УДК 532.5

СТАЦИОНАРНЫЕ РЕЖИМЫ ЭЛЕКТРОКОНВЕКЦИИ СЛАБОПРОВОДЯЩЕЙ ЖИДКОСТИ ПРИ УНИПОЛЯРНОЙ ИНЖЕКЦИИ ЗАРЯДА В ПОСТОЯННОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

© 2021 г. В. А. Ильин^{а,*}, Т. И. Чигорина^а

^а Пермский государственный национальный исследовательский университет, Пермь, Россия

**E-mail: ilin1@psu.ru* Поступила в редакцию 04.12.2020 г. После доработки 28.04.2021 г. Принята к публикации 11.05.2021 г.

Исследованы стационарные нелинейные режимы электроконвекции слабопроводящей жидкости в горизонтальном конденсаторе в поле тяжести и постоянном электрическом поле при униполярной инжекции заряда. Рассмотрена модель, в которой плотность инжектируемых с катода зарядов пропорциональна напряженности электрического поля в конденсаторе. Нелинейные режимы электроконвекции исследованы при нагреве снизу. Найдены зависимости порогов возникновения режимов электроконвекции в зависимости от степени нагрева и степени инжекции заряда.

Ключевые слова: электроконвекция, слабопроводящяя жидкость, горизонтальный конденсатор

DOI: 10.31857/S0568528121050042

Изучение конвекции слабопроводящих жидкостей в электрическом поле представляет интерес, потому что является способом прямого преобразования энергии электрического поля в энергию движения [1–4]. Электрическое поле может изменить пороги тепловой конвекции и обеспечить эффективный способ управления движением жидкостей.

Несмотря на большое количество экспериментальных и теоретических работ, остаются открытыми вопросы, связанные с возникновением и эволюцией электроконвективных движений [3]. Существуют различные механизмы зарядообразования в жидкостях [3, 5]. Нелинейные режимы электроконвекции идеального диэлектрика в переменном электрическом поле с диэлектрофоретическим механизмом зарядообразования изучены в [6]. Электротермоконвективная неустойчивость слоя слабопроводящей жидкости с электрокондуктивным механизмом зарядообразования в модулированном электрическом поле изучена в [7], а нелинейные режимы с таким же механизмом исследованы на основе маломодовой модели в [8]. Инжекционный механизм зарядообразования связан с инжекцией зарядов с поверхности электрода. В силу сложности проблемы существует много моделей, описывающих инжекцию заряда в слабопроводящей жидкости, например, в работах [9–13] проведено исследование особенностей электроконвекции на их основе.

Ряд экспериментальных данных описываются моделью, в которой инжектируемый с катода заряд зависит от напряженности электрического поля в конденсаторе [13, 14]. В настоящей работе в рамках этой модели рассматривается электроконвекция неоднородно нагретой слабопроводящей жидкости в горизонтальном конденсаторе в поле тяжести и в постоянном электрическом поле при униполярной инжекции заряда. Используется электрогидродинамическое приближение (магнитными эффектами по сравнению с электрическими пренебрегают). Инжектируемые с поверхности катода заряды движутся через слой жидкости, изменяя в ней распределение электрического поля. Диффузия заряда не учитывается. Считается, что время диффузии заряда пренебрежимо мало по сравнению с характерным гидродинамическим временем и временем релаксации заряда.

В статье [13] в аналогичной постановке проведено исследование линейной устойчивости изотермической слабопроводящей жидкости, нагрев жидкости в ней не рассматривался. В рабо-

Рис. 1. Геометрия задачи.

те [14] исследовано влияние подвижности носителей заряда на критические параметры задачи, изучены нелинейные режимы электроконвекции при нагреве сверху. Линейный анализ устойчивости равновесия при нагреве снизу проведен в работе [15], в ней определены пороги возникновения монотонной конвекции. В [16] в одномерном случае проведено исследование динамики переноса заряда в изотермической жидкости в модулированном электрическом поле и в двумерном случае приведены результаты исследования двух стационарных нелинейных режимов при больших нагревах снизу (при числах Рэлея больше Ra = 500) в постоянном электрическом поле. Нестационарные и стационарные нелинейные режимы при нагреве сверху рассмотрены в [17]. В настоящей работе в нелинейной постановке изучено поведение стационарных режимов электроконвекции при меньших нагревах снизу, чем в статье [16] (при числах Рэлея меньше Ra = 500); определены зависимости критических параметров от степени нагрева и инжекции заряда.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим бесконечный плоский горизонтальный слой вязкой несжимаемой слабопроводящей жидкости в вертикальном постоянном электрическом поле и поле тяжести с ускорением свободного падения **g**. Ось *x* направлена вдоль нижней границы слоя, ось *z* – перпендикулярна границам слоя. Два плоских электрода лежат в плоскостях z = 0 и z = h (рис. 1), h – толщина слоя.

Идеально тепло- и электропроводные пластины конденсатора нагреты до разной температуры $-T(0) = \Theta$, T(h) = 0. Здесь T – температура, отсчитываемая от температуры верхнего электрода, Θ – характерная разность температур. Случай $\Theta > 0$ соответствует нагреву снизу. На катоде (нижнем электроде) потенциал равен нулю $\phi(0) = 0$, на аноде (верхнем электроде) – $\phi(h) = U$. Здесь U – напряжение электрического поля.

Под действием электрического поля в узком слое вблизи катода в результате электрохимических реакций образуется заряд. Плотность свободных зарядов у катода пропорциональна нормальной составляющей вектора напряженности поля $\rho_e = aE_z$, где a – коэффициент, характеризующий степень инжекции. Инжектированный заряд под действием поля движется в глубь жидкости. Двигаясь к аноду, заряд может увлекать за собой жидкость, вызывая электроконвективное течение. Движение жидкости и свободных зарядов в слое описывается системой уравнений электрогидродинамики

ρ

$$\left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}\right) = -\nabla p + \rho \mathbf{v}_0 \Delta \mathbf{v} + \rho_e \mathbf{E} + \rho \mathbf{g}$$
$$\frac{\partial T}{\partial t} + (\mathbf{v} \cdot \nabla)T = \chi \Delta T$$
$$\frac{\partial \rho_e}{\partial t} + \operatorname{div}(\rho_e \mathbf{v} - b\rho_e \mathbf{E}) = 0 \tag{1.1}$$
$$\operatorname{div} \mathbf{v} = 0, \quad \rho = \rho_0 (1 - \beta T)$$
$$\operatorname{div}(\varepsilon \varepsilon_0 \mathbf{E}) = \rho_e, \quad \mathbf{E} = -\nabla \phi$$

где ρ — массовая плотность жидкости; **v** — вектор скорости жидкости; *p* — давление; v₀ — коэффициент кинематической вязкости; ρ_e — плотность свободных зарядов; χ — коэффициент температуропроводности; β — коэффициент теплового расширения жидкости; ε — диэлектрическая проницаемость среды; ε_0 — электрическая постоянная; *b* — подвижность зарядов; **E** и ϕ — напряженность и потенциал электрического поля.

Границы слоя считаются твердыми, непроницаемыми, на них выполняются условия прилипания — скорость равна нулю

$$z = 0: \mathbf{v} = 0, \quad \varphi = 0, \quad \rho_e = aE_z = -a\frac{\partial\varphi}{\partial z}, \quad T = \Theta$$
$$z = h: \mathbf{v} = 0, \quad \varphi = U, \quad T = 0$$
(1.2)

Используем безразмерные переменные на основе масштабов: времени – время вязкой диссипации $[t] = h^2/v_0$, расстояния – расстояние между электродами $[\mathbf{r}] = h$, скорости – $[\mathbf{v}] = v_0/h$, потенциала – $[\phi] = U$, давления – $[p] = \rho v_0^2/h^2$, температуры – $[T] = \Theta$, плотности заряда – $[\rho_e] = \varepsilon_0 U/h^2$. После обезразмеривания система уравнений (1.1) с граничными условиями (1.2) приводится

После обезразмеривания система уравнений (1.1) с граничными условиями (1.2) приводится к виду:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \times \nabla)\mathbf{v} = -\nabla p + \Delta \mathbf{v} - \frac{T_e^2}{M^2} \rho_e \nabla \phi + \frac{\mathrm{Ra}}{\mathrm{Pr}} T \gamma$$
$$\frac{\partial T}{\partial t} + (\mathbf{v} \times \nabla)T = \frac{1}{\mathrm{Pr}} \Delta T$$
$$\mathrm{div} \mathbf{v} = 0, \quad \Delta \phi + \rho_e = 0, \tag{1.3}$$

$$\frac{\partial \rho_e}{\partial t} + (\mathbf{v} \times \nabla) \rho_e = \frac{T_e}{M^2} (\rho_e^2 - \nabla \phi \times \nabla \rho_e)$$

где $\gamma = (0, 0, 1), p$ — превышение давления над его гидростатическим значением. Граничные условия перепишутся так

$$z = 0: \mathbf{v} = 0, \quad \varphi = 0, \quad \rho_e = -\mathbf{A} \frac{\partial \varphi}{\partial z}, \quad T = 1$$
$$z = 1: \mathbf{v} = 0, \quad \varphi = 1, \quad T = 0$$
(1.4)

Здесь введены безразмерные параметры — тепловое число Рэлея Ra, электрические параметры ры *T_e* и M, число Прандтля Pr и параметр инжекции A

$$Ra = \frac{g\beta\Theta h^3}{v_0\chi}, \quad T_e = \frac{\varepsilon\varepsilon_0 U}{b\rho v_0}, \quad M = \frac{1}{b} \left(\frac{\varepsilon\varepsilon_0}{\rho}\right)^{1/2}, \quad Pr = \frac{v_0}{\chi}, \quad A = \frac{ah}{\varepsilon\varepsilon_0}$$
(1.5)

В работе [13] были использованы другие безразмерные параметры – электрическое число Грасгофа $Gr_e = \varepsilon_0 U^2 / \rho v_0^2$, параметр подвижности зарядов $B = bU/v_0$. Они связаны с нашими параметрами следующим образом: $Gr_e = T_e^2 / M^2$, $B = T_e / M^2$. В работе [13] безразмерные параметры варьировались с учетом их зависимости от безразмерного напряжения *F* так: $Gr_e = 5000F^2$, B = 5F (*F* пропорционален размерной величине напряжения *U*). В соответствии с этими соотношениями электрические параметры T_e и M будут равны: $T_e = 10^3 F$, M = 14.14 (M² = 200).

Связь безразмерного напряжения F с размерной величиной напряжения U можно описать следующим образом: $U = F \times 10^4 B = F \times 10 \text{ kB}$ (F = U/10 kB). То есть F является долей от 10 кВ. Для оценки параметров возьмем трансформаторное масло с диэлектрической проницаемостью $\varepsilon = 2.2$, плотностью $\rho = 883 \text{ кг/м}^3$, вязкостью $v_0 = 22.5 \times 10^{-6} \text{ m}^2/\text{c}^2$, $\varepsilon_0 = 8.85 \times 10^{-12} \text{ Kл}^2/\text{Hm}^2$, подвижность зарядов возьмем равной $b = 10^{-8} \text{ m}^2/\text{Bc}$ [3]. Тогда получим, что $\text{Gr}_e = 4.4 \times 10^{-5} U^2 = 4.4 \times 10^3 F^2$, $B = 4.4 \times 10^{-4} U = 4.4 F$, или в новых параметрах $T_e = 0.98 \times 10^3 F$, $M = \sqrt{2.2} \times 10 = 14.85$. Эти величины близки к величинам, которые были использованы в работе [13]. Если поварьировать значениями диэлектрической проницаемости, плотности, вязкости жидкости и подвижности зарядов или рассмотреть другую связь F c U, то можно получить полное соответствие полученных соотношений для Gr_e и B со значениями, использованными в статье [13].

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 5 2021

ИЛЬИН, ЧИГОРИНА

Далее рассмотрим плоские возмущения $\mathbf{v} = (u, 0, w)$ и $\partial/\partial y = 0$. Для исследования нелинейных режимов электроконвекции вводятся функция тока ψ и вихрь скорости Φ

$$v_x = -\frac{\partial \Psi}{\partial z}, \quad v_z = \frac{\partial \Psi}{\partial x}, \quad \Phi = (\text{rot}\mathbf{v})_y = -\Delta \Psi$$
 (1.6)

Вследствие слабой инжекции нелинейную задачу можно решать в безындукционном приближении, в котором предполагается, что изменение распределения заряда, возникающее в результате появления электроконвективных структур, по сравнению с равновесным его значением, не вызывает заметного изменения потенциала электрического поля [13, 14]. Система (1.3) в безындукционном приближении примет вид

$$\frac{\partial \Phi}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial \Phi}{\partial z} - \frac{\partial \psi}{\partial z} \frac{\partial \Phi}{\partial x} = \Delta \Phi - E \frac{T_e^2}{M^2} \frac{\partial \rho_e}{\partial x} - \frac{Ra}{Pr} \frac{\partial T}{\partial x}$$

$$\frac{\partial \rho_e}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial \rho_e}{\partial z} - \frac{\partial \psi}{\partial z} \frac{\partial \rho_e}{\partial x} = \frac{T_e}{M^2} \left(\rho_e^2 + E \frac{\partial \rho_e}{\partial z} \right)$$

$$\frac{\partial T}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial T}{\partial z} - \frac{\partial \psi}{\partial z} \frac{\partial T}{\partial x} = \frac{1}{Pr} \Delta T$$
(1.7)

со следующими граничными условиями:

$$z = 0; \psi = 0, \quad \partial \psi / \partial z = 0, \quad \rho_e = AE, \quad T = 1$$

$$z = 1; \psi = 0, \quad \partial \psi / \partial z = 0, \quad T = 0$$
(1.8)

На боковых границах для всех искомых функций выполняются условия периодичности.

2. НЕЛИНЕЙНЫЕ РЕЖИМЫ КОНВЕКЦИИ ПРИ НАГРЕВЕ СНИЗУ

Система (1.7)—(1.8) аппроксимировалась конечно-разностными отношениями. Эволюционные уравнения решались по явной схеме, конвективные слагаемые в уравнении для заряда и температуры аппроксимировались разностями "против потока" [14]. Для уравнения переноса тепла использовались центральные разности. Для удобства работы с условиями периодичности к сетке добавлялись два вертикальных ряда. Вихрь скорости на горизонтальных границах вычислялся по формуле Тома. Для решения уравнения Пуассона использовался метод последовательной верхней релаксации.

Для вычислений выбиралась прямоугольная ячейка с пространственными размерами $L_z = 1$, $L_x = 2$. Горизонтальная ячейка соответствует волновому числу k = 3.14. Размер сетки брался 21×41 узел. Число Прандтля $\Pr = 10$, электрический параметр M = 14.14, параметр инжекции заряда A = 0.25. Вычислялись зависимости максимальной функции тока от параметра T_e для разных нагревов снизу — теплового числа Рэлея Ra. При рассмотренных параметрах наблюдались два режима стационарной конвекции разной интенсивности — режим с малой интенсивностью вихрей (режим 1) и режим с большой интенсивностью вихрей (режим 2), между которыми происходили гистерезисные переходы.

Для более детальной характеристики установившихся конвективных режимов были проведены вычисления безразмерного теплопотока — числа Нуссельта, и исследованы пространственные распределения полей функций.

Для анализа интенсивности теплопереноса через конденсатор вычислялся усредненный по длине ячейки безразмерный тепловой поток на границе слоя (число Нуссельта) следующим образом:

$$Nu = -\frac{1}{L} \int_{0}^{L} \left(\frac{\partial T}{\partial z}\right)_{z=0} dx$$
(2.1)

Случай Nu = 1 соответствует процессу молекулярного теплопереноса, превышение числа Нуссельта над единицей Nu > 1 свидетельствует о возникновении конвекции. Полный заряд определялся как сумма зарядов по всем узлам сетки: $Q = \sum_{i,j} \rho_{e_{i,j}}$.

Рис. 2. Зависимость максимальной функции тока от параметра T_e : A = 0.25, Ra = 400, 1 – режим с малой интенсивностью вихрей, 2 – режим с большой интенсивностью вихрей.

Разложение полей в ряд Фурье по пространственным гармоникам несет информацию о характере течения жидкости в слое. В нашем случае, как и в предыдущих исследованиях электроконвекции [11, 12, 14], мы ограничимся разложением искомых функций лишь в горизонтальном направлении, в сечении, соответствующем середине слоя (z = 0.5)

$$F(x, 1/2, t) = F_0(t) + \sum_{n=1}^{\infty} F_n(t) \exp(inkx)$$
(2.2)

где $F_n(t)$ – амплитуда *n*-й пространственной гармоники.

В исследованной области параметров наблюдаются двухвихревые движения, поэтому ограничимся при рассмотрении пространственных характеристик структур первой $F_1(t)$, второй $F_2(t)$ и третьей $F_3(t)$ модами разложения.

На основе данных статьи [16] была выявлена следующая закономерность: с уменьшением значения числа Рэлея уменьшается интервал существования режима 1 с малой интенсивностью вихрей. В настоящей работе эта закономерность была продолжена. Для этого были проведены расчеты при значениях числа Рэлея меньше Ra = 400.

На рис. 2 представлена зависимость максимальной функции тока от электрического параметра T_e для Ra = 400. Крестом на рисунке отмечена точка возникновения режима *l* с малой интенсивностью, стрелками обозначено направление гистерезиса. Интенсивность режима с большой интенсивностью вихрей – режима 2 – растет с увеличением T_e . При расчете с постоянными начальными условиями было обнаружено, что электроконвекция возникает мягким образом при значении $T_e = 4.8 \times 10^3$, наблюдается режим с малой интенсивностью вихрей (режим *l*). При $T_e = 5.8 \times 10^3$ происходит переход к режиму с большой интенсивностью вихрей (режим 2). Методом продолжения по параметру найдена точка возникновения режима 2: $T_e = 1.5 \times 10^3$.

В интервале электрического параметра $1.5 \times 10^3 \le T_e \le 4.7 \times 10^3$ в зависимости от начальных условий реализуется либо равновесное распределение, либо стационарный режим 2 с большой интенсивностью, при большем поле $4.8 \times 10^3 \le T_e \le 5.7 \times 10^3$ может реализоваться как режим 1, так и режим 2. При $T_e \ge 5.8 \times 10^3$ сколь угодно малые возмущения приводят систему после переходных процессов к стационарному режиму 2 с большой интенсивностью.

На рис. З представлены изолинии полей функции тока (а, б), температуры (в, г) и плотности заряда (д, е) электроконвективного течения для Ra = 400. Опишем различия найденных режимов: режима *1* при $T_e = 5.7 \times 10^3$ (изолинии а, в, д на рис. 3) и режима *2* при $T_e = 5.8 \times 10^3$ (изолинии б, г, е на рис. 3).

Поток тепла в режиме 2 превосходит по интенсивности поток тепла в режиме 1 более чем 5 раз: в слабоинтенсивном режиме число Нуссельта Nu = 2.14, в режиме большой интенсивности

Рис. 3. Изолинии функции тока (а, б), температуры (в, г) и плотности заряда (д, е): Ra = 400, A = 0.25; а, в, д – режим 1 с малой интенсивностью вихрей ($T_e = 5.7 \times 10^3$); б, г, е – режим 2 с большой интенсивностью вихрей ($T_e = 5.8 \times 10^3$).

Nu = 11.7. Максимальное значение функции тока в режиме 1 ψ_{max} = 0.59, в режиме 2 ψ_{max} = 21.8, что представляет собой скачок почти в 37 раз.

Заряды в обоих режимах мало различаются: в режиме *1* средний заряд $\overline{\rho}_e = -0.21$, в режиме *2* $\overline{\rho}_e = -0.19$; полные заряды в слое соответственно равны: $Q_1 = -178$ и $Q_2 = -162$. Но в режиме *2* заряд имеет более сложное поведение — разброс между его максимальным и минимальным значениями ($\rho_{emax} = -0.09$, $\rho_{emin} = -0.23$) больше, чем в слабоинтенсивном режиме ($\rho_{emax} = -0.18$, $\rho_{emin} = -0.22$).

Далее были рассмотрены пространственные характеристики режимов. Был проведен пространственный фурье-анализ (2.2) – вычислены абсолютные значения первых трех мод разложения в ряд фурье-функции тока ($|\psi_1|, |\psi_2|, |\psi_3|$), температуры ($|T_1|, |T_2|, |T_3|$) и плотности заряда ($|\rho_{e1}|,$

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 5 2021

Рис. 4. Зависимость пороговых значений T_e от теплового числа Рэлея Ra для M = 14.14. Кривая *1* отображает пороги возникновения режима 2 с большой интенсивностью вихрей, 2 – пороги возникновения режима 1 с малой интенсивностью вихрей, 3 – пороги перехода от режима 1 к режиму 2.

|ρ_{e2}|, |ρ_{e3}|). Для каждого режима эти моды были нормированы на соответствующую режиму величину первой моды.

В слабоинтенсивном режиме для функции тока отношение модулей второй моды к первой получилось равным $|\psi_2|/|\psi_1| = 0.12$, третьей моды к первой: $|\psi_3|/|\psi_1| = 0.009$. В режиме большой интенсивности соответственно: $|\psi_2|/|\psi_1| = 0.095$, $|\psi_3|/|\psi_1| = 0.035$. Относительные значения вторых мод у режимов мало отличаются, но нормированная третья мода в режиме 2 почти в 4 раза больше, чем в режиме 1.

В слабоинтенсивном режиме для температуры отношение модулей второй моды к первой получилось равным $|T_2|/|T_1| = 0.017$, третьей моды к первой: $|T_3|/|T_1| = 0.095$. В режиме большой интенсивности соответственно: $|T_2|/|T_1| = 0.29$, $|T_3|/|T_1| = 1.13$. Относительное значение второй моды для температуры у режима большой интенсивности по сравнению с режимом слабой интенсивности больше в 17 раз, третьей моды – почти в 12 раз.

В режиме *1* для плотности заряда отношение модулей плотности заряда второй моды к первой получилось равным $|\rho_{e2}|/|\rho_{e1}| = 0.23$, третьей моды к первой: $|\rho_{e3}|/|\rho_{e1}| = 0.022$. В режиме *2* соответственно: $|\rho_{e2}|/|\rho_{e1}| = 0.516$, $|\rho_{e3}|/|\rho_{e1}| = 0.177$. Относительное значение второй моды заряда увеличилось более чем в 2 раза, третьей моды – почти в 8 раз. Пространственное распределение заряда в режиме *2* имеет более сложную структуру.

Пороги переходов между режимами электроконвекции для разных чисел Ra представлены на рис. 4. Как видно из него, с уменьшением числа Рэлея интервал существования режима 1 сужается, и режим исчезает.

При Ra = 51 режим *I* с малой интенсивностью еще существует. Вычисления показали, что при таком нагреве при $T_e = 6.1 \times 10^3$ мягко возникающий режим с малой интенсивностью вихрей наблюдается. При $T_e = 6.2 \times 10^3$ происходит скачкообразный переход к режиму 2 с большой интенсивностью вихрей. При движении в пространстве параметров справа налево режим *2* существует до $T_e = 1.5 \times 10^3$. При меньшей напряженности поля $T_e < 1.5 \times 10^3$ в системе независимо от начальных условий затухают все возмущения, и устанавливается равновесие.

При Ra = 50 режим 1 с малой интенсивностью не наблюдается. При $T_e = 6.1 \times 10^3$ после длительного переходного процесса устанавливается равновесие. При $T_e = 6.2 \times 10^3$ происходит скачкообразный переход к режиму 2 с большой интенсивностью. При меньшем числе Ra присутствует только режим 2 с большой интенсивностью. Точка перехода к режиму 2 продолжает расти, в невесомости (Ra = 0) этот переход происходит при $T_e = 6.3 \times 10^3$. Проведем оценки, соответствующие реальной ситуации. Определим число Рэлея. Для трансформаторного масла $\chi = 7.56 \times 10^{-8} \text{ m}^2/\text{c}$, $\beta = 6.9 \times 10^{-4} \text{ 1/°C}$, толщину конденсатора возьмем h = 1 см, тогда число Рэлея будет равно Ra = $4 \times 10^3 \Theta$. Для Ra = 400 нагрев между пластинами конденсатора получится небольшим: $\Theta = 0.1^{\circ}$ C. Для меньших чисел Рэлея нагрев будет еще меньше.

Определим напряжение в конденсаторе. В нашей задаче для рассматриваемых режимов $F = T_e \times 10^{-3}$ меняется примерно до 6.3. Если $U = F \times 10$ кВ, то напряжение в реальной ситуации будет в пределах 63 кВ.

3. РЕЖИМЫ ЭЛЕКТРОКОНВЕКЦИИ ПРИ РАЗНЫХ СТЕПЕНЯХ ИНЖЕКЦИИ

При фиксированном нагреве (Ra = 400) производились расчеты по вычислению зависимости максимальной функции тока от параметра T_e при различных степенях инжекции заряда с катода — параметра А. Приведем данные вычислений для A = 0.15. Зависимость максимальной функции тока от электрического параметра T_e в этом случае аналогична зависимости, представленной на рис. 2.

Было обнаружено, что электроконвекция возникает мягким образом при $T_e = 11.6 \times 10^3$, наблюдается режим с малой интенсивностью вихрей (режим *I*). При $T_e = 14.1 \times 10^3$ происходит скачкообразный переход к режиму с большой интенсивностью вихрей (режим 2). Интенсивность этого режима растет с ростом T_e . В интервале $2.6 \times 10^3 \leq T_e \leq 11.2 \times 10^3$ в зависимости от начальных условий реализуется либо равновесное распределение, либо стационарный режим 2, при $11.3 \times 10^3 \leq T_e \leq 14.0 \times 10^3$ может реализоваться как режим 1, так и режим 2. При $T_e \geq 14.1 \times 10^3$ сколь угодно малые возмущения приводят систему после переходных процессов к стационарному режиму 2 с большой интенсивностью вихрей.

Опишем различия найденных режимов: режима 1 при $T_e = 14 \times 10^3$ и режима 2 при $T_e = 14.1 \times 10^3$. Поток тепла в режиме 2 превосходит по интенсивности поток тепла в режиме 1 почти в 5 раз: в слабоинтенсивном режиме число Нуссельта Nu = 2.4, в режиме большой интенсивности Nu = = 11.6. Максимальное значение функции тока в режиме 1 $\psi_{max} = 0.9$, в режиме 2 $\psi_{max} = 53$.

Заряды в обоих режимах мало различаются: в режиме *1* средний заряд $\overline{\rho}_e = -0.13$, в режиме 2 $\overline{\rho}_e = -0.15$; полные заряды в слое соответственно равны: $Q_1 = -115$ и $Q_2 = -99$. Но в режиме 2 заряд имеет более сложное поведение – разброс между максимальным и минимальным значениями заряда в нем больше ($\rho_{emax} = -0.002$, $\rho_{emin} = -0.15$), чем в слабоинтенсивном режиме ($\rho_{emax} = -0.12$, $\rho_{emin} = -0.14$).

В слабоинтенсивном режиме для функции тока отношение модулей функции тока второй моды разложения в ряд Фурье к первой моде получилось равным $|\psi_2|/|\psi_1| = 0.2$, третьей моды к первой: $|\psi_3|/|\psi_1| = 0.01$. В режиме большой интенсивности соответственно: $|\psi_2|/|\psi_1| = 0.1$, $|\psi_3|/|\psi_1| = 0.04$. Относительное значение второй моды функции тока уменьшилось, а третьей моды – увеличилось.

В слабоинтенсивном режиме для температуры отношение модулей температуры второй и третьей мод к первой получилось равным соответственно $|T_2|/|T_1| = 0.09$, $|T_3|/|T_1| = 0.17$. В режиме большой интенсивности соответственно: $|T_2|/|T_1| = 0.35$, $|T_3|/|T_1| = 1.03$. Относительные значения второй и третьих мод температуры увеличились.

В режиме *I* для плотности заряда отношение модулей плотности заряда второй моды к первой получилось равным $|\rho_{e2}|/|\rho_{e1}| = 0.36$, третьей моды к первой: $|\rho_{e3}|/|\rho_{e1}| = 0.03$. В режиме *2* соответственно: $|\rho_{e2}|/|\rho_{e1}| = 0.43$, $|\rho_{e3}|/|\rho_{e1}| = 0.36$. Относительные значения мод заряда увеличились.

В целом можно сделать вывод, что пространственные распределения функции тока, температуры и заряда в более интенсивном режиме имеют более сложную структуру, чем в слабоинтенсивном режиме.

Вычисления для разных значений параметра A были систематизированы и по ним построен график изменения значений порогов возникновения режимов и переходов между режимами в зависимости от параметра инжекции (рис. 5). Параметр инжекции A существенно изменяет плотность распределения заряда в слое. Как видно из рис. 5, с увеличением инжекции заряда ин-

Рис. 5. Зависимость пороговых значений T_e от параметра инжекции А: 1-3- то же, что на рис. 4.

тервал существования режима *1* с малой интенсивностью вихрей (расстояние между кривыми *2* и *3*) уменьшается и пороги режимов понижаются.

ЗАКЛЮЧЕНИЕ

Проведено исследование нелинейных режимов электроконвекции неизотермической слабопроводящей жидкости, находящейся в горизонтальном конденсаторе в гравитационном и постоянном электрическом поле при униполярной инжекции заряда. Рассмотрен нагрев снизу и различные значения инжекции. Использована модель, в которой плотность инжектируемых с катода зарядов пропорциональна напряженности электрического поля в конденсаторе. Изучены нелинейные режимы электроконвекции. Обнаружены и исследованы два нелинейных стационарных режима со значительно отличающейся интенсивностью течения и гистерезисные переходы между ними. Изучено их различие по теплопотоку, заряду и пространственным фурьеспектрам. Найдены пороги возникновения режимов электроконвекции в зависимости от степени нагрева и степени инжекции заряда. Пространственные распределения полей в более интенсивном режиме имеют более сложную структуру, чем в слабоинтенсивном режиме.

Выявлено, что при уменьшении нагрева жидкости режим с малой интенсивностью течения исчезает, остается только режим с большой интенсивностью течения. С увеличением степени инжекции заряда пороги режимов уменьшаются, поскольку заряда в жидкости становится больше, электрическое поле эффективнее действует на движение жидкости, и оно возникает при меньших напряжениях.

Слабоинтенсивный режим возникает мягко. Более интенсивный режим, возникающий жестко, не определяется при линейном анализе, но был обнаружен при нелинейном анализе. В зависимости от параметров задачи возможно разное ветвление режимов, например, в работе [11] электроконвекция возникает мягко, в [12] описано жесткое возбуждение электроконвекции. Переход от мягкого ветвления к жесткому определяется коэффициентами в уравнении Ландау [18]. В дальнейшем планируется продолжить работу и произвести исследование по определению коэффициентов Ландау, из которого будут определены условия жесткого или мягкого ветвлений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Остроумов Г.А. Взаимодействие электрических и гидродинамических полей: Физические основы электрогидродинамики. М.: Наука, 1979. 319 с.
- 2. *Саранин В.А.* Устойчивость равновесия, зарядка, конвекция и взаимодействие жидких масс в электрических полях. М.–Ижевск: НИЦ РХД, 2009. 332 с.
- 3. Жакин А.И. Электрогидродинамика // УФН. 2012. Т. 182. № 5. С. 495-520.

- 4. Стишков Ю.К. Электрофизические процессы в жидкостях при воздействии сильных электрических полей. М.: Юстицинформ, 2019. 262 с.
- 5. Панкратьева И.Л., Полянский В.А. Основные механизмы электризации слабопроводящих многокомпонентных сред // Изв. РАН. МЖГ. 2017. № 5. С. 15–22.
- 6. *Ильин В.А.* Модель электротермической конвекции идеального диэлектрика в горизонтальном конденсаторе // Изв. РАН. МЖГ. 2016. № 5. С. 10–16.
- 7. *Веларде М.Г., Смородин Б.Л.* Конвективная неустойчивость плоского горизонтального слоя слабопроводящей жидкости в переменных и модулированных электрических полях // Изв. РАН. МЖГ. 2000. № 3. С. 31–38.
- 8. *Ильин В.А., Пономарева Л.А.* Модель электроконвекции слабопроводящей жидкости в высокочастотном электрическом поле // Прикладная механика и техническая физика. 2018. Т. 59. № 2. С. 12–22.
- 9. *Ермолаев И.А., Жбанов А.И.* Численное исследование униполярной инжекции при электроконвективном движении в плоском слое трансформаторного масла // Изв. РАН. МЖГ. 2003. № 6. С. 1–7. 6.
- 10. *Смородин Б.Л., Тараут А.В.* Параметрическая конвекция слабопроводящей жидкости в переменном электрическом поле // Изв. РАН. МЖГ. 2010. № 1. С. 3–11.
- 11. Смородин Б.Л., Тараут А.В. Электроконвекция при наличии автономной униполярной инжекции и остаточной проводимости // Журнал экспериментальной и теоретической физики. 2012. Т. 142. Вып. 2 (8). С. 403–412.
- 12. Смородин Б.Л., Тараут А.В. Динамика волновых электроконвективных течений в модулированном электрическом поле // Журнал экспериментальной и теоретической физики. 2014. Т. 145. Вып. 1. С. 180–188.
- 13. Верещага А.Н. Унарная электроконвекция в плоском слое // Гидродинамика и процессы тепломассо-переноса. 1989. С. 42–47.
- 14. Мордвинов А.Н., Смородин Б.Л. Электроконвекция при инжекции с катода и нагреве сверху // Журнал экспериментальной и теоретической физики. 2012. Т. 141. Вып. 5. С. 997–1005.
- 15. *Ильин В.А., Мордвинов А.Н., Петров Д.А.* Электроконвекция слабопроводящей жидкости при униполярной инжекции заряда в постоянном электрическом поле // Журнал экспериментальной и теоретической физики. 2015. Т. 147. Вып. 1. С. 181–188.
- 16. Ильин В.А. Электроконвекция слабопроводящей жидкости в горизонтальном конденсаторе при униполярной инжекции заряда // Журнал технической физики. 2017. Т. 87. Вып. 1. С. 5–9.
- Ильин В.А., Александрова В.Н. Электроконвекция слабопроводящей жидкости при униполярной инжекции заряда в постоянном электрическом поле при нагреве сверху // Журнал экспериментальной и теоретической физики. 2020. Т. 157. Вып. 2. С. 349–356.
- 18. Ландау Л.Д., Лившиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. М.: Наука, 1986. 736 с.