УЛК 532.526.2

ОБ ОБТЕКАНИИ ПОЛУТЕЛА ВРАЩЕНИЯ РЭНКИНА

© 2023 г. Г. Л. Королев^{a,*}, Вик. В. Сычёв^a

^аЦентральный аэрогидродинамический институт им. проф. Н.Е. Жуковского, Жуковский, Россия *E-mail: glk777@mail.ru

Поступила в редакцию 20.08.2022 г. После доработки 10.10.2022 г. Принята к публикации 11.10.2022 г.

Исследовано осесимметричное течение несжимаемой жидкости при больших числах Рейнольдса около полутела вращения Рэнкина. Установлено, что в решении задачи для системы уравнений пограничного слоя линии нулевого поверхностного трения не возникает. Рассмотренное течение является безотрывным, что находится в полном соответствии с имеющимся экспериментальным результатом.

Ключевые слова: решение Рэнкина, пограничный слой, отрыв

DOI: 10.31857/S0568528122600576, EDN: NSYFUF

При рассмотрении обтекания тонкого тела вращения при больших числах Рейнольдса $\text{Re} \to \infty$ течение в масштабах последнего описывается решением краевой задачи теории малых возмущений (см. [1, 2]). Оно становится несправедливым вблизи передней точки торможения [3, 4]. В настоящей работе изучено осесимметричное течение в пограничном слое, который развивается в малой окрестности этой точки для сильно затупленного тела.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим осесимметричное установившееся течение несжимаемой жидкости около тонкого тела вращения, установленного под нулевым углом атаки к однородному набегающему потоку.

Введем следующие обозначения: ℓx , ℓr , — оси цилиндрической системы координат; $u_\omega u$, $u_\omega v$ — соответствующие проекции вектора скорости; $p_\omega + \rho^* u_\omega^2 p$ — давление; $\ell^2 u_\omega \psi$ — функция тока; $\operatorname{Re} = u_\omega \ell / v^*$ — число Рейнольдса. Здесь ℓ — продольный размер тела; u_ω и p_ω — абсолютная величина вектора скорости и значение давления в набегающем потоке, направленном вдоль оси Ox; ρ^* — плотность, v^* — кинематический коэффициент вязкости. Поместим начало системы координат на оси симметрии в малой окрестности передней критической точки.

Пусть $r = \tau f(x)$, 0 < x < 1 и f(x) — гладкая функция, определяющая форму поверхности тела в меридиональной плоскости. При этом τ — малый параметр: $\tau = \tau(Re) \to 0$ при $Re \to \infty$. Предположим, что носовая часть тела имеет степенную форму

$$f(x) = a_0 x^{\alpha} + o(x^{\alpha}) \tag{1.1}$$

при $x \to +0$, $a_0 > 0$, $0 \le \alpha < 1$. Согласно результатам теории малых возмущений, как для плоских [3—5], так и осесимметричных течений [1], асимптотические разложения решений теряют свою равномерную пригодность при $x = O(\tau^{\lambda})$, $r = O(\tau^{\lambda})$, $\lambda = (1-\alpha)^{-1}$. Изменения скорости и давления здесь суть величины порядка единицы. Тогда асимптотическое представление решения в этой области имеет вид

$$X = \tau^{-\lambda} x = O(1), \quad R = \tau^{-\lambda} r = O(1)$$

$$(u, v, p) = (U, V, P) + o(1)$$
(1.2)

Рассмотрим течение для предельного случая, когда в (1.1) значение $\alpha = 0$.

Подстановка (1.2) в систему уравнений Навье—Стокса при условии, что локальное число Рейнольдса $Re^* = \tau^{\lambda} Re \to \infty$ при $Re \to \infty$ ($\lambda = 1$), приводит к уравнению для потенциального течения идеальной жидкости

$$\frac{\partial^2 \Phi}{\partial X^2} + \frac{\partial^2 \Phi}{\partial R^2} + \frac{1}{R} \frac{\partial \Phi}{\partial R} = 0, \quad U = \frac{\partial \Phi}{\partial X} = \frac{1}{R} \frac{\partial \Psi}{\partial R}, \quad V = \frac{\partial \Phi}{\partial R} = -\frac{1}{R} \frac{\partial \Psi}{\partial X}$$
(1.3)

где $\Psi(X,R)$ и $\Phi(X,R)$ — функция тока и потенциал течения в рассматриваемой области. Пусть последнее описывается здесь решением Рэнкина [6], которое есть сумма потенциалов однородного потока и источника, помещенного (для простоты) в точку X=R=0

$$\Phi = X - \frac{Q_0}{4\pi\rho}, \quad U = 1 + \frac{Q_0 X}{4\pi\rho^3}$$

$$\Psi = \frac{R^2}{2} - \frac{Q_0 X}{4\pi\rho}, \quad \rho = (X^2 + R^2)^{1/2}$$
(1.4)

где Q_0 — обильность источника. Нетрудно видеть, что на оси симметрии находится точка торможения

$$U(X,0) = 1 + \frac{Q_0 X}{4\pi |X|^3} = 0, \quad X = X_0 = -\left(\frac{Q_0}{4\pi}\right)^{1/2}$$
 (1.5)

Тогда поверхность тока, проходящая через эту точку, согласно (1.4), (1.5), есть

$$\Psi = \frac{R^2}{2} - \frac{Q_0 X}{4\pi \rho} = \frac{Q_0}{4\pi} \tag{1.6}$$

Введем сферические координаты ρ, θ

$$\rho = (X^2 + R^2)^{1/2}, \quad \theta = \arctan\left(\frac{R}{X}\right)$$
 (1.7)

Приняв (1.6) за поверхность обтекаемого тела и введя для нее обозначение R = G(X), имеем

$$G^{2} = \frac{Q_{0}}{2\pi} \left(\frac{X}{(X^{2} + G^{2})^{1/2}} + 1 \right)$$
 (1.8)

или, используя (1.6), (1.7), запишем соответствующие уравнения в параметрической форме

$$X = x_0(t) = -r_0(t)\operatorname{ctg}t, \quad t = \pi - \theta, \quad 0 \le t < \pi$$

$$R = r_0(t) = \left(\frac{Q_0}{2\pi}\right)^{1/2} (1 - \cos t)^{1/2}$$
(1.9)

Наконец, из (1.3), (1.4), (1.6)—(1.9) следует (см. [7]), что скорость $U_s(t)$ вдоль поверхности тока $\Psi = Q_0/4\pi$ есть

$$U_s = \left(\frac{1}{2}(1-\cos t) + \frac{3}{4}\sin^2 t\right)^{1/2} \tag{1.10}$$

При $X \to \infty$, согласно (1.8), (1.9), $G \to (Q_0/\pi)^{1/2}$, т.е. $a_0 = (Q_0/\pi)^{1/2}$ (см. (1.1)

Замена $X=Q_0^{1/2}X^0$, $R=Q_0^{1/2}R^0$, $\Phi=Q_0^{1/2}\Phi^0$, $\Psi=Q_0\Psi^0$ в (1.4) исключает постоянную Q_0 . Вариация этого параметра приводит лишь к изменению масштаба течения в целом. Поэтому, не ограничивая общности, будем полагать $Q_0=1$.

График функции G(X) (см. [6]) дан на рис. 1. На рис. 2 представлена функция $U_e(s) = U_s(t)$ из (1.10), где s — длина дуги, отсчитываемая от точки торможения вдоль поверхности тела в мерилиональной плоскости

$$s(t) = \int_{0}^{t} (x_0'^2 + r_0'^2)^{1/2} dt^0$$
 (1.11)

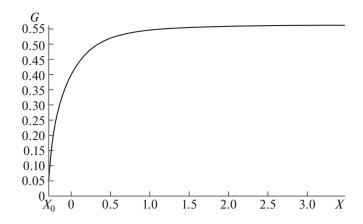


Рис. 1. Контур полутела Рэнкина в меридиональной плоскости.

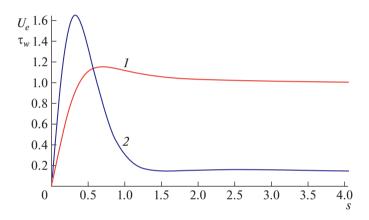


Рис. 2. Касательная составляющая вектора скорости $U_e(s)$ (1) и распределение трения $\tau_w(s)$ (2) вдоль поверхности тела.

2. РЕШЕНИЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЯ ПОГРАНИЧНОГО СЛОЯ

Для удовлетворения условию прилипания на поверхности тела в области, где $x=O(\tau)$, $r=O(\tau)$, введем пограничный слой. Пусть s,n ортогональная криволинейная система координат, связанная здесь с поверхностью тока $\Psi=Q_0/4\pi,\ \Psi=\tau^{-2}\psi$. Для пограничного слоя, как обычно [8]

$$s = O(1), \quad n = \operatorname{Re}^{*^{-1/2}} N, \quad \Psi = \frac{Q_0}{4\pi} + \operatorname{Re}^{*^{-1/2}} \Psi_0(s, N) + o(\operatorname{Re}^{*^{-1/2}})$$

$$U_0 \frac{\partial U_0}{\partial s} + V_0 \frac{\partial U_0}{\partial N} - U_e \frac{dU_e}{ds} = \frac{\partial^2 U_0}{\partial N^2}$$

$$R_0 U_0 = \frac{\partial \Psi_0}{\partial N}, \quad R_0 V_0 = -\frac{\partial \Psi_0}{\partial s}$$

$$(2.1)$$

где $R_0(s) = G(X)$ — расстояние точки на поверхности тела от оси симметрии.

Преобразование Степанова-Манглера

$$\xi = \int_{0}^{s} R_{0}^{2} ds^{0}, \quad \eta = R_{0} N, \quad \Psi_{0} = \Psi_{0}(\xi, \eta), \quad U_{e} = u_{e}(\xi)$$
(2.2)

приводит (2.1) к виду, соответствующему плоскому течению

$$\frac{\partial \Psi_0}{\partial \eta} \frac{\partial^2 \Psi_0}{\partial \xi} - \frac{\partial \Psi_0}{\partial \xi} \frac{\partial^2 \Psi_0}{\partial \eta^2} - u_e \frac{du_e}{d\xi} = \frac{\partial^3 \Psi_0}{\partial \eta^3}$$

$$\eta = 0: \quad \Psi_0 = \frac{\partial \Psi_0}{\partial \eta} = 0, \quad \eta \to \infty: \quad \frac{\partial \Psi_0}{\partial \eta} \to u_e(\xi)$$
(2.3)

Здесь также приведены краевые условия прилипания на поверхности и сращивания с решением в области, где X = O(1), R = O(1).

Рассмотрим решение вблизи точки торможения s=n=0. Согласно (1.9)—(1.11), при $s\to 0$: $R_0=s+O(s^3)$, $U_e=q_0s+O(s^3)$, $q_0=2(\pi/Q_0)^{1/2}$. Тогда течение в пограничном слое при $s\to 0$ описывается известным решением Хомана [9]. Это решение в переменных ξ , η имеет вид

$$u_{e} = q_{0}(3\xi)^{1/3} + O(\xi), \quad \Psi_{0} = (3^{4/3}q_{0}/2)^{1/2}\xi^{2/3}h(\zeta) + O(\xi^{5/3})$$

$$\zeta = (2 \cdot 3^{-2/3}q_{0})^{1/2}\eta/\xi^{1/3}, \quad \xi \to 0$$

$$h''' + hh'' + \frac{1}{2}(1 - h'^{2}) = 0, \quad h(0) = h'(0) = 0, \quad h'(\infty) = 1$$
(2.4)

Решение задачи для уравнения в (2.4), относящегося к типу Фолкнера-Скан, дано в [9] (см. также [8]).

Заметим, что при $s = O(\text{Re}^{*^{-1/2}})$, $n = O(\text{Re}^{*^{-1/2}})$ течение описывается точным решением [9] системы уравнений Навье—Стокса.

Численное решение задачи (2.3), (2.4) было получено после следующего представления

$$\mu = \xi^{1/3}, \quad \mathbf{v} = (2q_0)^{1/2} (3\xi)^{-1/3} Q_e^{1/2} (\mu) \eta$$

$$u_e = q_0 (3\xi)^{1/3} Q_e(\mu), \quad \psi_0 = \left(\frac{q_0}{2}\right)^{1/2} (3\xi)^{2/3} Q_e^{1/2} (\mu) F(\mu, \mathbf{v})$$
(2.5)

которое учитывает особое поведение в (2.4) и, в силу регулярности $F(\mu, \nu)$ при $\mu \to 0$, позволяет проводить расчет от сечения $\mu = 0$. В результате внесения (2.5) в (2.3), (2.4) приходим к задаче

$$\frac{\mu}{2} \left(\frac{\partial F}{\partial v} \frac{\partial^{2} F}{\partial \mu \partial v} - \frac{\partial F}{\partial \mu} \frac{\partial^{2} F}{\partial v^{2}} \right) - \frac{\mu}{4} \frac{Q'_{e}}{Q_{e}} \left(F \frac{\partial^{2} F}{\partial v^{2}} - 2 \left(\frac{\partial F}{\partial v} \right)^{2} + 2 \right) + \frac{1}{2} \left(\left(\frac{\partial F}{\partial v} \right)^{2} - 1 \right) - F \frac{\partial^{2} F}{\partial v^{2}} = \frac{\partial^{3} F}{\partial v^{3}}$$

$$v = 0: \quad F = \frac{\partial F}{\partial v} = 0, \quad v \to \infty: \quad \frac{\partial F}{\partial v} \to 1, \quad F(0, v) = h(v)$$

На рис. 2 представлен график функции

$$\tau_w(s) = \frac{\partial U_0}{\partial N}\Big|_{N=0} = (2q_0^3)^{1/2} R_0(s) Q_e^{3/2} \frac{\partial^2 F}{\partial v^2}\Big|_{v=0}$$

которая определяет поверхностное трение согласно (2.1), (2.2), (2.5). Оказалось, что, как и в случае плоского течения около полутела Рэнкина [10], $\tau_w(s)$ всюду положительна, несмотря на существование интервала s, где градиент давления неблагоприятен. Точки s=1.526 и s=2.467 являются для нее точками слабо выраженных минимума и максимума. При $s\to\infty$ решение задачи имеет асимптотику Прандтля-Блазиуса: $\tau_w=O(s^{-1/2})$.

Таким образом обтекание полутела вращения Рэнкина является безотрывным, что находится в соответствии с экспериментальным результатом Верле [11] (см. [12]), полученным путем визуализации.

ЗАКЛЮЧЕНИЕ

Проведенный анализ показал, что обтекание при больших числах Рейнольдса полутела вращения в форме Рэнкина является безотрывным.

СПИСОК ЛИТЕРАТУРЫ

- 1. Van Dyke M.D. Second-order slender-body theory axisymmetric flow // NASA Tech. Rep. 1959. R-47. 26 p.
- 2. Cole J.D. Perturbation methods in applied mathematics. Waltham: Blaisdell, 1968. 260 p.
- 3. Jones R.T. Leading-edge singularities in thin-airfoil theory // J. Aeronaut. Sci. 1950. V. 17. № 5. P. 307–310.
- 4. Van Dyke M.D. Second-order subsonic airfoil theory including edge effects // NACA Rep. 1956. № 1274. 23 p.
- 5. Van Dyke M. Perturbation methods in fluid mechanics. Stanford: Parabolic Press, 1975. 271 p.
- 6. *Rankine W.J.M.* On the mathematical theory of stream-lines, especially those with four foci and upwards // Phil. Trans. Roy. Soc. London. 1871. V. 161. Pt. II. P. 267–306.
- 7. *Сычев В.В., Башкин В.А.* Лекции по теоретической гидродинамике. Ч. І. Учебное пособие. М.: МФТИ, 2003, 188 с.
- 8. Rosenhead L. (Ed.) Laminar boundary layers. Oxford: Clarendon Press, 1963, 688 p.
- 9. Homann F. Der Einflu β gro β er Zähigkeit bei der Strömung um den Zylinder und um die Kugel // ZAMM. 1936. Bd. 16. H. 3. S. 153–164.
- 10. *Королев Г.Л., Сычев Вик. В.* О пограничном слое при обтекании полутела Рэнкина // Изв. РАН. МЖГ. 2021. № 6. С. 62–65.
- 11. Werlé H. Le décollement sur les corps de révolution à basse vitesse // La Rech. Aéron. 1962. № 90. P. 3–14.
- 12. Van Dyke M. An album of fluid motion. Stanford: Parabolic Press, 1982. 176 p.