УДК 532.594, 532.516

НЕЛИНЕЙНЫЕ ВОЛНЫ В ПЛЕНОЧНЫХ ТЕЧЕНИЯХ ВЯЗКИХ ЖИДКОСТЕЙ ПРИ ПРОИЗВОЛЬНЫХ ЧИСЛАХ КАПИЦЫ

© 2021 г. А. Н. Белоглазкин^{а,*}, В. Я. Шкадов^{а,**}

^а Московский государственный университет им. М.В. Ломоносова, Москва, Россия * E-mail: bel@mech.math.msu.su

** E-mail: shkadov@mech.math.msu.su

Поступила в редакцию 12.11.2020 г. После доработки 24.12.2020 г. Принята к публикации 24.12.2020 г.

Обсуждаются методы и результаты математического моделирования нелинейных волн, возбуждаемых гидродинамической неустойчивостью, в движущихся капиллярных пленках вязкой жидкости. Рассмотрены две модельные системы дифференциальных уравнений для локальных значений толщины слоя h и расхода жидкости q. Широкое распространение в мировой литературе по гидродинамике пленок имеет однопараметрическая (h - q) модель Капицы–Шкадова, обеспечивающая эффективное моделирование пленочных течений жидкостей малой вязкости. Двухпараметрическая (h - q)₁ модель расширяет возможности для прямого расчета нелинейных волн в пленках жидкостей повышенной вязкости. Дается последовательность систем модельных уравнений, обсуждаются сценарии неустойчивости и бифуркаций, приводятся результаты расчетов волновых структур и сопоставления их с экспериментальными данными.

Ключевые слова: капиллярность, пленка, неустойчивость, нелинейные волны, глобальный аттрактор

DOI: 10.31857/S0568528121040022

В данной работе рассматриваются волновые режимы пленочных течений вязких жидкостей, для которых коэффициенты вязкости изменяются в широких пределах. Используется приближенная модельная система дифференциальных уравнений с двумя внешними управляющими параметрами для толщины слоя и локального расхода жидкости [1], которая точнее учитывает вязкую диссипацию в слое по сравнению с известной однопараметрической моделью Шкадова [2]. Обсуждаются новые свойства линейных и нелинейных волн, вызываемых гидродинамической неустойчивостью течений сильновязких жидкостей под воздействием силы тяжести и поверхностного натяжения.

Фундаментальное свойство двухпараметрической системы — существование в плоскости управляющих параметров линии, разделяющей множество регулярных волновых решений на два подмножества. В первом случае от нейтральной кривой сначала происходит ряд бифуркаций медленных волн и лишь затем переход на семейство быстрых волн. Во втором случае имеется единственная бифуркация семейства быстрых волн от основного состояния на нейтральной кривой, и формирование быстрых волн происходит сразу.

1. МОДЕЛЬНЫЕ УРАВНЕНИЯ ТЕЧЕНИЙ ВОЛНОВЫХ ПЛЕНОК

Течение тонких слоев вязкой жидкости по твердой поверхности под воздействием сил тяжести, вязкости и поверхностного натяжения описывается краевой задачей [2], которая включает уравнения Навье–Стокса

$$u_{t} + uu_{x} + vu_{y} = -p_{x} + \frac{1}{\kappa \text{Re}}(u_{yy} + \kappa^{2}u_{xx}) + \frac{1}{\kappa \text{Fr}}$$

$$v_{t} + uv_{x} + vv_{y} = -\frac{2}{\kappa \text{Re}}p_{1y} + \frac{1}{\kappa \text{Re}}(v_{yy} + \kappa^{2}v_{xx})$$

$$u_{x} + v_{y} = 0$$

$$p = \frac{2\kappa}{\text{Re}}p_{1} - \frac{\kappa^{2}}{\text{We}}\frac{h_{xx}}{(1 + b^{2})^{3/2}}, \quad b = \kappa h_{x}$$
(1.1)

и краевые условия

$$y = 0; \quad u = 0, \quad v = 0$$

$$p_{1} = \frac{1 + b^{2}}{1 - b^{2}} v_{y}$$

$$u_{y} + \kappa^{2} \left(v_{x} + \frac{4h_{x}}{1 + b^{2}} v_{y} \right) = 0$$

$$h_{t} + uh_{x} = v.$$
(1.2)

Уравнения (1.1), (1.2) записаны в безразмерной форме. Нижний индекс обозначает частную производную по переменной. Использованы масштабы длины h_0 и $\frac{h_0}{\kappa}$ для переменных *y*, *x*, масштабы скорости U_0 , κU_0 для скоростей *u*, *v*, динамический напор ρU_0^2 для давлений *p* и p_1 . Характерные значения толщины слоя h_0 и скорости жидкости U_0 , а также коэффициент к растяжения по продольной переменной *x* должны быть заданы дополнительно.

Краевая задача (1.1), (1.2) содержит безразмерные параметры Рейнольдса $\text{Re} = \frac{U_0 h_0}{v}$, Вебера $\text{We} = \frac{\rho h_0 U_0^2}{\sigma}$, Фруда $\text{Fr} = \frac{U_0^2}{g h_0}$. Будем рассматривать такие гравитационно-капиллярные течения вязких несжимаемых жидкостей, в которых силы вязкости, тяжести, поверхностного натяжения имеют одинаковый порядок, задаваемый величиной δ , в соответствии с соотношениями [2, 3]

$$\frac{\kappa^2}{We} = \frac{3}{\kappa Re} = \frac{1}{\kappa Fr} = \frac{1}{5\delta}.$$
 (1.3)

Отсюда находим безразмерные критерии и масштабирующие множители h_0 , U_0 , характерные для рассматриваемого класса течений,

We =
$$5\delta\kappa^2$$
, Re = $\frac{15\delta}{\kappa}$, Fr = $\frac{5\delta}{\kappa}$ $h_0 = \left(3\operatorname{Re}\frac{v^2}{g}\right)^{1/3}$, $U_0 = \frac{gh_0^2}{3v}$ (1.4)

Теперь задача (1.1), (1.2) полностью определяется парой внешних управляющих параметров математической модели δ, κ.

Существенное значение масштабирования (1.3) и введения параметра δ для успешного решения задачи о нелинейных волнах в пленках отмечено в [4, 5].

В работе [1.3] представлен вывод следующей модельной системы уравнений

$$h_{t} + q_{x} = 0$$

$$q_{t} + \frac{6}{5} \left(\frac{q^{2}}{h} \right)_{x} = \frac{1}{5\delta} \left(h - \frac{q}{h^{2}} + hh_{xxx} \right) + \frac{\kappa^{2}}{5\delta} \left(\frac{5}{3}q_{xx} - \frac{9}{4}\frac{qh_{xx}}{h} - \frac{3}{2}\frac{q_{x}h_{x}}{h} + \frac{3}{2}\frac{qh_{x}^{2}}{h^{2}} \right)$$
(1.5)

Члены правой части (1.5) с множителем κ^2 отражают более точный учет влияния вязкости в исходной краевой задаче (1.1), (1.2). При малых значения к, пренебрегая членами с множителем κ^2 , из (1.5) получаем модельную систему (h - q), выведенную в [2]. Эта система при больших γ (малой вязкости) управляется одним параметром δ и приводится к виду

$$h_{t} + q_{x} = 0$$

$$q_{t} + \frac{6}{5} \left(\frac{q^{2}}{h} \right)_{x} = \frac{1}{5\delta} \left(h - \frac{q}{h^{2}} + h h_{xxx} \right)$$
(1.6)

Система (1.6) явилась основой интегрального метода для расчетов нелинейных волн в пленках маловязких жидкостей в длинном ряде работ, представленных в [4, 6]. Полная $(h - q)_1$ система (1.5) содержит два внешних параметра δ , к и предназначена для исследования волн в жидкостях с произвольной вязкостью.

В [7, 8] представлена история построения системы эволюционных уравнений Шкадова (1.6) с момента ее создания в 1967 г. [2], а также ее частного асимптотического случая – слабонелиней-

ного уравнения интегрального метода теории волновых пленок, которое впервые было выведено в [2] и исследовано в [7]

$$H_t + (3H^2 - cH + H_y + H_{yyy})_y = 0 (1.7)$$

Исследование по данному уравнению было продолжено и впервые опубликовано в форме (1.7) в [9] со ссылкой: "отметим, что уравнение вида (1.7) может быть получено также из уравнений, выведенных в [2], если сохранить в них только главные члены по k_m ". Достаточно подробное исследование волновых решений слабонелинейного уравнения (1.7) было проведено в [10].

Уравнение (1.7) представляет предельную асимптотическую форму модельной системы (1.6) при стремлении расхода к нулю. При конечных значениях δ система (1.6) описывает физические волны, которые можно сравнить с экспериментами. Асимптотическому уравнению (1.7) соответствуют математические волны бесконечной длины и бесконечно малой амплитуды и оно не содержит параметры, которые можно связать с экспериментальными условиями. Отметим, что математическая модель нестационарных нелинейных волн в пленках сводится к одному уравнению только при условии $\delta \rightarrow 0$. Для конечных значений δ нестационарные волновые течения пленки описывается системой двух уравнений (1.6).

Полезное применение предельного при $\delta \to 0$ слабонелинейного уравнения теории стекающих волновых пленок (1.7) связано с возможностью использовать его решения для расчета начальных данных в итерационных вычислениях при $\delta \neq 0$. Этот подход применялся в [11] для численного решения системы (1.6) и в [1] — для расчета решений системы (1.5).

Отметим, что в [12, 13] предпринимались попытки дополнить (h - q) модель членами, квадратичными по волновому числу α , а в [14] рассматриваются модификации системы (h - q) (1.6) путем введения весовых множителей при интегрировании первого уравнения (1.1) по *у*.

Задача (1.5) определяется парой внешних управляющих параметров математической модели δ и к. В экспериментальных работах часто используются параметры R = 3 Re и $\gamma = \frac{\sigma}{\rho} (v^4 g)^{-1/3}$, которые, на основании (1.4), связаны с δ , к соотношениями:

$$\delta = \frac{R^{11/9}}{45\gamma^{1/3}}, \quad \kappa = \frac{R^{2/9}}{\gamma^{1/3}}, \quad R = \frac{45\delta}{\kappa}, \quad \gamma = \frac{(45\delta)^{2/3}}{\kappa^{11/3}}.$$
 (1.8)

На рис. 1 представлены в плоскостях (R, γ) и (δ , κ) области значений управляющих параметров, при которых проводились эксперименты по волновым пленкам. Линии *1*, *2* ограничивают область *А* больших значений γ , соответствующих маловязким жидкостям. Сюда отнесены классические эксперименты работы [15] и многих других последующих работ, результаты которых собраны в [16]. Кривая $\kappa = 0.2$ проходит через центральную часть этой области, поэтому при ре-

шении задачи (1.1), (1.2) можно принять допущение $\kappa^2 \ll 1$. Соответствующая теория, включая вывод приближенной модельной задачи (h - q) с одним внешним управляющим параметром δ и исследование решений для периодических и уединенных волн, построена в [2, 3]. Она позволила истолковать основные экспериментальные результаты, получила дальнейшее развитие и обобщение путем учета процессов тепло- и массообмена в пленках и успешно применяется до настоящего времени [6].

Линии *3*, *4* ограничивают обширную область *B* новых экспериментов [12, 13] с течениями волновых пленок при больших и малых значениях γ . Видно, что для указанного множества экспериментальных точек выполняются неравенства $0.1 < \kappa < 1$, причем значения κ возрастают с уменьшением γ . В табл. 1 в качестве примера приведены значения γ , κ при $\delta = 0.15$. С возрастанием вязкости уменьшается γ и растет κ , достигая значения $\kappa \sim 1$ ($\kappa = 0.15$ при $\gamma = 3750$; $\kappa = 1$ при $\gamma = 3.572$). Особый интерес представляет область малых значений γ для жидкостей с повышенной вязкостью. Волны в этой области пока изучены недостаточно и требуется как развитие теории, так и проведение новых более детальных расчетов.

2. БИФУРКАЦИОННЫЙ БАРЬЕР

Основное состояние системы (1.5) соответствует динамически возможному течению пленки постоянной толщины и постоянного расхода h = 1, q = 1. Рассмотрим условия, при которых

Рис. 1. Области существования волновых режимов течения пленок в плоскостях (R, γ) и (δ , κ): 1, 2 – линии, ограничивающие область A, соответствующую маловязким жидкостям; 3, 4 – линии, ограничивающие область B течений волновых пленок при больших и малых значениях γ ; 5 – бифуркационный перевал, разделяющий области C и D.

вследствие гидродинамической неустойчивости происходит мягкая бифуркация от основного состояния волнового режима течения с волновым числом α

$$h = 1 + \hat{h} \exp i\alpha(x - ct), \quad q = 1 + \hat{q} \exp i\alpha(x - ct)$$

Линеаризуя систему (1.5) относительно малых амплитуд \hat{h} , \hat{q} , получаем дисперсионное соотношение для определения в области неустойчивости $0 < \alpha \le \alpha_n$ собственного числа $c = c(\alpha, \delta, \kappa^2)$.

$$c^{2} - \frac{12}{5}c + \frac{6}{5} + \frac{i}{5\alpha\delta}(c-3) - \frac{\alpha^{2}}{5\delta} + \frac{i\alpha\kappa^{2}}{5\delta}\left(\frac{5}{3}c - \frac{9}{4}\right) = 0.$$
 (2.1)

Полагая в (2.1) $c_i = 0$, выводим уравнения для α_n и c_r на нейтральной кривой

$$c_r - 3 + \alpha_n^2 \kappa^2 \left(\frac{5}{3}c_r - \frac{9}{4}\right) = 0,$$

$$\alpha_n^2 = 5\delta \left(c_r^2 - \frac{12}{5}c_r + \frac{6}{5}\right).$$
(2.2)

Вычислим $\frac{dc_r}{d\alpha}$ для дисперсионного уравнения (2.1) в точках нейтральной кривой. Из условия $\frac{dc_r}{d\alpha} = 0$ получим

$$\frac{\kappa^4}{\delta} = \frac{24}{11} \cdot \frac{(3-c_r)(c_r-1.2)}{c_r-1.35}.$$
(2.3)

На рис. 1 линия 5 представляет множество точек, в которых на плоскости (κ , δ) выполняются одновременно соотношения (2.2), (2.3). В каждой точке области *C*, выше линии 5, на нейтраль-

	Таблица	1.3	начения '	γ.	кпри	δ	=	0.1	1:	5
--	---------	-----	-----------	----	------	---	---	-----	----	---

γ	3750	1323	102.9	23.25	8.1	3.572
κ	0.15	0.2	0.4	0.6	0.8	1.0

γ	1.588	2.479	4.437	10.37	41.41	354.9	4141
R	328.9	95.88	30.34	11.27	5.769	4.671	4.552
κ	3.107	2.037	1.300	0.7854	0.4267	0.1989	0.0873
δ	22.71	4.340	0.8757	0.1966	0.0547	0.0207	0.0088

Таблица 2. Точки бифуркационного перевала

ной кривой выполняется условие $\frac{dc_r}{d\alpha} > 0$, а в каждой точке области D – условие $\frac{dc_r}{d\alpha} < 0$. Перемена знака $\frac{dc_r}{d\alpha}$ приводит к изменению характера мягкой бифуркации волнового режима. Мягкая бифуркация происходит вблизи нейтральной кривой, при смещении α в область неустойчивости $\alpha = \alpha_n + \delta \alpha$, $\delta \alpha < 0$. Следовательно, в области C на нейтральной кривой ответвляются медленные волны с фазовой скоростью, меньшей фазовой скорости нейтральных волн $c_r < c_m$. Соответственно, в области D на нейтральной кривой мягко ответвляются быстрые волны с фазовой скоростью скоростью $c_r > c_m$. Линия 5 представляет бифуркационный перевал, разделяющий пленочные течения типа I в области C и типа II в области D.

В течениях типа I, при достаточно больших значениях γ , на нейтральной кривой $\alpha = \alpha_n$ ответвляется семейство медленных волн γ_1 . При уменьшении волнового числа достигается критическое значение $\alpha = \alpha_*$, при котором от семейства γ_1 происходит жесткая бифуркация семейства быстрых волн γ_2 , которое продолжается по внутреннему параметру α к точке $\alpha = 0$.

При переходе через бифуркационный перевал в область *D* к течениям типа II бифуркации первого семейства γ_1 исчезают. На нейтральной кривой ответвляется сразу семейство быстрых волн γ_2 , которое по внутреннему параметру α продолжается до точки $\alpha = 0$.

Понятие медленных и быстрых волн с внутренним параметром α при малых значениях δ впервые введено в [11]. Также в [11] были сформулированы основные принципиальные свойства регулярных волн при конечных значениях δ . В дальнейшем было показано [17], что при $\delta > 0.09$ возникают жесткие бифуркации промежуточных семейств медленных волн, количество которых возрастает с ростом величины δ . Соответственно в сторону малых значений α сдвигается точка жесткой бифуркации семейства γ_2 .

На рис. 1 кривая бифуркационного перевала 5 делит в плоскости (κ , δ) множество экспериментальных точек [13] на две большие группы. Свойства нелинейных волн, вызываемых гидродинамической неустойчивостью, для них существенно различаются, но тем и другим соответствуют волновые решения системы (h - q)₁. Некоторые значения управляющих параметров для точек, расположенных на бифуркационном перевале, представлены в табл. 2.

3. РЕГУЛЯРНЫЕ ПЕРИОДИЧЕСКИЕ ВОЛНЫ

В случае пространственно-периодических волн для каждой пары внешних независимых параметров *R*, γ (или δ , κ) существует также внутренний параметр – волновое число α такое, что при 0 < $\alpha \le \alpha_n$ малые возмущения неустойчивы и развиваются в нелинейные регулярные волны, и α_n – точка на нейтральной кривой. С изменением α от точки $\alpha = \alpha_n$ до точки $\alpha = 0$ изменяется характер волновых решений (1.5) от гармонических волн (медленных или быстрых) к быстрым уединенным волнам — солитонам. В [1] установлено фундаментальное свойство системы (1.5). В плоскости управляющих параметров существует линия (линия 5 на рис. 1), разделяющая множество регулярных волновых решений на два подмножества: в области *A* в каждой точке любой нейтральной кривой от стационарного течения ответвляются медленные волны (фазовая скорость *c*, меньше фазовой скорости нейтральной волны), в области *B* ответвляются быстрые волны. Линии γ = const на рис. 1 пересекают линию 5 бифуркационного перевала [1], причем точка пересечения зависит от значения γ . При переходе через точку пересечения с уменьшением к изменяется структура волновых решений, в частности, исчезает мелкомасштабная рябь на переднем фронте волны. Ниже приводятся результаты прямого численного решения двухпараметрической модели для периодических и уединенных волн.

Рис. 2. Зависимость коэффициента нарастания α_{c_i} и фазовой скорости c_r в области линейной неустойчивости для $\delta = 0.1$ и различных значений γ : 6.5 (1), 12.6 (2), 19 (3), 150 (4), 3370 (5), ∞ (6).

В общем случае, для произвольной формы поверхности пленки жидкости, решения находились численно методом установления по времени с использованием фурье-представлений по пространственной координате *x*

$$h(t,x) = \sum_{n=-\infty}^{\infty} h_n(t) \exp i\alpha nx, \quad q(t,x) = \sum_{n=-\infty}^{\infty} q_n(t) \exp i\alpha nx.$$
(3.1)

Подставив (3.1) в (1.5), получим соответствующую динамическую систему обыкновенных нелинейных дифференциальных уравнений для коэффициентов разложений $h_n(t)$ и $q_n(t)$, которая численно интегрируется по времени с использованием прямого и обратного преобразований Фурье. В качестве начальных условий для коэффициентов h_0 и q_0 задавались значения для невозмущенного потока, а малые значения для h_1 и q_1 использовались в качестве начальных возмущений.

Для периодических волн с длиной волны 2π/α использовались следующие граничные условия

$$h(0) = h(2\pi/\alpha), \quad h_x(0) = h_x(2\pi/\alpha), \quad h_{xx}(0) = h_{xx}(2\pi/\alpha).$$
(3.2)

Для каждого расчета задавались значения управляющих параметров δ , κ , α (или R, γ , α).

На рис. 2а,б представлена зависимость коэффициента нарастания αc_i и фазовой скорости c_i от волнового числа α, полученная на основе анализа линеаризованной задачи. При различных значениях γ результаты представлены для значений α из интервала неустойчивости. Для больших значений $\gamma = 3370$, 150 от нейтральной кривой сначала происходит бифуркация к медленным волнам, лишь затем переход к быстрым. При меньших значениях $\gamma = 12.6, 6.5$ формирование быстрых волн происходит сразу. Зависимость коэффициента нарастания αс, от фазовой скорости c_r для различных значений γ показана на рис. 2в. Для величины $\gamma \approx 19$ выполняется условие $\frac{d\alpha c_i}{\alpha}$ $=\infty$. При больших значениях γ зависимость коэффициента нарастания αc_i от фазовой скорости с, не является однозначной: значение а, при котором выполняется условие $\frac{d\alpha c_i}{c_i} = \infty$, находится внутри интервала неустойчивости, и для одного значения фазовой скорости c_r dc_r в интервале $\alpha_{max} < \alpha < \alpha_0$ существуют два различных значения коэффициента нарастания αc_i , где α_{max} — волновое число для максимального коэффициента нарастания α_{c_i} , α_0 — волновое число нейтральных колебаний. При $\gamma \to 0$, $c_r(\alpha_0) \to 3$. Тогда мы получаем случай (6), когда каждой точке кривой соответствуют два различных значения α из интервала линейной неустойчивости.

Предельные решения системы эволюционных уравнений, при $t \to \infty$ и фиксированном α = const, представляют собой доминирующие волны. Для каждого заданного δ множество доминирующих волн, из интервала неустойчивости ($0 < \alpha < \alpha_n$), образуют глобальный аттрактор [6].

Различия сценариев бифуркаций в течениях типа I и II можно видеть на рис. 3, где показаны результаты прямого численного решения (1.5) предельных волн глобального аттрактора для об-

Рис. 3. Глобальный аттрактор при $\delta = 0.1$: а – проекция на плоскость (q_0, α); б – проекция на плоскость (c_r, α); $1 - \gamma = 3370$; $2 - \gamma = 6.5$.

Рис. 4. Зависимость фазовой скорости c_r от приведенного значения максимальной толщины пленки $h_{max} - 1$ для случая $\alpha = 0.15$ ($1 - \gamma = 22$, 2 - 13, 3 - 6.5) и для $\alpha = \alpha_m$, соответствующего максимальному значению ко-эффициента нарастания αc_i ($4 - \gamma = 22$, 5 - 13, 6 - 6.5).

ластей *C* и *D* при $\delta = 0.1$ ($1 - \gamma = 3370$, $2 - \gamma = 6.5$). В первом случае имеется ряд бифуркаций медленных волн до перехода на семейство быстрых волн γ_2 , им соответствуют локальные максимумы на кривых $q_0 = q_0(\alpha)$ и $c_r = c_r(\alpha)$; во втором случае имеется единственная бифуркация семейства быстрых волн γ_2 от основного состояния на нейтральной кривой при $\alpha = \alpha_n$.

Диапазон изменения значений фазовой скорости c_r для сильновязкой жидкости проиллюстрирован рис. 4. Здесь показана зависимость c_r от приведенного значения максимальной толщины пленки $h_{max} - 1$ для случая $\alpha = 0.15$, $\gamma = 22$ (1), $\gamma = 13$ (2), $\gamma = 6.5$ (3) и для $\alpha = \alpha_m$, где α_m соответствует максимальному значению коэффициента нарастания αc_i , $\gamma = 22$ (4), $\gamma = 13$ (5), $\gamma = 6.5$ (6).

Волновые решения модельной системы (h - q) работы [2] при $\kappa^2 \ll 1$ характеризуются наличием капиллярной ряби на переднем фронте быстрых волн большой амплитуды. Как было показано выше, включение членов порядка κ^2 в $(h - q)_1$ модели создает эффект сглаживания передних фронтов, особенно заметный для сильно вязких жидкостей.

Для $\delta = 0.1$ и $\gamma = 3370$, на рис. 5 приведено сравнение профилей волн при различных значениях волнового числа α . Из расчетов видно, как в результате последовательности бифуркаций

Рис. 5. Формы профиля волны для различных волновых чисел α и чисел Капицы γ.

перед фронтом волны с максимальной амплитудой происходит формирование мелкомасштабной ряби. Сравнение профилей волн при $\delta = 0.1$, $\alpha = 0.25$ для жидкостей с различными значениями числа Капицы γ представлено на рис. 5. При малых значениях γ рябь отсутствует.

4. ОТ ПЕРИОДИЧЕСКИХ УЕДИНЕННЫХ ВОЛН К СОЛИТОНАМ

При стремлении волнового числа α к нулю периодические решения системы эволюционных уравнений переходят в солитоны — регулярные уединенные волны. Для установившегося режима бегущей со скоростью *с* волны имеем $q_x = ch_x$. Исключая из системы уравнений расход *q*, можем получить уравнение третьего порядка относительно толщины пленки *h*:

$$h^{3}h_{xxx} + \delta[6(1-c) - c^{2}h^{2}]h_{x} + h^{3} - 1 + c(1-h) - \kappa^{2}\left(\frac{7}{12}ch_{xx}h^{2} + \frac{9}{4}(1-c)h_{xx}h - \frac{3}{2}(1-c)h_{x}^{2}\right) = 0$$
(4.1)

Краевые условия в данном случае будут следующие:

$$x \to \pm \infty$$
: $h \to 1$, $h_x, h_{xx} \to 0$

Для малых возмущений формы поверхности пленки h = 1 + h' имеем линеаризованное уравнение:

$$h'_{xxx} + \delta(5c^2 - 12c + 6)h'_x + (3 - c)h' - \kappa^2 \left(\frac{9}{4} - \frac{5}{3}c\right)h'_{xxx} = 0$$

Рассмотрим возмущения вида $h'(\eta) = \hat{h} \cdot \exp(\sigma \eta)$, $\hat{h} -$ амплитуда возмущений, $\eta = x - ct + x_0$. Тогда получим следующее дисперсионное соотношение

$$\sigma^{3} + \kappa^{2} \left(\frac{5}{3}c - \frac{9}{4}\right) \sigma^{2} + \delta(5c^{2} - 12c + 6)\sigma + 3 - c = 0$$

Решением данного уравнения являются три корня, один из которых — действительный, а два — сопряженных комплексных. В случае положительных солитонов (когда c > 3) имеем:

$$\sigma_1 > 0, \quad \sigma_{2,3} = a \pm ib, \quad a < 0.$$

Рис. 6. Области существования положительных солитонов для модельной системы $(h - q)_1$.

В этом случае асимптотическое поведение при $\eta \to \mp \infty$ заднего и переднего фронтов движущейся уединенной волны (солитона) дается формулами

$$h = 1 + A \exp \sigma_1 \eta, \quad \eta \to -\infty$$

$$h = 1 + B \exp a \eta \sin b \eta, \quad \eta \to \infty$$

$$\eta = x - ct + x_0, \quad A, B, x_0 - \text{константы}$$
(4.2)

Волновые решения модельной системы (h - q) работы [2] при $\kappa^2 \ll 1$ характеризуются наличием капиллярной ряби на переднем фронте быстрых волн большой амплитуды типа уединенных волн и солитонов. Включение членов порядка κ^2 в $(h - q)_1$ модели создает эффект сглаживания передних фронтов, что согласуется с экспериментальными наблюдениями волн, особенно в сильно вязких жидкостях. С приближением пары режимных параметров γ , к к линии бифуркационного перевала амплитуда капиллярной ряби на переднем фронте волны быстро уменьшается. Например, для $\delta = 0.15$ и c = 4, при уменьшении числа Капицы с $\gamma = 3750$ до $\gamma = 3.572$ (табл. 1), показатель экспоненты a < 0, обеспечивающий затухание амплитуды волн ряби при $\eta \rightarrow \infty$, возрастает по модулю в 11-16 раз. В то же время длина волн ряби увеличивается в два раза, а форма заднего фронта практически не изменяется.

Область существования положительных солитонов для однопараметрической модельной системы (h - q) представляет собой счетное множество сегментов, вне которых ограниченных решений нет. В случае использования двухпараметрической модельной системы $(h - q)_1$, для заданных ограниченных значениях числа Капицы γ , количество данных сегментов становится конечным. Например (рис. 6), при $\delta = 0.1$, $\gamma = 3370$ их – пять, а при $\delta = 0.1$, $\gamma = 160$ – два. При $\delta = 0.1$, $\gamma < 22.8$ конечные сегменты, внутри которых нет ограниченных решений задачи, не существуют.

На рис. 7 показаны формы и фазовые портреты положительного двугорбого солитона C'_1 для $\delta = 0.1$ и чисел Капицы $\gamma = 3370$, $\gamma = 6.5$. Как и в случае регулярных периодических волн, уменьшение числа Капицы для сильно вязких жидкостей и соответствующее увеличение значения параметра к приводят к сглаживанию осцилляций на переднем фронте солитона, форма же задней части изменяется слабо.

На рис. 8, 9 представлено сравнение результатов настоящих расчетов и экспериментальных данных для различных режимов течения пленки жидкости.

На рис. 8 приведены данные серии экспериментов работы [13] для случая сильновязких жидкостей (область *B* на рис. 1) в диапазоне изменений чисел Капицы γ от 2 до 130. Проведенные расчеты при $\gamma = 6.5$ и для оптимального режима (максимальное значение среднего расхода $q_{0\text{max}}$) показали, что в области We > 0.1 наблюдается хорошее согласование зависимости значений максимальной амплитуды волны h_{max} от безразмерного числа Вебера We.

В работе [18], на основе использования преобразования подобия, был проведен сравнительный анализ методов расчета нелинейных волн, формирующихся в пленке при пространствен-

Рис. 7. Формы и фазовые портреты положительного двугорбого солитона C'_1 для $\delta = 0.1$.

Рис. 8. Сравнение результатов расчетов ($\gamma = 6.5$) с экспериментальными данными [13]: *1* – зависимость $h_{\text{max}} - 1$ от We при максимальном значении фазовой скорости c_{rmax} ; 2 – зависимость $h_{\text{max}} - 1$ от We при максимальном значении среднего расхода $q_{0\text{max}}$ (оптимальный режим [2]); точками отмечены данные серии экспериментов [13] в диапазоне изменений чисел Капицы 2 < γ < 130.

ном и временном развитии возмущений основного стационарного течения. Использование инвариантных свойств эволюционных уравнений позволило провести сравнение свойств волновых режимов и полученных характеристик регулярных волн с данными численного решения соответствующей пространственной краевой задачи [19], в том числе и для формы волны возникающего пленочного течения.

В [20], для численного решения системы уравнений Навье—Стокса, использовался расширенный метод конечных элементов. В работе было показано хорошее соответствие полученных характеристик предельных волновых режимов и данных [18] для оптимального режима множества доминирующих волн — глобального аттрактора.

Следующие численные исследования течений пленки производились для режимов постоянного расхода $q_0 = 1$ [18].

Рис. 9. Сравнение результатов расчетов и данных экспериментов: а – проекции глобального аттрактора для тонкого слоя сильновязкой жидкости ($\delta = 0.0202$, $\gamma = 5.9$) на плоскость (h_{max}, α), (h_{min}, α), 1 – экспериментальные данные [21]; 6 – проекции глобального аттрактора на плоскость (h_{max}, α), (h_{min}, α) для $\delta = 2.75$, $\gamma = 200$, 1 – экспериментальные данные [13].

Результаты расчетов для тонкой пленки сильновязкой жидкости при $\delta = 0.0202$, $\gamma = 5.9$ показаны на рис. 9а. В работе [21] приведены экспериментальные данные для течения пленки жидкости при Re = 0.5. В плоскости (h_{max}, α), (h_{min}, α) представлены расчеты настоящей работы для тонкого слоя сильновязкой жидкости ($\delta = 0.0202$, $\gamma = 5.9$). Данные расчетов вблизи нейтральной кривой показывают хорошее соответствие значений максимальной h_{max} и минимальной h_{min} толщин пленки при заданном волновом числе α .

Проекции глобального аттрактора на плоскость (h_{max}, α), (h_{min}, α) для случая пленки большой толщины ($\delta = 2,75, \gamma 0$) представлены на рис. 96. Расхождение h_{max} с данными экспериментов [13] в данном случае не превышают 7–10%.

5. БИФУРКАЦИИ ВОЛНОВЫХ СТРУКТУР СИЛЬНО ВЯЗКОЙ ЖИДКОСТИ ПРИ МАЛЫХ ЗНАЧЕНИЯХ ВОЛНОВОГО ЧИСЛА (ОБРАТНАЯ БИФУРКАЦИЯ)

В пределе, при уменьшении волнового числа, регулярная периодическая волна переходит в уединенную волну. При этом для быстрых решений уравнений на переднем фронте возникают и усиливаются осцилляции, возрастает количество локальных максимумов. Увеличение вязкости приводит к сглаживанию этих осцилляций и снижению числа локальных максимумов вплоть до их исчезновения. Прямые численные расчеты уравнения (1.5) и граничных условий (3.2) показали, что при малых значенях числа Капицы ($\gamma = 6.5$) уменьшение волнового числа и последующая бифуркация решения не ведут к возрастанию числа локальных максимумов, а приводят к распаду волны с образованием соответствующего количества одногорбных структур. Их характеристики полностью совпадают с параметрами волны с соответствующим кратным увеличением волнового числа. Например, для случая We = 0.02, $\gamma = 6.5$, ($\delta = 0.01336$) "одногорбные" решения существуют до $\alpha \approx 0.09$. При меньших значения волнового числа мы наблюдаем образование двух идентичных друг другу волновых решений, которые существуют соответственно до $\alpha \approx 0.045$. Дальше, до $\alpha \approx 0.03$, можно наблюдать три идентичных друг другу волновых решения и т.д. Этот результат можно получить, решая эволюционные уравнения (1.5) или (1.6), но с граничными условиями, которые обобщают условия (3.2)

$$h(0) = h\left(\frac{2\pi}{n}\alpha\right), \quad h_x(0) = h_x\left(\frac{2\pi}{n}\alpha\right), \quad h_{xx}(0) = h_{xx}\left(\frac{2\pi}{n}\alpha\right),$$

где *п* принимает целые значения 1, 2, 3 и т.д.

Рис. 10. Глобальный аттрактор при We = 0.02, $\gamma = 6.5$ ($\delta = 0.01336$): а – проекция на плоскость (q_0, α), б – проекции на плоскости (h_{\max}, α) и (h_{\min}, α), в – проекция на плоскость (c_r, α), г – проекция на плоскость (c_r, h_{\max}).

Анализ свойств глобального аттрактора показывает (рис. 10), что переход с решения n = 1 на решение n = 2 в области $\alpha \approx 0.09$ связан с тем, что локальный расход решения n = 2 в точке $\alpha = 0.1$ принимает свое максимальное значение $q_0 = 1.0055$, в то время как для решения n = 1 локальный расход $q_0 = 1.004$. В дальнейшем, с уменьшением волнового числа до $\alpha \approx 0.045$ ситуация повторяется и происходит переход на решение n = 3.

Как показано в [18], наряду с вынужденной частотой колебаний, на формирование волны может оказывать влияние частота с наибольшей скоростью роста, которая близка частоте оптимального режима. В результате чего наблюдаются перестройка течения и изменение частоты колебаний. Тогда, вследствие каких-либо особенностей возбуждения частоты на начальном участке при проведении экспериментов возможно формирование наряду с волновой структурой "основной частоты" также волн с кратным увеличением длины волны. Наблюдаемые при этом "первичные" и "вторичные" волновые течения, возникающие вследствие кратного увеличения длины волны, в проекции глобального аттрактора на плоскость (c_r, h_{\max}) представляются единой кривой рис. 10г. Возможные решения с кратным увеличением длины волны, представляемые как решения с меньшими волновыми числами $\alpha_2 = \alpha/2$, $\alpha_3 = \alpha/3$ и т.д., будут иметь меньшее значение фазовой скорости c_r и максимальной толщины пленки h_{max} (рис. 10а,б,в). Предельное значение волнового числа, при котором происходит обратная бифуркация, для $\gamma = 6.5$ имеет значение $\alpha_* = 0.09$, а для $\gamma = 40$ примерно равно $\alpha_* = 0.12$. Эти величины близки предельному значению волнового числа $\alpha_* = 0.14$, при котором в экспериментах наблюдаются регулярные волны [16]. Отметим, что при $\alpha_* = 0.09$ коэффициент нарастания α_{c_i} для n = 2 примерно в 3.5 раза больше αc_i для n = 1, а αc_i для n = 3 при данном волновом числе принимает свое максимальное значение. Таким образом, при $\alpha < 0.09$, на формирование "предельного решения" эволюционной системы уравнений начинают влиять решения n = 2 и n = 3, что и приводит к возникновению "обратной бифуркации".

БЕЛОГЛАЗКИН, ШКАДОВ

6. ЗАКЛЮЧЕНИЕ

Исследована модельная система $(h - q)_1$ с двумя внешними параметрами δ , к, которая обобщает классическую (h - q) модель [2] с одним параметром δ на течения вязких жидкостей в широком диапазоне значений числа Капицы γ . В модельной системе (1.5) работы [1] сохранены основные диссипативные члены, входящие в исходную краевую задачу для уравнений Навье– Стокса. При возрастании вязкости жидкости и соответствующем уменьшении γ проявляются новые свойства волновых решений. Установлен механизм подавления мелкомасштабной ряби и сглаживания волновых фронтов при уменьшении γ . Показано, что с уменьшением γ меняется характер бифуркаций нелинейных волн от состояния равновесия на нейтральной кривой. В пространстве режимных параметров δ , к построена линия, разделяющая бифуркации к медленным и быстрым нелинейным волнам. Проведено сравнение с экспериментальными данными. Показано, что для заданного δ характеристики регулярных волн, образующихся при пространственом развитии, можно описать на основе использования расчетов глобального аттрактора. Проведено исследование явления обратной бифуркации при переходе уединенных периодических волн в солитоны.

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта 18-01-00762 и 19-11-50105.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шкадов В.Я. Двухпараметрическая модель волновых режимов течения пленок вязкой жидкости // Вестник Московского университета, сер. 1. Матем. Механ. 2013. № 4. С. 24–31.
- 2. Шкадов В.Я. Волновые режимы течения тонкого слоя вязкой жидкости под действием силы тяжести // Изв. АН СССР. МЖГ. 1967. № 1. С. 43–51.
- 3. Шкадов В.Я. Уединенные волны в слое вязкой жидкости // Известия АН СССР, МЖГ. 1977. № 3. С. 63-66.
- 4. Kalliadasis S., Ruyer-Quil C., Scheid B., Velarde M.G. Falling Liquid Films. London: Springer. 2011.
- 5. *Mendez M.A., Scheid Benoit, Buchlin J-M.* Low Kapitza falling liquid films // Chemical Engineering Science. 2017. V. 170. P. 122–138.
- 6. Шкадов В.Я., Демехин Е.А. Волновые движения пленок жидкости на вертикальной поверхности (теория для истолкования экспериментов) // Успехи механики. 2006. Т. 4. № 2. С. 3–65.
- 7. Шкадов В.Я. Вопросы нелинейной гидродинамической устойчивости слоев вязкой жидкости, капиллярных струй и внутренних течений. Дисс. докт. физ.-мат. наук. Москва: Механико-математический ф-т МГУ им. М.В. Ломоносова, 1973.
- 8. *Koulago A.E., Parseghian D.* A propos d'une équation de la dynamique ondulatoire dans les films liquids // Journal de Phisique III. France. 1995. V. 5. P. 309–312.
- 9. *Непомнящий А.А.* Устойчивость волновых режимов в пленке, стекающей по наклонной плоскости // Известия АН СССР. МЖГ. 1974. № 3. С. 28–34.
- 10. *Demekhin E., Tokarev G., Shkadov V.* Hierarchy of bifurcation of space-periodic structures in a non linear model of active dissaipative media // Physica D. 1991. P. 338–361.
- 11. *Бунов А.В., Демехин Е.А., Шкадов В.Я*. О неединственности нелинейных волновых решений в вязком слое // ПММ. 1984. Т. 48. № 4. С. 691–696.
- 12. Nguyen L.T., Balakotaiah V. Modeling and experimental studies of wave evolution on free falling viscous films // Phys. Fluids. 2000. V. 12. № 9. P. 2236–2256.
- 13. *Meza C.E., Balakotaiah V.* Modeling and experimental studies of large amplitude waves on vertically falling films // Chemical Engineering Science. 2008. V. 63. P. 4704–4734.
- 14. *Ruyer-Quil C., Manneville P.* Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations // Phys. Fluids. 2002. V. 14. P. 170–183.
- 15. *Капица П.Л., Капица С.П.* Волновые течения тонких слоев вязкой жидкости // ЖЭТФ. 1949. Т. 19. № 2. С. 105–120.
- 16. Алексеенко С.В., Накоряков В.Е., Покусаев Б.Г. Волновое течение пленок жидкости // Новосибирск: Наука, СО, 1992.

- 17. *Сисоев Г.М., Шкадов В.Я.* Развитие доминирующих волн из малых возмущений в стекающих пленках вязкой жидкости // Изв. РАН. МЖГ. 1997. № 6. С. 30–41.
- 18. Белоглазкин А.Н., Шкадов В.Я., Кулаго А.Е. Предельные волновые режимы при пространственном и временном развитии возмущений в стекающей пленке жидкости // Вестник Московского университета, сер. 1. Матем. Механ. 2019. № 3. С. 59–65.
- 19. *Nosoko T., Miyara A*. The evolution and subsequent dynamics of waves on a vertically falling liquid film // Phys. Fluids. 2004. V. 16. № 4. P. 1118–1126.
- 20. Алексюк А.И., Шкадов В.Я. Исследование нестационарных течений с поверхностью раздела методом численного решения уравнений Навье-Стокса // Известия РАН. Мех. жидкости и газа. 2020. № 3. С. 26–35.
- 21. *Panga M.K.R., Mudunuri R.R., Balakotaiah V.* Long-wavelength equation for vertically falling films // Phys. Rev. E. 2005. V. 71. 036310.