]. Часть жидкости остается на волокне (тем больше, чем толще волокно). При нецентральном (касательном) ударе струя проходит волокно почти без изменения своей формы (рис. 66).

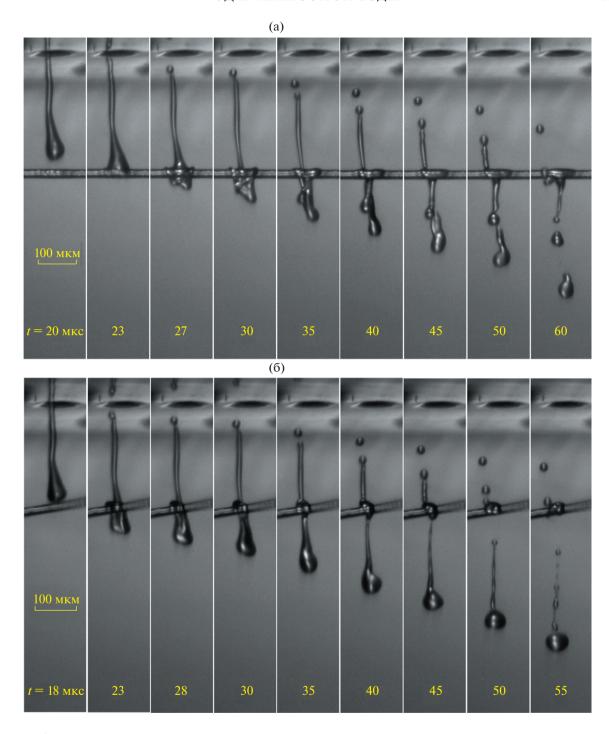


Рис. 5. Столкновение микроструи воды со стекловолокном диаметром 9 мкм (а) и 25 мкм (б); вид сверху вдоль оси волокна. Скорость струи (а) -11.8 м/с, (б) -13.2 м/с. Стрелка показывает положение волокна.

Предлагается следующая качественная модель удара. Волокно тормозит натекающую на него первичную струю и расщепляет ее на две части (вторичные струи). Волокно расталкивает эти части друг от друга, инициируя их поперечный разлет. После того как вторичные струи оказываются за волокном, они продолжают двигаться в поперечном направлении с некоторой скоростью v_x . Одновременно с этим под действием поверхностного натяжения части (половинки) струи принимают каплеобразную форму.

Дадим оценку факторов, влияющих на процесс удара, который представляет собой конкурирующее взаимодействие инерционных, капиллярных и вязких сил. Прежде всего отметим, что малая величина числа Вебера $W_a = \rho v^2 D/\gamma \sim 0.08$, основанного на плотности воздуха $\rho_a = 1.2 \ \text{кг/m}^3$, указывает на незначительность аэродинамических эффектов. Низкое значение числа Онезорге $Oh = \mu/(\rho D\gamma)^{1/2} \sim 0.017$ показывает преобладание капиллярных сил над вязкими. Значения чисел Вебера и Рейнольдса для исследованных экспериментальных параметров равны: $W = \rho v^2 D/\gamma = 60-126$ и $Re = \rho v D/\mu = 420-680$, где $\rho = 10^3 \ \text{кг/m}^3$, $\mu = 10^{-3} \ \Pi a \cdot c$, $\gamma = 0.072 \ \text{H/m}$ — соответственно плотность, вязкость и поверхностное натяжение воды. Высокие значения числа Вебера показывают, что в момент столкновения струи с волокном инерционные эффекты преобладают над капиллярными.

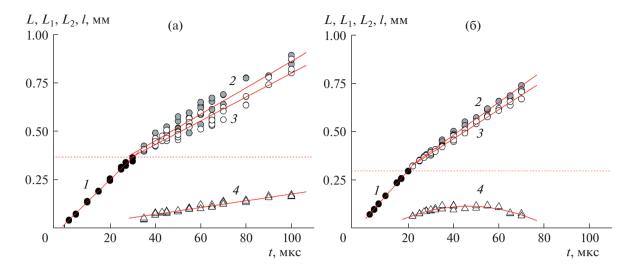

На рис. 7 представлены примеры временных зависимостей расстояния первичной (L) и двух вторичных струй (L_1, L_2) от сопла, а также зависимость поперечного расстояния между вторичными струями (I). Аппроксимации экспериментальных зависимостей позволяют определить продольные скорости первичной и вторичных струй, а также поперечную скорость разлета вторичных струй. Разная скорость вторичных струй является следствием неидеальной центровки удара струи по волокну (которая, очевидно, не достижима в принципе). Полученные данные указывают на сильное замедление струи волокном. Для волокна диаметром d=9 мкм уменьшение продольной скорости составляет $v_y/v=0.54\pm0.03$ (среднее значение и стандартное отклонение), а для волокна диаметром d=25 мкм $-v_y/v=0.53\pm0.1$. Таким образом, ожидаемый рост торможения струи при увеличении диаметра волокна не обнаружен. Это можно объяснить тем,

Рис. 6. Наблюдения за столкновением микроструи с различных ракурсов: (а) — вид перпендикулярно оси волокна, (б) — нецентральный (касательный) удар. Диаметр волокна 25 мкм. Скорость струи 10 м/c.

что тормозится главным образом лишь центральная часть струи, в то время как ее периферийные участки проходят волокно с незначительным замедлением.

Относительная поперечная скорость разлета вторичных струй для волокна диаметром d=9 мкм составляет $v_x/v=0.07\pm0.01$, а для волокна диаметром d=25 мкм $-v_x/v=0.15\pm0.01$. При этом разлет вторичных струй может замедлиться и даже смениться их сближением (рис. 7б). Это указывает на наличие достаточно сильного (относительно сил инерции) взаимодействия между вторичными струями. На некоторых кадрах удара наблюдалось формирование короткоживущей

Рис. 7. Временные зависимости расстояния передних кромок первичной струи L (I) и двух вторичных струй L_1 (2) и L_2 (3) от сопла, а также поперечного расстояния между вторичными струями I (4) для волокна диаметром 9 мкм (a) и 25 мкм (б). Линии — аппроксимирующие функции L=0.0192+0.01148t, $L_1=0.178+0.00683t$, $L_2=0.184+0.00616t$, I=0.00218+0.00174t (a); I=0.328+0.01326t, I=0.144+0.00845t, I=0.161+0.00755t, $I=0.062+0.00758t-8,159\times10^{-5}t^2$ (б). Горизонтальная пунктирная линия показывает положение волокна.

пленки, соединяющей вторичные струи и являющейся, по-видимому, причиной замедления их разлета. Механизм образования этой пленки требует отдельного рассмотрения и является предметом дальнейших исследований.

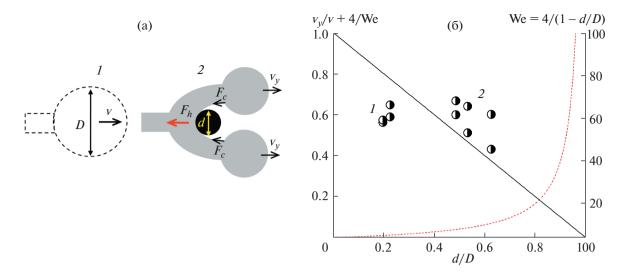
Оценим величину уменьшения продольной скорости струи, используя уравнение изменения импульса

$$M(v - v_v) = F\Delta t \tag{2.1}$$

где M и v — соответственно масса и скорость первичной струи, v_y — скорость вторичной струи после удара, F — сила, действующая на струю со стороны волокна в течение времени Δt . Пренебрегая эффектами вязкого трения, имеем

$$F \sim (D \times d) \rho v^2 / 2 + 2D\gamma \tag{2.2}$$

Здесь первое слагаемое — сила гидродинамического сопротивления F_h , а второе — удвоенная сила поверхностного натяжения F_c (рис. 8a). Полагая $M \sim \rho \pi D^3/6$ и $\Delta t \sim D/v$, с учетом (2.2) из (2.1) следует


$$\frac{v_y}{v} \sim 1 - \frac{3d}{\pi D} - \frac{12}{\pi We} \approx 1 - \frac{d}{D} - \frac{4}{We}$$
 (2.3)

Используя (2.3), можно получить критерий захвата струи волокном ($v_v = 0$)

We
$$< \frac{4}{1 - \frac{d}{D}}$$
 или $\frac{d}{D} > 1 - \frac{4}{\text{We}}$ (2.4)

Критерий (2.4) позволяет оценить диаметр волокна d_* , которое будет полностью останавливать струю с заданными характеристиками (диаметр, скорость, плотность, поверхностное натяжение). Так, для исследуемого случая ($v \sim 10 \text{ м/c}$, $D \sim 50 \text{ мкм}$) оценка (2.4) дает $d_* \sim 47 \text{ мкм}$. Граница (2.4) между режимами замедления и захвата струи показана на рис. 86 пунктирной линией.

Оценка (2.3) согласуется по порядку величины с результатами измерений (рис. 8б). В то же время предсказанная зависимость степени замедления струи v_y/v от диаметра волокна подтверждается экспериментом не в полной мере. Возможное объяснение состоит в том, что сила гидродинамического сопротивления F_h действует только на слой жидкости толщиной порядка d, в

Рис. 8. К оценке скорости вторичных струй. (а) Схема удара: 1 — струя, 2 — вторичная струя. (б) Сравнение с экспериментом: прямая линия — зависимость (2.3), точки 1 — экспериментальные данные для d = 9 мкм, точки 2 — экспериментальные данные для d = 25 мкм, пунктирная кривая — теоретическая граница (2.4) между режимами замедления струи и захвата ее волокном.

то время как остальная часть струи проходит волокно без заметного сопротивления. Следует отметить и большой разброс измеренных значений степени замедления, который вызван влиянием трудно контролируемых факторов. Возможно, что усовершенствование методики эксперимента и процедуры обработки данных (например, применение компьютерного анализа изображений для определения формы вторичных струй) улучшит повторяемость результатов и позволит обнаружить новые закономерности процесса удара микроструи по волокну.

ЗАКЛЮЧЕНИЕ

Обнаружено, что при исследованных параметрах эксперимента, лобовой удар микроструи воды по микроволокну приводит к ее расшеплению на две части (при касательном ударе струя проходит волокно почти без изменения формы). Продольная скорость этих частей (вторичных струй) приблизительно в два раза, а поперечная скорость их разлета в 7—15 раз меньше начальной скорости удара, что говорит о значительном торможении струи волокном. Оценки вклада различных сил в динамику удара указывают на его преимущественно инерционный характер. Разработанная экспериментальная методика позволяет исследовать процессы столкновения микроструй с волокнами и открывает новые возможности для исследования высокоскоростного взаимодействия жидких микрообъектов с различными препятствиями.

Работа выполнена при поддержке гранта РНФ № 23-19-00451.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Yarin A.L.* Drop impact dynamics: splashing, spreading, receding, bouncing // Annu. Rev. Fluid Mech. 2006. V. 38. P.159–192.
- 2. *Dbouk T., Drikakis D.* On coughing and airborne droplet transmission to humans // Phys. Fluids. 2020. V. 32. P. 053310.
- 3. *Bourouiba L*. Fluid Dynamics of Respiratory Infectious Diseases // Annu. Rev. Biomed. Eng. 2021. V. 23. P. 547–577.
- 4. Nielsen N.J. History of ThinkJet printhead development // Hewlett-Packard Journal. 1985. May. P. 4–10.
- 5. *Базилевский А.В., Мейер Д.Д., Рожков А.Н.* Динамика и разрушение импульсных микроструй полимерных жидкостей // Изв. РАН. МЖГ. 2005. № 3. С. 45–63.
- 6. *Asai A., Hara T., Endo I.* One-dimensional model of bubble growth and liquid flow in bubble jet printers // Jpn. J. Appl. Phys. 1987. V. 26. № 10. P. 1794–1801.

- 7. *Базилевский А.В., Мейер Д.Д., Рожков А.Н.* Динамика сферической микрокаверны в полимерной жидкости // Изв. РАН. МЖГ. 2003. № 3. С. 3—16.
- 8. *Meier G.E.A., Klopper A., Grabitz G.* The influence of kinematic waves on jet break down // Exp. Fluids. 1992. V. 12. P. 173–180.
- Bazilevsky A.V., Rozhkov A.N. Impact of a small disk on a sessile water drop // Phys. Fluids. 2020. V. 32. P. 087101.
- 10. Rayleigh L. On the instability of jets // Proc. London Math. Soc. 1879. V. 10. P. 4–13.
- 11. Lorenceau E., Clanet C., Quere D. Capturing drops with a thin fiber // J. Colloid Interface Sci. 2004. V. 279. P. 192–197.
- 12. Kim S., Kim W. Drop impact on a fiber // Phys. Fluids. 2016. V. 28. P. 042001.
- 13. Fedyushkin A.I., Rozhkov A.N., Rudenko A.O. Collision of water drops with a thin cylinder // J. Phys. Conf. Ser. 2021. V. 2057. P. 012034.