УЛК 533.533.9

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СВЕРХЗВУКОВОГО ПОТОКА С ОБЛАСТЬЮ ТЕПЛОВЫДЕЛЕНИЯ ПРОДОЛЬНО-ПОПЕРЕЧНЫМ РАЗРЯДОМ

© 2023 г. К. Н. Корнев^{а,*}, А. А. Логунов^{а,**}, В. М. Шибков^{а,***}

Проведено численное моделирование сверхзвукового стационарного воздушного потока внутри расширяющегося аэродинамического канала с прямоугольным сечением — лабораторной модели прямоточного воздушно-реактивного двигателя. С помощью экспериментальных данных была проведена валидация аэродинамической модели в случае отсутствия зоны объемного тепловыделения. После валидации модели было проведено численное моделирование сверхзвукового потока с включенной зоной объемного тепловыделения. Получены трехмерные распределения скорости, температуры и давления в сверхзвуковом стационарном воздушном потоке. Показано, что при объемной плотности тепловой мощности источника эквивалентной средней общей мощности разряда $W=10~{\rm kBT}$ разряд нагревает газ до температуры $T=1700-4200~{\rm K}$, что приводит к ускорению потока без его теплового запирания. При плотности тепловой мощности источника эквивалентной средней общей мощности разряда $W=20~{\rm kBT}$ газ нагревается сильнее до $6700~{\rm K}$, но начинается локальное тепловое запирание потока.

Ключевые слова: CFD-моделирование, сверхзвуковой воздушный поток, тепловыделение в газе, поперечно-продольный разряд

DOI: 10.31857/S1024708422601020, EDN: WKJDZT

ВВЕДЕНИЕ

Исследования разрядов в сверхзвуковом потоке газа вызывают в последние годы большой интерес в связи с проблемой создания равновесных или неравновесных плазменных сред для модификации пограничного слоя, воздействия на течение с целью понижения лобового сопротивления, а также для воспламенения горючей смеси в сверхзвуковом потоке [1]. В работе Г.Г. Черного, В.А. Левина и др. [2] дано теоретическое обоснование возможности влияния на аэродинамику сверхзвуковых летательных средств с помощью локальных зон энерговыделения.

Существует огромное число разновидностей газовых разрядов, которые возможно использовать для плазменно-стимулированного горения. Например, изучается возможность применения высоковольтных разрядов с длительностью импульсов в наносекундном диапазоне [3], а также других разрядов, отличающихся геометрией электродов или наличием диэлектрических вставок, таких как диэлектрический барьерный разряд (DBD), на основе которого конструируются и изучаются различные плазменные актуаторы для модификации течения приповерхностных слоев газа и создания микротяги [4]. В [5, 6] исследуются скользящие по диэлектрической поверхности электродные разряды типа "плазменный лист". Приведены результаты экспериментов по определению структуры плазменного слоя скользящего разряда в неподвижном воздухе и в однородном потоке за плоской ударной волной. Для стабилизации горения топливно-воздушных смесей в сверхзвуковом потоке предлагается использовать, например, продольно-поперечный разряд [7—11] или свободно-локализованный СВЧ-разряд [12—14]. Был изучен поверхностный СВЧ-разряд [15—19], который создается поверхностной волной на диэлектрической антенне, обтекаемой сверхзвуковым потоком воздуха. Воспламенение с помощью СВЧ-разряда происходит эф-

фективно, но оборудование для его генерации достаточно громоздко, необходима защита экипажа летательного аппарата и бортовой электроники от воздействия СВЧ-излучения.

В статьях [7–10] приведено подробное экспериментальное исследование продольно-поперечного разряда в высокоскоростном воздушном потоке и показано, что в этих условиях реализуется сильноточный дуговой периодический разряд характерной формы. В работах [20, 21] представлены зависимости частоты пульсации продольно-поперечного разряда от скорости воздушного и пропан-воздушного потоков, от разрядного тока и эквивалентного отношения для пропана, а также выявлены основные зависимости длины плазменного канала, максимальное достигаемое напряжение на разряде и средняя по длине канала напряженность электрического поля, частота пульсаций от минимального межэлектродного расстояния.

В отличие от эксперимента, компьютерное моделирование может предоставить полное трехмерное распределение таких свойств потока, как скорость, давление и температура. Именно поэтому моделирование в области плазменного горения является крайне актуальной задачей. Моделирование электрического разряда в газовом потоке уже проводилось ранее с использованием различных электродинамических моделей. Работа [22] посвящена исследованию характеристик разряда постоянного тока в поперечном потоке газа. Результаты численного моделирования сопоставлены с экспериментом. Показано, что в зависимости от скорости течения газа разряд может существовать в нескольких формах. При определенных условиях разряд переходит в импульсно-периодическую форму, когда формирование структуры из катодного и анодного плазменных следов прерывается новым пробоем газа. В [23—25] было проведено двумерное моделирование сечения разряда, который движется под воздействием постоянного магнитного поля. Скорость разряда, его полный ток и распределение в плоскости моделирования сравнивались с экспериментальными данными.

Продольно-поперечный разряд, исследуемый в [7-10], является достаточно сложной нестационарной системой. Основными целями данной работы являются моделирование влияния простой модели продольно-поперечного разряда и создающих его электродов на сверхзвуковой воздушный поток в типичных условиях эксперимента и определение характерных достигаемых температур газа. Изложенный ниже в статье подход учитывает в основном влияние средней величины выделяемой в воздушный поток тепловой мощности, и стоит отметить, что он не может описать эффекты, возникающие из-за нестационарности и сильной контрагированности дугового разряда.

1. ПАРАМЕТРЫ РАСЕТНОЙ МОЛЕЛИ

Расчеты проводились в ПО ANSYS Fluent, позволяющем выполнять решение уравнений Навье—Стокса, усредненных по числу Рейнольдса (RANS) для 2D, 3D осесимметричных и 3D стационарных и нестационарных моделей.

Расчетная область (см. рис. 1) состояла из соответствующих экспериментам [7-10] сопла Лаваля длиной 120 мм и расширяющегося аэродинамического канала длиной 500 мм прямоугольного сечения. Профиль сопла был снят с реально существующего, рассчитанного на число Маха M = 2. На входном сечении сопла площадью 11.5×11.5 мм² ставилось граничное условие фиксированной статической температуры 300 K и фиксированного статического давления p_{in} (в диапазоне 100-500 кПа), так как это значение измерялось в эксперименте и задавало массовый расход воздуха через сопло. На выходном сечении аэродинамического канала (30 × 30 мм²) ставилось граничное условие фиксированного давления p_{out} (в диапазоне 10-100 к Π a), соответствующего давлению в откачиваемой барокамере, служащей в эксперименте откачиваемой буферной емкостью и приемником отработанных газов. Две примыкающие друг к другу боковые поверхности сопла и канала, пересекающиеся на оси, были выставлены с условием симметрии. Так как у любого поперечного прямоугольного сечения экспериментального аэродинамического канала есть 2 оси симметрии, можно проводить моделирование только в четверти объема модели, экономя вычислительные ресурсы. В одной из двух плоскостей симметрии модели расположены электроды. Остальные поверхности модели (в том числе поверхности электродов) были заданы как стенки с условием без проскальзывания.

Форма электрода также соответствовала проведенным ранее экспериментам (длина 70 мм, минимальное расстояние от оси 1 мм, максимальное — 10 мм, ромбическое сечение). Второй электрод учитывается моделью из-за условия симметрии на двух боковых поверхностях. Электрод отстоит на 110 мм от выходного сечения сопла Лаваля. Неподвижная область тепловыделения объемом $2 \times 1 \times 9$ мм³, имитирующая продольно-поперечный разряд, расположена у конца

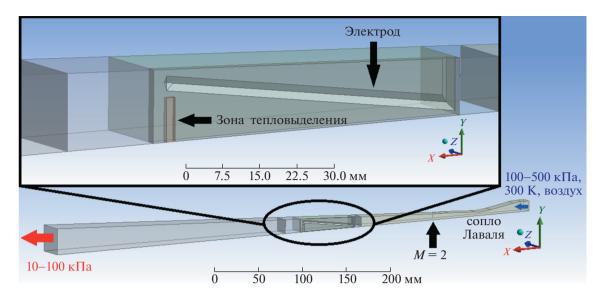
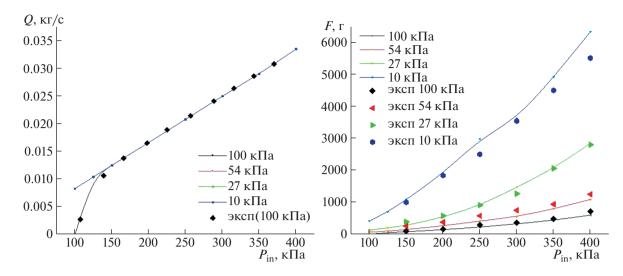


Рис. 1. Геометрия расчетной области.

электрода. При данном подходе однако не учитывается движение разряда при его сносе вниз по потоку и изменение формы при его развитии.

Расчетная область была разбита на несколько доменов с размером ячейки от 0.25 мм вблизи электродов до 2.5 мм у входного и выходного сечений модели. Разбиение расчетной области на домены позволило обеспечить не менее 10 узлов на каждом ребре геометрической модели канала, в том числе на сечениях электрода миллиметровых размеров. Примененные при построении сетки встроенные программные методы позволили создать правильную ориентированную сетку со сгущением у пограничных слоев на стенках. Общее число ячеек сетки составило 2 млн, степень сгущения (отношение характерных линейных размеров элементов в глубине потока и у стенок) равно 5, характерное число узлов в поперечном потоку сечении канала 10000, характерное число узлов вдоль оси канала 1000. Во всех доменах, кроме содержащего поверхности электрода, использовались ориентированные ячейки-параллелепипеды. Сложная форма электрода с наличием большого числа непрямых углов не позволила применить такие же ячейки, вместо них использовались тетраэдрические.


В расчете использовались модели вязкости Spalart-Allmaras и standart k- ϵ , дававшие качественно одинаковую картину течения воздуха, а также выбран стационарный режим.

Термодинамические и транспортные свойства воздуха (теплоемкость при постоянном давлении c_p , коэффициенты теплопроводности k и динамической вязкости η) в широком диапазоне температур до 24000 К были взяты из [26]. Их зависимости в этом диапазоне имеют крайне нелинейный характер, обусловленный, например, такими процессами как однократная и многократная ионизация, диссоциация азота, кислорода воздуха и других составляющих его газов.

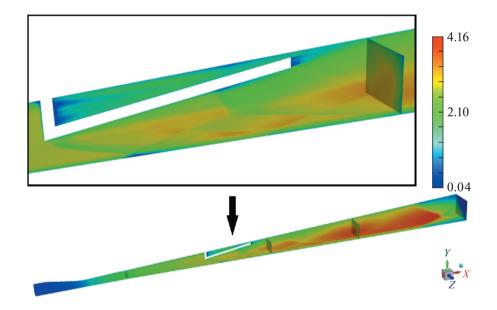
2. ВАЛИДАЦИЯ АЭРОДИНАМИЧЕСКОЙ МОДЕЛИ

Были проведены расчеты стационарного течения воздуха в модели в зависимости от входного и выходного давлений и без зоны тепловыделения. Правильность всех размеров и параметров модели определялась при сравнении расчетных зависимостей массового расхода воздуха, генерируемой моделью тяги и давлениям на стенку от давления на входе в сопло с полученными экспериментально (рис. 2).

В эксперименте калибровка массового секундного расхода воздуха проводилась путем измерения начальных давлений в барокамере и ресивере высокого давления воздуха. Зная время пуска и отношение объемов барокамеры ($V = 2.61 \,\mathrm{m}^3$) и ресивера ($V_r = 0.561 \,\mathrm{m}^3$) возможно вычислить массовый расход воздуха в зависимости от давления в ресивере. В эксперименте измерялась сила, с которой давит подвижно закрепленный (подвешенный) аэродинамический расширяющийся канал установки на неподвижную ее часть, с помощью тензорезистивного датчика. Датчик и канал закреплялись таким образом, что измерялось только осевое усилие. В программе



Рис. 2. Зависимости массового расхода воздуха Q и силы тяги F от давления на входе в сопло p_{in} . Точки — экспериментальные значения, линии — результат моделирования.


рассчитывались с помощью встроенного инструмента величины массового среднего осевой проекции скорости потока на входном и выходном сечении аэродинамической модели. Среднее необходимо было рассчитывать из-за неоднородного профиля скорости потока в сечениях, особенно при наличии обратных течений. С учетом известного массового расхода воздуха Q, сила тяги вычислялась как произведение расхода Q на разность массовых средних осевых проекций скорости потока на входном и выходном сечении модели. Статические давления на стенку аэродинамического канала измерялись с помощью трех предварительно откалиброванных датчиков, вмонтированных в различных точках канала (первый на расстоянии 4см от входного сечения канала, второй — 20 см, третий — 45 см, т.е. в 5 см от выходного сечения).

Хорошее совпадение зависимости массового расхода воздуха говорит о правильно построенном профиле сопла Лаваля, выбранных площадей критического, входного и выходного сечений модели. При давлении на выходном сечении $p_{out} = 100~\rm k\Pi a$ и низких давлениях на входе в сопло $p_{in} < 150~\rm k\Pi a$ в критическом его сечении не достигается скорости звука и осуществляется дозвуковой режим протекания воздуха в сопле. Зависимость массового расхода воздуха Q при этом отклоняется от прямой. Существенная тяга F до 5 кгс наблюдается только при давлении $p_{out} < 27~\rm k\Pi a$, которое обеспечивает правильный режим работы расширяющегося канала. Рост тяги с увеличением давления на входе вызван увеличением массового расхода воздуха. Характер зависимостей статического давления на стенку p при давлении $p_{out} = 740~\rm Topp$ говорит о дозвуковом течении воздуха в аэродинамическом канале модели (рис. 3).

При высоком давлении на выходе ($p_{out} > 250$ Торр) в некотором сечении канала происходит отрыв течения от стенок с последующим образованием системы ударных волн, зон рециркуляции и торможением потока до дозвуковых скоростей, что говорит о перерасширенном для этого режима выходном сечении канала. При давлении $p_{out} < 100$ Торр отрыв происходит только в последних 5 см канала (обратное течение занимает 25% площади выходного сечения), а практически весь канал заполнен сверхзвуковым потоком воздуха с M = 2-3.5 (рис. 4). Массовое среднее осевой проекции скорости по площади выходного сечения $\langle v_{out} \rangle$ составило 440 м/с с учетом обратного течения. Наблюдается падение на стенку косого скачка уплотнения от передней кромки электрода с последующим отражением от нее. В месте падения происходит отрыв пограничного слоя, а затем его присоединение [27]. Поток ускоряется после сопла из-за расширения канала до характерных скоростей u = 580-640 м/с при значениях его статической температуры T = 85-120 К. При таких условиях воспламенение и поддержание горения топлив без дополнительных мер (разряд или застойные зоны) невозможны.

Рис. 3. Зависимости статического давления на стенку p от давления на входе в сопло p_{in} при различных давлениях p_{out} . Точки — экспериментальные значения, линии — результат моделирования.

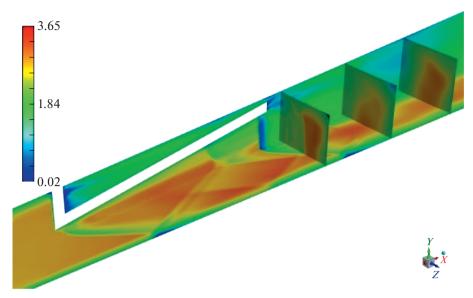
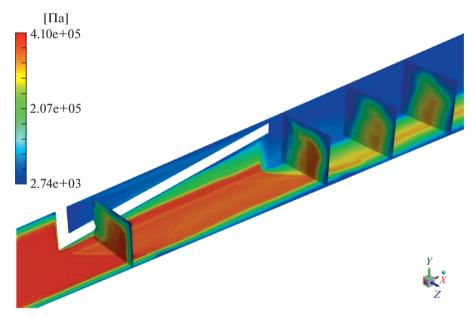


Рис. 4. Контур числа Маха в потоке на плоскостях симметрии модели (пересекаются на центральной оси) и пяти поперечных сечениях. $p_{in} = 400 \text{ к}\Pi a$, $p_{out} = 10 \text{ к}\Pi a$, зона тепловыделения неактивна.


3. МОДЕЛИРОВАНИЕ ТЕПЛОВЫДЕЛЕНИЯ

Были проведены расчеты течения воздуха в модели при включенном источнике тепловой плотности мощности $w = 0.7 - 2.8 \times 10^{11} \, \mathrm{Bt/m^3}$, соответствующей суммарной мощности $W = 5 - 20 \, \mathrm{kBt}$ в зоне выделения тепла объемом 72 мм³, выделяемой продольно-поперечным разрядом в типичных экспериментальных условиях. Давление на входе и выходе модели 400 и 10 кПа соответственно.

Так как область тепловыделения неподвижна, газ нагревается только в малой области поперечного сечения канала шириной около 2-3 диаметров разряда и выносится потоком вниз на 10-20 см от конца электродов. При плотности тепловой мощности источника $w=1.4\times10^{11}$ Вт/м³ (эквивалентной средней общей мощности разряда W=10 кВт) в центральной части потока газ, проходя область тепловыделения, нагревается до температур T=1700-2500 K, хотя вблизи конца электрода, где скорость потока снижена, газ нагревается до более высокой температуры T поряд-

Рис. 5. Контуры числа Маха в потоке на плоскостях симметрии модели (пересекаются на центральной оси) и трех поперечных сечениях. Источник объемного тепловыделения активен ($W=10~\mathrm{kBr}$). $p_{in}=400~\mathrm{k\Pi a}$, $p_{out}=10~\mathrm{k\Pi a}$.

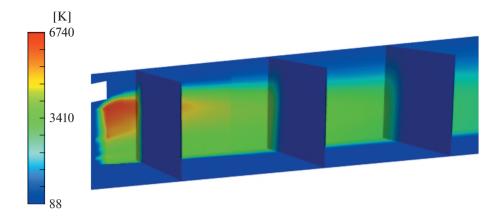


Рис. 6. Контуры полного давления p_0 в потоке на плоскостях симметрии модели (пересекаются на центральной оси) и четырех поперечных сечениях. Источник объемного тепловыделения активен ($W=10~{\rm kBt}$). $p_{in}=400~{\rm k}\Pi a, p_{out}=10~{\rm k}\Pi a.$

ка 3500—4200 К. В этих областях может происходить быстрое воспламенение топливно-воздушной смеси при ее подаче в аэродинамический канал.

Несмотря на снижение из-за повышения температуры и потерь на ударных волнах в нагретой разрядом области газа числа Маха с 2-3 до 1.1-1.8 (см. рис. 5) величина скорости потока u в ней возрастает с 600 м/с до 1000-1800 м/с и тепловое запирание потока при данной плотности тепловой мощности источника не происходит. Около выходного сечения модели по-прежнему наблюдаются отрыв от стенки и рециркуляция, обратное течение занимает 20% его площади. Массовое среднее осевой проекции скорости по площади выходного сечения $\langle v_{out} \rangle$ составило 460 м/с с учетом обратного течения.

Наблюдаются значительные потери полного давления p_0 в потоке в основном в трех местах: на стенках канала, на ударной волне от электрода и на области тепловыделения (см. рис. 6). По-

Рис. 7. Контуры статической температуры в потоке на плоскостях симметрии модели (пересекаются на центральной оси) и трех поперечных сечениях. Источник объемного тепловыделения активен ($W = 20 \, \mathrm{kBt}$). $p_{in} = 400 \, \mathrm{k}\Pi \mathrm{a}$, $p_{out} = 10 \, \mathrm{k}\Pi \mathrm{a}$.

сле ударной волны полное давление p_0 падает с 400 до 320 кПа (снижение на 20%), а после зоны объемного нагрева падает с 320 до 80—100 кПа. Стоит отметить, что в частях поперечного сечения, далеко отстоящих от стенок и разрядной области, сохраняется высокое значение давления около 320 кПа, т.е. поток остается сравнительно слабо возмущен.

При плотности тепловой мощности источника $w=2.8\times10^{11}~{\rm BT/m^3}$ (эквивалентной средней общей мощности разряда $W=20~{\rm kBT}$) газ нагревается сильнее, достигая температур до 6700 K, типичных для воздушного дугового разряда атмосферного давления (рис. 7). Стоит отметить, что в реальных условиях свободного токопроводящего канала разряда может происходить больший нагрев, так как область тепловыделения будет перемещаться вместе с нагреваемой газовой областью. В экспериментах [7—10] наблюдается нагрев до 7000—9000 K. Распределение числа Маха в потоке в целом схожее, но большая величина вкладываемой в поток мощности приводит к локальному его снижению до M<1 в нагретом следе области объемного тепловыделения. Площадь выходного сечения, занимаемая обратным течением, снизилась до 10-15%, а массовое среднее осевой проекции скорости по площади выходного сечения $\langle v_{out} \rangle$ составило 600 м/с. Полное тепловое запирание аэродинамического канала происходит только при $w=1.12\times10^{12}~{\rm BT/m}^3~(W=80~{\rm kBT})$. Во избежание теплового запирания потока при инжекции и воспламенении в нем топлив опыты следует проводить при меньших мощностях разряда.

4. ЗАКЛЮЧЕНИЕ

В этой работе были получены трехмерные распределения скорости, температуры и давления в сверхзвуковом воздушном потоке. С помощью экспериментальных данных давлений на стенку и создаваемой моделью тяги была проведена валидация аэродинамической модели в случае отсутствия зоны объемного тепловыделения. Получена верхняя граница давления ($p_{out}=100-200$ Topp) на выходном сечении канала, обеспечивающего правильный режим течения воздуха в модели. Показано, что при плотности тепловой мощности источника $w=1.4\times10^{11}$ Вт/м³ (эквивалентной средней общей мощности разряда W=10 кВт) разряд нагревает газ до температуры от 1700—2500 К в середине потока до T=3500-4200 К вблизи конца электрода, что приводит к ускорению потока без его теплового запирания. При плотности тепловой мощности источника $w=2.8\times10^{11}$ Вт/м³ (эквивалентной средней общей мощности разряда W=20 кВт) газ нагревается сильнее до 6700 К, но начинается локальное тепловое запирание потока. Возможность достижения таких высоких температур газа с помощью разряда может быть использована для быстрого воспламенения топлив в сверхзвуковых воздушных потоках.

Работа выполнена при финансовой поддержке Российского научного фонда, грант № 23-22-00233. К.Н. Корнев является стипендиатом Фонда развития теоретической физики и математики "БАЗИС" и благодарит его за финансовую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Leonov S.B.* Electrically Driven Supersonic Combustion // Energies 2018, 11, 1733. https://doi.org/10.3390/en11071733
- 2. Chernyi G.G. Some recent results in aerodynamic applications of flows with localized energy addition // 9 International Space Planes and Hypersonic Systems and Technologies Conference and 3 Weakly Ionized Gases Workshop, 1–5 November 1999, Norfolk, VA, USA, AIAA-99-4819. https://doi.org/10.2514/6.1999-4819
- 3. *Lin Bing-xuan, Wu Yun, Zhang Zhi-bo*, Chen Zheng Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures // COMBUSTION AND FLAME. 2017. V. 182. P. 102–113. https://doi.org/10.1016/j.combustflame.2017.04.022
- Enloe C.L., McLaughlin T.E., VanDyken R.D., Kachner K.D., Jumper E.J., Corke T.C. Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology // AIAA JOURNAL. 2004. V. 42. № 3. P. 589–594. https://doi.org/10.2514/1.2305
- 5. Знаменская И.А., Луцкий А.Е., Мурсенкова И.В. Исследование поверхностного энерговклада в газ при инициировании импульсного разряда типа "плазменный лист" // Письма в ЖТФ. 2004. Т. 30. № 24. С. 38—42. http://elibrary.lt/resursai/Uzsienio%20leidiniai/ioffe/pztf/2004/24/pztf t30v24 07.pdf
- 6. Знаменская И.А., Латфуллин Д.Ф., Луцкий А.Е., Мурсенкова И.В., Сысоев Н.Н. Развитие газодинамических возмущений из зоны распределенного поверхностного скользящего разряда // ЖТФ. 2007. Т. 77. № 5. С. 10—18. http://elibrary.lt/resursai/Uzsienio%20leidiniai/ioffe/ztf/2007/05/ztf7705 02.pdf
- 7. *Шибков В.М., Шибкова Л.В., Логунов А.А.* Влияние скорости воздушного потока на основные характеристики нестационарного пульсирующего разряда, создаваемого с помощью стационарного источника питания // Физика плазмы. 2018. Т. 44. № 8. С. 661–674. https://www.elibrary.ru/item.asp?id=35642593
- 8. *Шибков В.М., Шибкова Л.В., Логунов А.А.* Параметры плазмы пульсирующего в сверхзвуковом потоке воздуха разряда постоянного тока // Физика плазмы. 2017. Т. 43. № 3. С. 314—322. https://doi.org/10.7868/S0367292117030118
- 9. *Шибков В.М., Шибкова Л.В., Логунов А.А.* Степень ионизации воздуха в плазме нестационарного пульсирующего разряда в дозвуковых и сверхзвуковых потоках // Вестник Московского университета. Сер. 3. Физика. Астрономия. 2018. № 5. С. 44–49. https://www.elibrary.ru/item.asp?id=36992595
- 10. *Шибков В.М., Шибкова Л.В., Логунов А.А.* Температура электронов в плазме разряда постоянного тока, создаваемого в сверхзвуковом воздушном потоке // Вестник Московского университета. Сер. 3. Физика. Астрономия. 2017. № 3. С. 76—82. http://vmu.phys.msu.ru/file/2017/3/17-3-075.pdf
- 11. *Копыл П.В., Сурконт О.С., Шибков В.М., Шибкова Л.В.* Стабилизация горения жидкого углеводородного топлива с помощью программированного СВЧ-разряда в дозвуковом воздушном потоке // Физика плазмы. 2012. Т. 38. № 6. С. 551. https://www.elibrary.ru/item.asp?id=17726891
- 12. Зарин А.С., Кузовников А.А., Шибков В.М. Свободно локализованный СВЧ-разряд в воздухе. М.: Нефть и газ., 1996.
- 13. *Шибков В.М., Александров А.Ф., Ершов А.П., Тимофеев И.Б., Черников В.А., Шибкова Л.В.* Свободноло-кализованный сверхвысокочастотный разряд в сверхзвуковом потоке газа // Физика плазмы. 2005. Т. 31. № 9. С. 857. https://www.elibrary.ru/item.asp?id=9175972
- 14. Shibkov V.M., Aleksandrov A.F., Chernikov V.A., Ershov A.P., Shibkova L.V. Microwave and Direct-Current Discharges in High-Speed Flow: Fundamentals and Application to Ignition // Journal of Propulsion and Power. 2009. V. 25. № 1. P. 123. https://doi.org/10.2514/1.24803
- 15. *Шибков В.М., Двинин С.А., Ершов А.П., Константиновский Р.С., Сурконт О.С., Черников В.А., Шибкова Л.В.* Поверхностный СВЧ разряд в воздухе // Физика плазмы. 2007. Т. 33. № 1. С. 77—85. https://elibrary.ru/item.asp?id=9444599
- 16. *Шибков В.М., Шибкова Л.В., Громов В.Г., Карачев А.А., Константиновский Р.С.* Влияние поверхностного СВЧ-разряда на воспламенение высокоскоростных пропан-воздушных потоков // Теплофизика высоких температур. 2011. 49. № 2. С. 163. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=277&option_lang=rus
- 17. *Шибков В.М., Ершов А.П., Черников В.А., Шибкова Л.В.* Сверхвысокочастотный разряд на поверхности диэлектрической антенны // ЖТФ. 2005. Т. 75. № 4. С. 67—73. https://journals.ioffe.ru/articles/8529
- 18. *Шибков В.М., Двинин С.А., Ершов А.П., Шибкова Л.В.* Механизмы распространения поверхностного сверхвысокочастотного разряда // ЖТФ. 2005. Т. 75. № 4. С. 74—79. https://journals.ioffe.ru/articles/8530
- 19. *Шибков В.М., Шибкова Л.В., Карачев А.А.* Поверхностный сверхвысокочастотный разряд при повышенных давлениях воздуха // Теплофизика высоких температур. 2009. Т. 47. № 5. С. 650–658. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=902&option_lang=rus

- 20. Logunov A.A., Kornev K.N., Shibkova L.V., Shibkov V.M. Influence of the Interelectrode Gap on the Main Characteristics of a Pulsating Transverse-Longitudinal Discharge in High-Velocity Multicomponent Gas Flows // High Temperature. 2021. V. 59. № 1. P. 19–26. https://link.springer.com/article/10.1134/S0018151X21010119
- 21. *Шибкова Л.В., Шибков В.М., Логунов А.А., Долбня Д.С., Корнев К.Н.* Параметры плазмы пульсирующего разряда, создаваемого в высокоскоростных потоках газа // Теплофизика высоких температур. 2020. Т. 58. № 6. С. 1—8. https://doi.org/10.31857/S0040364420060198
- 22. Двинин С.А., Ершов А.П., Тимофеев И.Б., Черников В.А., Шибков В.М. Моделирование разряда постоянного тока в поперечном сверхзвуковом потоке газа // Теплофизика высоких температур. 2004. Т. 42. № 2. С. 181—191. https://doi.org/10.1023/B:HITE.0000026147.82949.36
- 23. Toktaliev P.D., Semenev P.A., Moralev I.A., Kazanskii P.N., Bityrin V.A. and Bocharov A.N Numerical modeling of electric arc motion in external constant magnetic field // Journal of Physics: Conference Series 2020 1683 032009. https://doi.org/10.1088/1742-6596/1683/3/032009
- 24. *Moralev I., Kazanskii P., Bityurin V., Bocharov A., Firsov A., Dolgov E. and Leonov S.* Gas dynamics of the pulsed electric arc in the transversal magnetic field // Journal of Physics D: Applied Physics. 2020. V. 53. № 42. 425203. https://doi.org/10.1088/1361-6463/ab9d5a
- 25. Rakhimov R.G., Moralev I.A., Firsov A.A., Bityurin V.A. and Bocharov A.N. On the gasdynamics of the electric discharge in external magnetic field // Journal of Physics: Conf. Ser. 2019. V. 1147. 012128. https://doi.org/10.1088/1742-6596/1147/1/012128
- 26. Boulos M.I., Fauchais P., and Pfender E., Thermal Plasmas: Fundamentals and Applications. Plenum Press-Springer, 1994.
- 27. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1976.