УДК 533.6.011

НЕСУЩИЕ ПРОФИЛИ, БЛИЗКИЕ К ОБТЕКАЕМЫМ С НАИБОЛЬШИМИ КРИТИЧЕСКИМИ ЧИСЛАМИ МАХА

© 2023 г. А. Н. Крайко^{а,*}, В. А. Шаповалов^а

^аЦентральный институт авиационного моторостроения им. П.И. Баранова, Москва, Россия

*E-mail: akraiko@ciam.ru

Поступила в редакцию 29.08.2022 г. После доработки 11.10.2022 г. Принята к публикации 11.10.2022 г.

Прямым методом построения двумерных оптимальных по критическим числам Маха М* тел построены близкие к оптимальным по М* несущие профили. Их практически нулевые коэффициенты волнового сопротивления c_x остаются таковыми не только при числах Маха набегающего потока M_0 меньших М*, но и при M_0 заметно превышающих М*. Этим новые несущие профили отличаются от суперкритических несущих профилей, c_x которых стремительно растут при превышении расчетных значений M_0 . При равных толщинах и $M_0 = M^*$ суперкритические профили силы c_y . Однако из-за отмеченного выше отличия в поведении c_x при M_0 , больших расчетных, качество суперкритических профилей может стать ниже даже как отношение c_y не к c_x , а к коэффициенту полного сопротивления.

Ключевые слова: несущие профили, близкие к оптимальным по наибольшим критическим числам Maxa, отрезки звуковых линий тока, аппроксимируемые кривыми Бернштейна— Безье, генетический алгоритм

DOI: 10.31857/S0568528122700013, EDN: AKJBPI

Анализ [1] для симметричных профилей и тел вращения в равномерных набегающих потоках с числами Маха $M_0 < 1$ и его обобщения [2] на тела в цилиндрических каналах и в решетках, на контуры с отрезками горизонталей и областями поступательного звукового течения определили важную роль отрезков звуковых линий тока в контурах конфигураций, обтекаемых идеальным (невязким и нетеплопроводным) газом с наибольшими критическими числами Маха $M_0 = M^* < 1$. Анализ обтекания таких тел включал доказательство и применение "свойства прямолинейности" звуковых линий ("линий перехода"), отличных от звуковых линий тока, отрезки которых формируют оптимальные контуры. Второе утверждение — принцип максимума, согласно которому в таких течениях число Маха может достигать своего максимального значения M = 1 только на обтекаемых контурах. Свойство прямолинейности линий перехода и принцип максимума справедливы и при "дозвуковом" (как и в [1, 2], с $M \le 1$) обтекании несимметричных профилей. Однако для них доказать ключевые при выяснении структуры оптимальных тел утверждения, названные в [1] "теоремой сравнения" и "леммой граничной точки", не удалось.

Построенные в [3–10] примеры оптимальных тел в безграничном равномерном дозвуковом набегающем потоке включают симметричные профили и замкнутые тела вращения, обтекаемые под нулевым углом атаки, а также головные или кормовые части полубесконечных пластины и кругового цилиндра. Для их построения созданы численно-аналитические инструменты с весьма сложными аналитическими составляющими. Подход, развитый в [11], оказался намного проще. В его основе – прямой метод оптимального профилирования с численным решением "установлением" уравнений Эйлера, описывающих дозвуковое обтекание идеальным газом искомых тел, представление выпуклых звуковых участков их контуров кривыми Бернштейна–Безье (КББ) и нахождение оптимальных КББ с помощью генетического алгоритма (ГА). При этом минимизируются интегралы по выпуклым участкам контура от квадрата разности давления p и его известной отвечающей M = 1 "критической" величины p_* . У оптимальных по M^* тел выпуклые участки – отрезки звуковых линий тока и эти интегралы равны нулю.

Рис. 1. Близкий к оптимальному по М* несущий профиль с отрезками звуковых (при $M_0 = M^*$) линий тока *ab* и *a'b'*.

1. БЛИЗКИЕ К ОПТИМАЛЬНЫМ ПО М^{*} НЕСУЩИЕ ПРОФИЛИ

Все построенные в [11] плоские и осесимметричные оптимальные по M^{*} тела, как и в [3–10], обтекаются равномерным набегающим потоком под нулевым углом атаки. Далее, как и в [11], ось *х* декартовых координат *ху* направлена по скорости V₀ набегающего потока. При построении близких к оптимальным по M^{*} несущих профилей зададим и примем за линейный масштаб проекцию их хорды на ось *х*. При передней точке профиля *i*, помещенной на ось *y*, и концевой точке *f*, помещенной на ось *x*, профилю отвечают $0 \le x \le 1$. Как и в [1–11], возможны и иные ограничения, например

$$\frac{dy}{dx} \equiv \mathrm{tg}\theta \ge \mathrm{tg}\theta_{\mathrm{m}}, \quad S \equiv \int_{i}^{f} (y^{+} - y^{-}) dx \ge S_{\mathrm{m}}$$
(1.1)

с заданными константами $\theta_m < 0$ и $S_m > 0$ и уравнениями $y = y^+(x)$ и $y = y^-(x)$ верхней и нижней образующими профиля.

Первое ограничение (1.1) приводило к появлению у построенных ранее оптимальных по M* симметричных обтекаемых под нулевым углом атаки профилей прямолинейных участков $dy/dx = tg\theta_m$, заканчивающихся в их концевой точке x = 1, y = 0. Ограничение же на площадь "продольного" сечения S, введенное еще в [1], приводило к появлению у этих профилей переднего торца *ia*, на котором x = 0, и выпуклого отрезка звуковой линии тока, на котором M = 1 и $p = p_*$. При гладкой стыковке всех участков оптимальных образующих (непрерывности угла наклона касательной к ним θ) кривизна звуковых участков в их концевых точках обращается в бесконечность [7–12]. При приближении к этим точкам по отрезкам θ = const бесконечны производные p и V, а при приближении по нормали к контуру – производные всех параметров [12].

Согласно "Заключению" [11]: "... ставшие легко доступными оптимальные по М* конфигурации по-прежнему ограничены симметричными профилями, телами вращения и головными и кормовыми частями, обтекаемыми под нулевым углом атаки. Тем не менее хочется верить, что легкость проб поможет найти структуру принципиально иных оптимальных по М* двумерных конфигураций". Ниже построены примеры именно таких, близких к оптимальным по М* несущих профилей.

Изображенный на рис. 1 несущий профиль отличается от профилей, построенных ранее, несимметрией его верхней и нижней образующих. Во-первых, отрезок a'b' звуковой при $M_0 = M^*$ линии тока меньше подобного верхнего отрезка ab. По этой причине при построении искомых профилей прямым методом [11] минимизируются интегралы

$$I = \int_{a}^{b} (p - p_{*})^{2} d\xi, \quad I' = \int_{a'}^{b'} (p - p_{*})^{2} d\xi$$
(1.2)

Здесь и далее, как в [11], ξ – расстояние, отсчитываемое вдоль контура, p_* – отвечающее M = 1 критическое давление, за масштабы плотности ρ и скоростей взяты их размерные (с индексом "градус") критические величины ρ_*° и a_*° , а за масштаб $p - \rho_*^{\circ} a_*^{\circ^2}$. Для совершенного газа с постоянными теплоемкостями и их отношением (показателем адиабаты) γ безразмерное $p_* = 1/\gamma$. Вовторых, для увеличения подъемной силы дозвуковой при M₀ = M* концевой участок нижнего контура, плавно примыкающий к отрезку a'b', может быть вогнутым.

Наряду с функционалом (1.2) вычисляются коэффициенты волнового сопротивления c_x и подъемной силы c_y и площадь *S* продольного сечения профиля

$$c_x = \frac{2}{\rho_0 V_0^2} \oint_{fif} (p - p_0) dy, \quad c_y = \frac{2}{\rho_0 V_0^2} \oint_{fif} (p - p_0) dx, \quad S = \int_i^f (y^+ - y^-) dx$$
(1.3)

со средней точкой *i* торца *a*'*a*. Для совершенного газа давление p_0 и $\rho_0 V_0^2 - функции числа Маха M_0$ набегающего потока

$$V_0^2 = \frac{(\gamma+1)M_0^2}{2+(\gamma-1)M_0^2}, \quad p_0 = \frac{1}{\gamma} \left(\frac{\gamma+1}{2} - \frac{\gamma-1}{2}V_0^2\right)^{\gamma/(\gamma-1)}, \quad \rho_0 V_0^2 = \gamma p_0 M_0^2.$$

КББ, которыми аппроксимировались криволинейные участки контуров искомых несущих профилей, задаются формулами [13]

$$P(t) = \sum_{k=0}^{K} B_k^K(t) P_k, \quad B_k^K(t) = \frac{K!}{k!(K-k)!} t^k (1-t)^{K-k}, \quad t \in [0,1]$$

в которых P – координаты (x, y), t – параметр, $B_k^K(t)$ – полиномы Бернштейна, а P_k – координаты концов (контрольных точек) отрезков ломаной ("полигона"). В общем случае КББ проходит лишь через крайние контрольные точки, касаясь в них соответствующего отрезка полигона. Существенна линейная зависимость координат КББ от координат P_k ее контрольных точек.

Верхние звуковые при $M_0 = M^*$ отрезки образующих искомых профилей КББ определяют так же, как при построении симметричных профилей в [11]. При построении выпуклого и вогнутого участков нижних образующих две КББ обеспечивают гладкую стыковку выпуклого участка *a'b'* с торцом *a'a* в точке *a'* и с вогнутым концевым участком в точке *b'*. Гладкую стыковку в точке *b'* реализует помещение этой точки и двух соседних с ней контрольных точек КББ на отрезок заранее неизвестной прямой линии.

Близкие к оптимальным по М* несущие профили строились прямым методом [11], который ранее развивался и применялся при построении оптимальных аэродинамических форм в [14–18]. Оптимальные параметры КББ – оставшиеся не заданными ("свободными") координаты контрольных точек, включая координаты точек стыковки y_a, x_b, x_b , и y_b (индексы a, b, ... метят величины в точках a, b, ...), обеспечивающие близкие к нулю значения введенных в (1.2) и (1.3) функционалов I, I и c_x , находил ГА, описанный в [11].

Распределения параметров и значения *I*, *I*, *c_x* и *c_y* при стационарном обтекании каждого сгенерированного ГА профиля находились установлением по времени при численном решении уравнений течения идеального газа (уравнений Эйлера). Записанные в дивергентной форме нестационарные уравнения Эйлера интегрировались разностной схемой Годунова [19] повышенного согласно [20, 21] порядка аппроксимации (на гладких решениях). Как и в [11], в плоскости *xy* уравнения Эйлера численно интегрировались в области, ограниченной окружностью $r \equiv (x^2 + y^2)^{1/2} = 15$ с параметрами невозмущенного потока в примыкающем к окружности слое "вспомогательных" ячеек [22]. Ячейки разностной сетки, адаптированной к обтекаемым телам, увеличивались линейно по *r*. Чтобы избежать связанного с этим роста времени установления, интегрирование уравнений велось по неявной разностной схеме [23] с числом Куранта си = 10–20. Не вдаваясь в дальнейшие подробности, перейдем к примерам построенных близких к оптимальным по М* несущим профилям.

2. ПРИМЕРЫ БЛИЗКИХ К ОПТИМАЛЬНЫМ ПО М* НЕСУЩИХ ПРОФИЛЕЙ

Все расчеты выполнены для $\gamma = 7/5 = 1.4$ с заданием выпуклых звуковых участков симметричных профилей кривыми Бернштейна—Безье 10-го порядка (K = 10). Вогнутые концевые участки их нижних образующих задавались КББ 3-го порядка, а при представлении полей чисел Маха координаты *x* и *y* отнесены к проекции хорды профиля на ось *x*.

В табл. 1 приведены числа Маха M_0 , углы атаки α и относительные толщины h – максимальные разности y при фиксированном x верхней и нижней образующих трех построенных прямым методом оптимизации близких к оптимальным по $M^* = M_0$ несущих профилей. Четвертый несущий профиль – суперкритический для $M_0 = 0.785$ несущий профиль SC(2)_NASA_0410 из [24]. С этим профилем будет сравниваться один из построенных близкий к оптимальному по $M^* = 0.785$ несущий профиль. Существенно, что все четыре профиля обтекаются под небольшими отрицательными углами атаки. Методы построения двумерных суперкритических конфигураций, обтекаемых на расчетном режиме с местными безударными сверхзвуковыми зонами, развивались в [25–29].

130	
Таблица	1

\mathbf{M}_0	$-\alpha$	h
0.7	0.0211	0.1774
0.785	0.009	0.101
0.785 (NASA)	0.0076	0.1
0.85	0.0044	0.0546

Таблина 2

M ₀	N	$I \times 10^4$	$I \times 10^4$	$c_x \times 10^5$	$c_y \times 10^3$	$(M^m - 1) \times 10^3$
0.7	13744 (×4)	18 (17)	18 (19)	42 (8)	488 (489)	11 (37)
0.785	14688 (×4)	64 (63)	14 (16)	17 (2)	246 (246)	29 (31)
0.785 (NASA)	16960 (×4)			58 (20)	395 (398)	139 (121)
0.85	15664 (×4)	31 (31)	44 (47)	8 (1)	150(150)	25 (32)

В табл. 2 собраны величины *I*, *I*, *c_x*, *c_y* и отличие от единицы максимальных чисел Маха М^m при числах Маха набегающего потока М₀ и углах атаки, указанных в табл. 1. Все перечисленные величины были получены на двух разностных сетках с числом ячеек N и 4N. Сравнение значений, полученных на исходных и более "тонких" сетках (в скобках), демонстрирует достоверность результатов расчета. Из приведенных величин практически неизменен коэффициент подъемной силы, слегка изменяются интегралы *I* и *I* и умеренно – максимальные числа Маха М^m. Уменьшение же почти на порядок крайне малых значений *с*₂, близких к оптимальным по М* несущих профилей, как и в [11], - свидетельство высокой точности результатов, ибо здесь отличие с, от нуля – следствие погрешностей счета. С учетом сказанного далее приводятся результаты, полученные на исходных сетках.

На рис. 2 показаны поля чисел Маха при обтекании с $M_0 = 0.785$ несущего профиля, близкого к оптимальному по $M^* = 0.785$ (a), и суперкритического профиля SC(2)_NASA_0410, спрофилированного на M₀ = 0.785 (б). Хотя согласно табл. 2 отличие M^m от единицы у второго профиля вчетверо больше, чем у первого, на расчетном режиме (при $M_0 = 0.785$), он обтекается почти безударно с $c_x \approx 0.2 \times 10^{-3}$.

Рис. 2. Поля чисел Маха при обтекании с $M_0 = 0.785$ несущего профиля, близкого к оптимальному по $M^* = 0.785$ (а), и суперкритического профиля SC(2)_NASA_0410, спрофилированного на $M_0 = 0.785$ (б).

Рис. 3. Зависимость c_x от M₀ профилей: близкого к оптимальному по M* = 0.785 (1) и профиля SC(2)_NASA_0410 (2).

Рис. 4. Поля чисел Маха около близких к оптимальным по M^* несущих профилей: (a, б) $-M^* = 0.7, 0.85$.

Согласно рис. 3 ситуация резко меняется при M_0 , больших расчетного значения $M_0 = 0.785$. У близкого к оптимальному по M* несущего профиля c_x не изменяется до $M_0 = 0.81$, возрастая затем до $c_x = 1.64 \times 10^{-3}$ при $M_0 = 0.82$ на исходной сетке и до $c_x = 1.48 \times 10^{-3}$ на вчетверо более густой. В отличие от этого c_x суперкритического профиля NASA начинает при $M_0 > 0.785$ расти сразу, достигая при $M_0 = 0.82$ много большей величины $c_x \approx 1.2 \times 10^{-2}$. На рис. 3 и далее ломанные кривые образуют прямолинейные отрезки, которые соединяют представленные значками результаты расчета.

На рис. 4 даны поля чисел Маха при обтекании с $M_0 = M^*$ несущих профилей, близких к оптимальным по $M^* = 0.7$ (а) и $M^* = 0.85$ (б). Зависимости от M_0 коэффициентов волнового сопро-

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 1 2023

Рис. 5. Зависимость c_x близких к оптимальным по M^{*} несущих профилей, отвечающих M^{*} = 0.7 (а) и M^{*} = 0.85 (б), от M₀.

Рис. 6. Зависимость от M_0 максимальных чисел Маха M^m на близких к оптимальным по M^* несущих профилях, отвечающих $M^* = 0.7$ (1), 0.785 (2) и 0.85 (3).

тивления этих несущих профилей показывает рис. 5. Как и у несущего профиля с $M^* = 0.785$, увеличение c_x этих несущих профилей начинается не сразу при превышении расчетных значений чисел Маха набегающего потока $M_0 = M^*$ и идет не столь стремительно, как рост c_x суперкритических профилей [24] с такими же относительными толщинами *h* и расчетными числами Маха M_0 .

Рисунок 6 для близких к оптимальным по М* несущих профилей дает зависимости от числа Маха набегающего потока M_0 максимальных чисел Маха M^m , которые реализуются на выпуклых участках их контуров. Для всех трех построенных профилей величина M^m слегка превышает единицу на расчетных $M_0 = M^*$, линейно по M_0 уменьшается при $M_0 < M^*$ и, ускоряясь, возрастает при $M_0 > M^*$. Сравнение кривых рис. 6 с кривыми рис. 3 и 5 показывает, что для близких к оптимальным по M^* несущих профилей ускоренный рост M^m начинается заметно раньше ускоренного роста волнового сопротивления.

ЗАКЛЮЧЕНИЕ

Как и ожидалось, построение близких к оптимальным по М* несущих профилей удалось благодаря простоте примененного для их построения прямого метода. Второй существенный, но понятый не сразу момент — отрицательные углы атаки. При положительных углах атаки искомые несущие профили не получались.

Авторы благодарны К.С. Пьянкову за предоставленные программы, консультации и обсуждения.

Работа выполнена при поддержке РФФИ (код проекта 20-01-00100).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gilbarg D., Shiffman M*.On Bodies Achieving Extreme Values of the Critical Mach Number. I // J. Ration. Mech. and Analysis. 1954. V. 3. № 2. P. 209–230.
- 2. *Крайко А.Н.* Плоские и осесимметричные конфигурации, обтекаемые с максимальным критическим числом Maxa // ПММ. 1987. Т. 51. Вып. 6. С. 941–950.
- 3. *Fisher D.D.* Calculation of Subsonic Cavities with Sonic Free Streamlines // J. Math. Phys. 1963. V. 42. № 1. P. 14–26.
- 4. *Брутян М.А., Ляпунов С.В.* Оптимизация формы симметричных плоских тел с целью увеличения критического числа Маха // Учен. зап. ЦАГИ. 1981. Т. 12. № 5. С. 10–22.
- 5. *Щербаков С.А.* Расчет головной или кормовой части плокого тела, обтекаемого дозвуковым потоком с максимально возможным критическим числом Маха // Учен. зап. ЦАГИ. 1988. Т. 19. № 4. С. 10–18.
- Schwendeman D.W., Kropinski M.C.A., Cole J.D. On the Construction and Calculation of Optimal Nonlifting Critical Airfoils // ZAMP. 1993. Bd 44. P. 556–571.
- 7. Зигангареева Л.М., Киселев О.М. О расчете кавитационного обтекания кругового конуса дозвуковым потоком сжимаемой жидкости // ПММ. 1994. Т. 58. Вып. 4. С. 93–107.
- 8. Зигангареева Л.М., Киселев О.М. Отрывное обтекание диска идеальным газом и тела с наибольшими критическими числами Маха // Изв. РАН. МЖГ. 1996. № 3. С. 166–172.
- 9. Зигангареева Л.М., Киселев О.М. О полубесконечных телах вращения, обтекаемых с максимальным критическим числом Маха // ПММ. 1997. Т. 61. Вып. 1. С. 97–107.
- 10. Зигангареева Л.М., Киселев О.М. О плоских конфигурациях, обтекаемых потоком идеального газа с максимальным критическим числом Маха // ПМТФ. 1998. № 5. С. 106–115.
- 11. *Крайко А.Н., Шаповалов В.А*. Плоские и осесимметричные тела, обтекаемые с наибольшими "критическими" числами Маха // Изв. РАН. МЖГ. 2022. № 4. С. 86–95.
- 12. Крайко А.Н., Тилляева Н.И. О кривизне граничных линий тока течений идеального газа в точках схода и присоединения // ПММ. 2022. Т. 96. Вып. 3. С. 349–364.
- 13. Крайко А.Н. Теоретическая газовая динамика: классика и современность. М.: Торус пресс, 2010. 440 с.
- 14. Пьянков К.С., Тилляева Н.И. Многокритериальная многодисциплинарная оптимизация лопатки рабочего колеса вентилятора на основе генетического алгоритма // ТВФ. 2010. № 3. С. 58–67.
- 15. *Крайко А.А., Пьянков К.С., Тилляева Н.И. и др.* Оптимизация биротативного вентилятора с учетом напряженно-деформированного состояния на основе генетического алгоритма // ТВФ. 2014. № 1. С. 22– 34.
- 16. *Крайко А.А., Пьянков К.С., Тилляева Н.И*. Профилирование двусторонних несимметричных плоских сопел максимальной тяги // Изв. РАН МЖГ. 2016. № 1. С. 115–120.
- 17. *Тилляева Н.И*. Сравнение эффективности штыревых и комбинированных кольцевых сопел // Изв. РАН. МЖГ. 2017. № 4. С. 140–152.
- 18. *Крайко А.Н., Пьянков К.С., Тилляева Н.И. и др.* Внутренние скачки уплотнения при сверхзвуковом обтекании контуров оптимальных тел и сопел // Изв. РАН. МЖГ. 2020. № 6. С. 121–138.
- 19. Годунов С.К., Забродин А.В., Иванов М.Я. и др. Численное решение многомерных задач газовой динамики // М.: Наука, 1976. 400 с.
- 20. *Колган В.П.* Применение принципа минимальных значений производной к построению конечноразностных схем для расчета разрывных решений газовой динамики // Учен. зап. ЦАГИ. 1972. Т. 3. № 6. С. 68–77.
- 21. *Тилляева Н.И*. Обобщение модифицированной схемы С.К. Годунова на произвольные нерегулярные сетки // Учен. зап. ЦАГИ. 1986. Т. 17. № 2. С. 18–26.
- 22. *Гринь В.Т., Крайко А.Н., Славянов Н.Н.* Решение задачи о запуске сопла, вмонтированного в торец ударной трубы // Изв. АН СССР. МЖГ. 1981. № 6. С. 117–123.

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 1 2023

КРАЙКО, ШАПОВАЛОВ

- 23. *Браилко И.А., Попов Е.Н.* Расчеты стационарных двух- и трехмерных вязких течений в межлопаточных каналах турбин // Труды НПО Энергомаш им. акад. В.П. Глушко. 2002. № 20. 448 с. С. 4–22.
- 24. Harris C.D. NASA Supercritical Airfoils. A Matrix of Family-Related Airfoils. 1990. NASA TR-2969.
- 25. Sobieczky H., Yu N.J., Fung K.-Y., Seebass A.R. A New Method for Designing Shock-Free Transonic Configurations // AIAA J. 1979. V. 17. № 7. P. 722–729.
- 26. *Nakamura M*. A Method for Obtaining Shockless Transonic Flows past Two-Dimensional Airfoils whose Profiles are Partially Modified from a Given Arbitrary Profile // Trans. Japan Soc. Aeronaut. and Space Sci. 1981. V. 23. № 62. P. 195–213.
- 27. Dulikravich D.S., Sobieczky H. Shockless Design and Analysis of Transonic Cascade Shapes // AIAA J. 1982. V. 20. № 11. P. 1572–1578.
- 28. Beauchamp P., Seebass A.R. Shock-Free Turbomachinery Blade Design // AIAA J. 1985. V. 23. № 2. P. 249–253.
- 29. Крайко А.Н., Пьянков К.С. Построение профилей и мотогондол, суперкритических в околозвуковом потоке идеального газа // ЖВМиМФ. 2000. Т. 40. № 12. С. 1890–1904.