УДК 533.6.011.8

ТЕПЛОВОЙ ЭФФЕКТ ПОВЕРХНОСТНОГО КАТАЛИЗА В ДОЗВУКОВЫХ СТРУЯХ ДИССОЦИИРОВАННОГО ВОЗДУХА: ЭКСПЕРИМЕНТ НА ВЧ-ПЛАЗМОТРОНЕ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

© 2020 г. С. А. Васильевский^{*a*}, А. Н. Гордеев^{*a*}, А. Ф. Колесников^{*a*,*}, А. В. Чаплыгин^{*a*}

^а Институт проблем механики им. А.Ю. Ишлинского РАН, Москва, Россия

**E-mail: koles@ipmnet.ru* Поступила в редакцию 03.02.2020 г. После доработки 12.03.2020 г. Принята к публикации 12.03.2020 г.

На 100-кВт-ом инлукционном плазмотроне ВГУ-4 провелены эксперименты по теплообмену в дозвуковых струях диссоциированного воздуха. При давлении в барокамере 50 и 100 гПа и мощности ВЧ-генератора 30-70 кВт измерены тепловые потоки к водоохлаждаемым поверхностям меди, серебра, тантала, бериллия, ниобия, золота, молибдена и кварца в критической точке цилиндрической модели диаметром 50 мм с плоским носком и скругленной кромкой. При этих же давлениях и мощности ВЧ-генератора 45 и 64 кВт исследован конвективный нагрев образца из спеченного карбида кремния в интервале температуры поверхности 1720-1910 К. Продемонстрирован эффект определяющего влияния каталитичности поверхности по отношению к рекомбинации атомов азота и кислорода на тепловой поток. Для условий экспериментов выполнено численное моделирование течений воздушной плазмы в разрядном канале плазмотрона, обтекания цилиндрической модели дозвуковыми струями и теплопередачи к критической точке модели. Из сравнения экспериментальных и расчетных данных по тепловым потокам к поверхностям металлов ($T_w = 300$ K), кварца ($T_w = 572 - 722$ K) и карбида кремния ($T_w = 1720 - 1910$ K) установлена количественная шкала каталитичности исследованных материалов по отношению к гетерогенной рекомбинации атомов азота и кислорода.

Ключевые слова: ВЧ-плазмотрон, диссоциированный воздух, дозвуковая струя, теплообмен, каталитическая рекомбинация атомов азота и кислорода

DOI: 10.31857/S0568528120050138

Вопросы о роли гетерогенной рекомбинации атомов в аэродинамическом нагреве поверхности при обтекании высокоэнтальпийными потоками воздуха являются весьма актуальными [1–5]. Вероятности гетерогенной рекомбинации атомов и коэффициенты аккомодации энергии диссоциации при низких давлениях могут определяться с помощью диффузионно-кинетических методов [2]. Современные подходы основаны на измерениях относительных концентраций атомов в пограничном слое у поверхности модели методами оптической эмиссионной спектроскопии и актинометрии [6]; на измерениях концентраций атомов методом электронно-магнитного резонанса [7], на регистрации относительных концентраций атомов методом резонансно-флуоресцентной спектроскопии [8]. Поскольку диффузионно-кинетические методы не позволяют моделировать условия натурного нагрева поверхностей в высокоэнтальпийных потоках газов, остается открытым вопрос о корректности использования коэффициентов гетерогенной рекомбинации атомов, полученных в рамках этих методов, в компьютерных кодах, предназначенных для моделирования аэротермодинамики тел при входе в атмосферы Земли и Марса.

Задачи определения каталитических характеристик материалов и покрытий тепловой защиты Space Shuttle и БУРАНА были решены с помощью соответственно электродуговых [9, 10] и индукционных плазмотронов [11–14]. Для лабораторных исследований теплообмена потоков диссоциированных газов с поверхностью, включая тепловой эффект рекомбинации атомов при аэродинамическом нагреве, наиболее эффективны высокоэнтальпийные газодинамические установки с индукционным нагревом, обеспечивающим исключительную чистоту газовой сре-

ды [5, 11–21]. Индукционный ВЧ-плазмотрон ВГУ-4 мощностью 100 киловатт (ИПМех РАН) [15] предоставляет широкие возможности для исследований влияния химических газофазных и поверхностных реакций на теплообмен в до- и сверхзвуковых струях диссоциированного воздуха [22], азота [23] и углекислого газа [24, 25], а также для верификации компьютерных программ. Характерно, что для восстановления эффективных коэффициентов рекомбинации атомов из экспериментальных данных по тепловым потокам к исследуемой поверхности, требуется численное моделирование вихревых течений плазмы в разрядном канале ВЧ-плазмотрона и струйного обтекания моделей различной геометрии потоками химически реагирующих диссоциированных газов [22, 26].

Данная работа продолжает исследования теплообмена дозвуковых струй диссоциированных молекулярных газов с охлаждаемыми поверхностями металлов, кварца и высокотемпературного карбида кремния [11, 22, 24–27, 30–32]. Цель работы — получение и численный анализ новых экспериментальных данных по теплообмену водоохлаждаемых поверхностей металлов, кварца и высокотемпературной поверхности карбида кремния с дозвуковыми струями частично диссоциированного воздуха в ВЧ-плазмотроне ВГУ-4 при давлениях 50 и 100 гПа. При таких давлениях течение в дозвуковой высокоэнтальпийной струе воздуха близко равновесному, что обеспечивает возможность корректного восстановления параметров набегающего потока, в частности скорости и энтальпии, и определения эффективных коэффициентов каталитической рекомбинации атомов азота и кислорода γ из сопоставления расчетных и экспериментальных данных по тепловым потокам к поверхности модели в точке торможения потока.

В окрестности критической точки модели измерены тепловые потоки к поверхностям меди, серебра, тантала, молибдена, бериллия, ниобия, золота, кварца и к нагретому образцу спеченного SiC, а также скоростные напоры. Для условий экспериментов численно исследовано течение воздушной плазмы в цилиндрическом разрядном канале диаметром 80 мм, дозвуковое обтекание модели струями диссоциированного воздуха и рассчитаны карты тепловых потоков. По этим картам и измеренным тепловым потокам определены эффективные коэффициенты каталитической рекомбинации атомов азота и кислорода γ (полагая, что $\gamma_N = \gamma_0$) на охлаждаемых поверхностях металлов и кварца, а также на высокотемпературной поверхности образца SiC.

1. ЭКСПЕРИМЕНТЫ ПО ТЕПЛООБМЕНУ НА ОХЛАЖДАЕМЫХ ПОВЕРХНОСТЯХ МЕТАЛЛОВ И КВАРЦА

Эксперименты по теплообмену охлаждаемых поверхностей металлов и кварца на ВЧ-плазмотроне ВГУ-4 проведены в дозвуковых струях высокоэнтальпийного воздуха, истекающих из разрядного канала диаметром 80 мм, в диапазоне мощности ВЧ-генератора по анодному питанию $N_{ap} = 30-70$ кВт при давлении в барокамере $P_s = 50$, 100 гПа и расходе воздуха Q = 2.4 г/с. Использовалась водоохлаждаемая цилиндрическая модель диаметром 50 мм с плоским носком и скругленной кромкой (евромодель). Для измерений теплового потока в носовой части модели устанавливались проточные стационарные датчики (калориметры) с тепловоспринимающей поверхностью из меди (Cu), серебра (Ag), тантала (Ta), молибдена (Mo), бериллия (Be), ниобия (Nb), золота (Au) и кварца высокой химической чистоты (SiO₂).

Диаметр тепловоспринимающей поверхности калориметров составлял 13.8—13.9 мм. Толщины металлических стенок у проточных калориметров равны 1 мм, у двух кварцевых датчиков толщины стенок составляли 0.61 и 0.81 мм. Металлические внешние поверхности калориметров перед каждым экспериментом полировались и обрабатывались спиртом. Массовый расход охлаждающей воды в калориметрах измерялся ротаметром, калибровка которого выполнялась непосредственно перед экспериментом. Разность температур охлаждающей воды на выходе из калориметра и на входе в него измерялась экранированной дифференциальной термопарой хромель-алюмель.

Тепловые потоки к охлаждаемым поверхностям меди, предварительно окисленной в течение 5 мин в струе воздушной плазмы, серебра, тантала, молибдена, бериллия, ниобия, золота и кварца измерялись при расположении модели вдоль оси струи на расстоянии 60 мм от среза цилиндрического разрядного канала ВЧ-плазмотрона диаметром 80 мм. На рис. 1 для одного из режимов представлены записи от времени мощности ВЧ-генератора, давления в барокамере и теплового потока к поверхности медного водоохлаждаемого калориметра. Значение теплового потока устанавливается в течение 5 мин, когда на поверхности меди образуется устойчивая оксидная пленка. На других металлах и кварце тепловые потоки выходили на стационарные значения за время около 30 с.

Рис. 1. Зависимости от времени теплового потока к поверхности медного водоохлаждаемого калориметра (*1*), мощности ВЧ-генератора (*2*) и давления в барокамере (*3*).

Рис. 2. Тепловые потоки к поверхностям металлов и кварца в критической точке модели при давлении 50 гПа. I - Ag; 2 - Cu; 3 - Nb; 4 - Au; 5 - Ta; 6 - Be; 7 - Mo; 8 и 9 - кварц с толщинами датчиков 0.61 и 0.81 мм.

Результаты измерений тепловых потоков к поверхностям металлов и кварца в зависимости от мощности ВЧ-генератора и давления в барокамере установки представлены на рис. 2 и 3.

Наибольшие тепловые потоки зарегистрированы на датчиках из серебра и меди. Вторая группа материалов по уровню тепловых потоков — золото, тантал, бериллий и ниобий. Реализуемые потоки для них ниже, чем у меди и серебра. Наименьший тепловой поток среди металлов при давлении 50 гПа зарегистрирован на поверхности молибдена. Причем с ростом давления тепловой поток на молибдене становится близким по значению к тепловым потокам, зарегистриро-

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 5 2020

Рис. 3. Тепловые потоки к поверхностям металлов и кварца в критической точке модели при давлении 100 гПа, обозначения как на рис. 2.

ванным для тантала и бериллия. Минимальные тепловые потоки реализованы на поверхности кварца.

Давление торможения на оси дозвуковой струи воздуха на расстоянии 60 мм от среза разрядного канала измерялось водоохлаждаемым датчиком давления, имеющем форму цилиндра с плоским торцом диаметром 20 мм с приемным отверстием диаметром 12 мм. Скоростные напоры определялись как разность давления торможения и давления на стенке барокамеры.

2. ЭКСПЕРИМЕНТЫ ПО НАГРЕВУ ОБРАЗЦОВ SiC

Эксперименты по конвективному нагреву и определению интегральной степени черноты спеченного карбида кремния проводились на образцах, имеющих форму дисков с диаметром лицевой поверхности 26.5 мм и конической боковой поверхностью с углом полураствора 30°, толщина образцов составляла 3 мм. Перед экспериментом шлифованная поверхность образцов подвергалась пескоструйной обработке с целью сделать ее матовой. Образцы устанавливались в евромодель (ESA standard model), изготовленную из того же материала и обеспечивающую получение равномерного распределения температуры по лицевой поверхности образца. Тыльная сторона образца теплоизолировалась ватой из нитевидных кристаллов карбида кремния.

Измерение температуры поверхности в центре лицевой поверхности образца осуществлялось пирометром "Mikron M-770S", работающим в режиме пирометра спектрального отношения, который определяет цветовую температуру образца. Точность измерений пирометра в диапазоне температур 1000–3000°С составляет ± 15 °С. Для серых тел, то есть тел, излучательная способность которых не зависит от длины волны, цветовая температура совпадает с истинной.

Регистрация полей температуры на лицевой поверхности образца осуществляется с помощью термовизора "Тандем VS-415U", прокалиброванного по модели абсолютно черного тела в диапазоне температур 700–2300°С (четыре калибровки на различные диапазоны температур при использовании разных светофильтров). Используется калибровка для стандартной пирометрической длины волны 0.9 мкм, инструментальная погрешность измерений не превышает $\pm 15^{\circ}$ С. В показания термовизора вносятся поправки на пропускание кварцевого оптического окна испытательной камеры (0.93) и излучательную способность (степень черноты) материала SiC, которая может корректироваться в процессе эксперимента с шагом 0.05 таким образом, чтобы получить совпадение показаний пирометра и термовизора. Фактически, термовизор выдает поле температур, полученных с помощью многоточечного монохроматического пирометра с введенными по-

правками на пропускание оптического окна, и степень черноты образца.

На основании сравнения данных, полученных с помощью пирометра спектрального отношения и термовизора, может быть определена спектральная излучательная способность образца SiC и ее изменение в процессе испытания. Установлено, что значение спектральной степени черноты 0.7 на рабочей длине термовизора 0.9 мкм обеспечивает хорошее согласие температур, измеренных термовизором и пирометром спектрального отношения.

В экспериментах по определению излучательных свойств материала SiC радиационная температура образца вблизи критической точки измеряется пирометром полного излучения "Кельвин", прокалиброванным по модели абсолютно черного тела в диапазоне температур 1100– 2300°С. Пирометры "Кельвин-2300" и "Mikron M770S" располагаются бок о бок, для того чтобы угол визирования и расстояние до объекта (1 м) у них были одинаковыми.

По определению, радиационная температура *Т_{rad}* находится из формулы

$$sT_{rad}^4 = e_t sT^4$$

С учетом того, что материал SiC близок к серому телу, цветовая температура T_c , определяемая пирометром спектрального отношения, равна истинной температуре T, для интегральной степени черноты имеем

$$e_t = \left(T_{rad}/T_{\rm c}\right)^4$$

Было выполнено 7 экспериментов по определению интегральной степени черноты образцов из спеченного карбида кремния. Весь массив полученных данных в интервале температур поверхности 1570—1870 К хорошо аппроксимируется постоянным значением интегральной степени черноты 0.83 ± 0.06 .

Тепловой поток в центре образца SiC определялся по формуле

$$q_w = e_t s T_w^+ + q_{\rm in}$$

где q_{in} — тепловой поток с тыльной поверхности образца, измеряемый калориметром. Величины q_{in} составили 5—7% от значений q_w . Экспериментальные данные для образцов SiC в части температур T_w и тепловых потоков q_w показаны точками на картах тепловых потоков (рис. 4—7).

3. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

Численное моделирование дозвуковых течений плазмы и диссоциированных газов в индукционных ВЧ-плазмотронах для условий экспериментов составляет необходимый этап исследования, включающий определение энтальпии и скорости потока в струе, натекающей на исследуемую модель, вычисление эффективной каталитичности поверхности исследуемого материала и экстраполяцию данных, полученных на основе эксперимента, на условия входа затупленного тела в атмосферу [33–35]. Для рассматриваемых здесь условий экспериментов на плазмотроне ВГУ-4 в дозвуковых режимах течения высокоэнтальпийного воздуха задача численного моделирования разделена на следующие три части, соответствующие трем основным областям течения:

1) осесимметричное равновесное течение индукционной плазмы воздуха с закруткой в разрядном канале;

2) осесимметричное равновесное течение в дозвуковой струе высокоэнтальпийного воздуха, обтекающей испытываемую цилиндрическую модель;

3) течение диссоциированного воздуха и теплопередача в химически неравновесном пограничном слое конечной толщины на оси симметрии в окрестности критической точки модели.

Отметим, что излучение плазмы в разрядном канале и в истекающей струе при рассматриваемых условиях не является существенным для теплообмена [36] и в данных расчетах не учитывалось.

Численные расчеты течений нагретого в ВЧ-плазмотроне химически реагирующего воздуха для указанных трех областей реализованы с помощью компьютерных программ Alpha, Beta и Gamma.

Течение плазмы в цилиндрическом разрядном канале плазмотрона ВГУ-4 предполагается стационарным, ламинарным, химически и термически равновесным. Численное моделирование течения воздушной равновесной плазмы в этой области проведено с помощью программы Alpha на основе решения уравнений Навье–Стокса, записанных в цилиндрической системе ко-

Рис. 4. Карта тепловых потоков и экспериментальные данные для режима P = 50 гПа, $N_{ap} = 45$ кВт. 1-7 – расчеты q_w с $\gamma_w = 1.0, 0.1, 0.0316, 0.01, 0.00316, 0.001, 0.0; 8 – расчет для химически замороженного пограничного слоя и некаталитической поверхности; 9, <math>10$ – равновесный радиационный поток от критической точки, 9 – для абсолютно черного тела $\varepsilon_t = 1, 10$ – для $\varepsilon_t = 0.8$; экспериментальные значения тепловых потоков к поверхности металлов, кварца и карбида кремния (SiC): 11 – Ag; 12 – Cu; 13 – Nb; 14 – Au; 15 – Ta; 16 – Be; 17 – Mo; 18 и 19 – потоки к поверхностям двух кварцевых датчиков толщиной d = 0.61 и 0.81 мм, 20 – поток к поверхности SiC.

Рис. 5. Карта тепловых потоков для режима P = 50 гПа, $N_{ap} = 64$ кВт, обозначения – см. рис. 4.

ординат, с учетом тангенциальной закрутки потока. Уравнение энергии записано через энтальпию и включает источниковый член, учитывающий Джоулево тепловыделение в плазме. В два уравнения сохранения импульса, соответствующие продольной и радиальной компонентам скорости, входят источниковые члены, выражающие силу Лоренца. Третье уравнение сохранения импульса, соответствующее тангенциальной скорости, не содержит источниковых членов ввиду осевой симметрии задачи.

Рис. 6. Карта тепловых потоков для режима P = 100 гПа, $N_{ap} = 45$ кВт, обозначения – см. рис. 4.

Рис. 7. Карта тепловых потоков для режима P = 100 гПа, N_{ap} = 64 кВт, обозначения – см. рис. 4.

Уравнения Навье—Стокса решаются совместно с уравнением для усредненной комплексной амплитуды E_{θ} тангенциальной компоненты вихревого электрического поля, создаваемого током в индукторе. В отличие от [22, 26], где использовался упрощенный квазиодномерный вариант уравнения Максвелла, здесь уравнение для электрического поля решается в полной двумерной постановке [37], включая дальнюю расчетную область вне канала. Найденная осредненная по времени комплексная амплитуда электрического поля E_{θ} позволяет определить соответствующие источниковые члены.

Для решения уравнений Навье—Стокса используется модифицированный метод SIMPLE [38]. Для улучшения сходимости итераций все искомые функции определяются с использованием метода нижней релаксации. Величина тока в индукторе, необходимая для решения краевой задачи

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 5 2020

для уравнения Максвелла, находилась в ходе итераций по заданной мощности N_{pl}, вкладываемой в плазму.

Обтекание модели дозвуковой струей диссоциированного воздуха, истекающей из разрядного канала в барокамеру плазмотрона, моделируется с помощью численного решения уравнений Навье—Стокса по программе Beta. Течение считается стационарным, осесимметричным, ламинарным и равновесным. Решаются уравнения Навье—Стокса, записанные в цилиндрической системе координат. Для численного решения используются тот же модифицированный метод SIMPLE [38] и метод нижней релаксации. Используется разностная сетка, сильно неравномерная в продольном и в радиальном направлениях, позволяющая обеспечить достаточно много точек сетки внутри относительно тонкого пограничного слоя вблизи лобовой поверхности модели.

В ядре дозвуковой струи диссоциированного воздуха от среза разрядного канала до внешней границы пограничного слоя перед лобовой поверхностью модели температура и давление меняются сравнительно мало и при давлениях около 50 гПа и выше течение здесь близко к равновесному [26]. Эта область ядра струи перед моделью и представляет основной интерес для практических целей. Расчет в остальной части второй области, т.е. на периферии струи вплоть до стенок барокамеры и вниз по потоку от лобовой поверхности модели, проводится с целью обеспечить выполнение корректных граничных условий на границах области – заданную комнатную температуру и нулевые значения компонент скорости на стенке барокамеры и поверхности модели, и так называемые "мягкие" граничные условия на границе области вниз по потоку. Из численного решения второй задачи определяются безразмерные параметры, включая толщину пограничного слоя. Эти параметры необходимы для дальнейшего расчета течения в пограничном слое окрестности точки торможения.

Расчет течения и теплопередачи в третьей области основан на одномерной модели пограничного слоя конечной толщины [26, 27] для химически неравновесного диссоциированного воздуха, состоящего из пяти компонент N_2 , O_2 , NO, N и O. Эта модель учитывает толщину пограничного слоя и завихренность течения на его внешней границе с помощью безразмерных параметров, определяемых заранее с помощью программы Beta. Учитываются неравновесные химические реакции в газовой фазе, а также каталитические реакции рекомбинации атомов N и O на поверхности. Предполагается, что на внешней границе пограничного слоя химический состав равновесный, т.е. концентрации компонент там определяются из условия химического равновесия по заданным значениям давления и температуры (или энтальпии). Использование этой одномерной модели позволяет отделить задачу расчета теплопередачи к критической точке модели от расчета внешнего дозвукового течения во второй области, описываемого уравнениями Навье—Стокса.

Расчет течения в пограничном слое и теплового потока к критической точке модели реализован в программе Gamma. Эта программа позволяет проводить автономные многопараметрические расчеты для различных значений эффективного коэффициента рекомбинации атомов на поверхности и ее температуры для заданных условий эксперимента. Численное решение системы уравнений пограничного слоя устанавливается с помощью итераций с использованием метода нижней релаксации, на каждой итерации для дискретизации уравнений используется разностная схема 4-го порядка аппроксимации [39].

Константы скоростей газофазных прямых и обратных реакции для большинства случаев взяты из [28]. Для реакции диссоциации азота, когда третья частица – молекула или атом азота, данные взяты из [29]. Предполагалось, что каталитическая рекомбинация атомов на поверхности (S) описывается простыми реакциями первого порядка N + N + S \rightarrow N₂ + S, O + O + S \rightarrow O₂ + S, a массовые диффузионные потоки атомов к поверхности пропорциональны концентрациям атомов (модель Гулардовского типа [27])

$$J_N = -K_{WN}\rho c_N, \quad J_O = -K_{WO}\rho c_O$$

Здесь р — плотность газа, c_N , c_O — массовые концентрации атомов N и O. Константы скорости рекомбинации K_{wN} и K_{wO} выражаются через эффективный коэффициент рекомбинации γ_w .

$$K_{\rm wN,O} = \frac{2\gamma_{\rm w}}{2 - \gamma_{\rm w}} \sqrt{\frac{R_{\rm A}T_{\rm w}}{2\pi m_{\rm N,O}}}$$

<i>Р</i> , гПа	<i>N_{ap}</i> , кВт	q_{wmax} , Bt/cm ²	<i>Р_{dyn}</i> , Па	<i>h_e,</i> МДж/кг	<i>V_c</i> , м/с	<i>T_e</i> , K	$C_{ m Ne}$	C _{Oe}
50	45	159	63	32.8	278	6437	0.587	0.232
	64	221	107	42.1	427	8144	0.762	0.233
100	45	147	26	31.2	125	6545	0.538	0.232
	64	219	48	41.7	201	8053	0.755	0.233

Таблица 1

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ И СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

Одна из основных практических задач численного моделирования — восстановление энтальпии и характерной скорости дозвукового потока, набегающего на модель, по измеряемым в эксперименте параметрам. В рамках разработанной в [26, 27] методики в качестве таких параметров используются следующие величины: q_{ws} — тепловой поток к эталонному высококаталитическому материалу; P_{dyn} — скоростной напор; P_s — статическое давление в барокамере; Q — массовый расход газа в разрядном канале ВЧ-плазмотрона.

Для выбора эталонного высококаталитического материала измеряются тепловые потоки в критической точке водоохлаждаемой модели к поверхностям различных металлов. Ранее в дозвуковых струях диссоциированного воздуха и азота наибольшие значения тепловых потоков получены на меди [11, 27], в дозвуковых струях углекислого газа — на поверхности серебра [24, 25]. В настоящей работе в дозвуковых струях диссоциированного воздуха наибольшие (причем близкие) значения тепловых потоков получены на водоохлаждаемых поверхности серебра [24, 25]. В настоящей работе в дозвуковых струях диссоциированного воздуха наибольшие (причем близкие) значения тепловых потоков получены на водоохлаждаемых поверхностях меди и серебра. Соответственно для расчетного восстановления энтальпии потока диссоциированного воздуха в качестве эталонного высококаталитического материала, для которого коэффициент γ_w предполагается равным 1.0, принимались как медь, так и серебро.

Указанные четыре параметра (q_{ws} , P_{dyn} , P_s , Q) используются для восстановления параметров набегающего потока, а именно энтальпии на внешней границе пограничного слоя h_e и характерной скорости набегающего потока V_c , в рамках сделанных выше предположений, в том числе предположения о химическом равновесии на внешней границе пограничного слоя. Параметры набегающего потока находятся итерационным путем с помощью программы Gamma из условия равенства экспериментально измеренного теплового потока к холодной поверхности эталонного материала (меди или серебра) и расчетного теплового потока к идеально каталитической поверхности $q_{ws} = q_{wcalc}(h_e, T_w, \gamma_w = 1)$. Одновременно с энтальпией h_e вычисляются также температура и равновесный химический состав на внешней границе пограничного слоя. Характерная скорость V_c определяется по измеренному скоростному напору P_{dyn} в ходе итераций по програм-

ме Gamma из эмпирического соотношения $P_{dyn} = k_p \times 0.5 \rho_e V_c^2$, где ρ_e – плотность газовой смеси на внешней границе пограничного слоя, k_p – постоянная, равная 1.1 в данных расчетах. В табл. 1 приведены рассчитанные по экспериментальным данным с помощью программы Gamma значения энтальпии h_e , характерной скорости V_c , температуры T_e и массовой концентрации атомов N и O на внешней границе пограничного слоя. Расчеты проведены для двух значений мощности $N_{ap} = 45$ и 64 кВт, соответствующие значения мощности, вкладываемой в плазму $N_{pl} = 29$ и 40.2 кВт, к.п.д. плазмотрона $Eff = N_{pl}/N_{ap} = 0.64$ и 0.63 соответственно, к.п.д. определялся экспериментально, его зависимостью от давления здесь можно пренебречь.

После определения параметров набегающего потока для условий экспериментов рассчитаны карты тепловых потоков и получены каталитические характеристики поверхности испытанных материалов – меди, предварительно окисленной в течение 5 мин в струе воздушной плазмы, металлов Ag, Cu, Nb, Au, Ta, Be, Mo, кварца и нагретой поверхности SiC. Карты тепловых потоков $q_w = q_{wcalc}(T_w, \gamma_w)$ для четырех режимов экспериментов показаны на рис. 4–7. Кривые 1-7 – расчеты q_w с заданными значениями эффективного коэффициента $\gamma_w = 1.0, 0.1, 0.0316, 0.01, 0.00316, 0.001, 0.0;$ кривая 8 – расчет для химически замороженного пограничного слоя и некаталитической поверхности $\gamma_w = 0$. Кривые 9, 10 – равновесный радиационный поток от критической точки, 9 – для абсолютно черного тела ($\varepsilon_t = 1$), $10 - \varepsilon_t = 0.8$. Символами 11–20 обозначены экспериментальные значения тепловых потоков к поверхностям металлов, к поверхностям двух кварце-

<i>Р</i> , гПа	<i>N_{ap}</i> , кВт	Эффективный коэффициент ү _w										
		Ag	Cu	Nb	Au	Та	Be	Мо	SiO_2 d = 0.61 mm	SiO ₂ d = 0.81 мм	SiC	
50	45	1.0	0.52	8.0e-3	7.6e-3	4.5e-3	4.4e-3	2.2e-3	4.1e-3	3.0e-3	2.5e-3	
	64	1.0	0.47	1.0e-2	9.4e-3	6.1e-3	5.0e-3	2.6e-3	4.1e-3	3.4e-3	2.7e-3	
100	45	0.11	1.0	4.1e-3	3.0e-3	0	0	0	4.8e-4	2.8e-4	2.2e-3	
	64	0.17	1.0	6.8e-3	4.8e-3	1.9e-4	5.1e-5	0	1.2e-3	8.9e-4	1.6e-3	

Таблица 2

Таблица 3

D nHo	N KBT	d=0.	61 мм	d = 0.81 mm		
<i>P</i> , 111a	<i>N_{ap}</i> , KD1	$q_{w\rm SiO2},{ m Bt/cm^2}$	$T_{w\rm SiO2},{ m K}$	$q_{w\rm SiO2},{ m Bt/cm^2}$	T_{wSiO2} , K	
50	45	73.7	577.6	64.8	621.6	
50	64	91.7	642.7	84.2	712.5	
100	45	72.3	572.3	65.9	626.7	
100	64	95.6	656.8	86.2	721.6	

вых датчиков толщиной d = 0.61 и 0.81 мм, и к поверхности образца из спеченного карбида кремния (SiC).

В двух режимах при P = 50 гПа следует отметить близкое расположение кривых 7 и 8, соответствующих $\gamma_w = 0$, откуда следует, что пограничные слои в данных условиях при $T_w \ge 700$ К химически замороженные, т.е. газофазная рекомбинация атомов N и O дает несущественный вклад в тепловой поток и главный фактор конвективной теплопередачи — гетерогенная рекомбинация атомов.

Коэффициенты γ_w находились путем решения обратной задачи $q_{wm} = q_{wcalc}$ (h_e , T_{wm} , γ_w), где h_e – определенная ранее энтальпия потока, q_{wm} и T_{wm} – измеренные значения теплового потока и температуры поверхности конкретного материала, γ_w – определяемая итерационным методом величина эффективного коэффициента рекомбинации. Отметим, что получаемые на *i*-й итерации значения (q_{wcalc}^i , γ_w^i) – отдельные точки на S-образной кривой q_{wcalc} (γ_w). Рассчитанные таким образом значения γ_w для всех исследованных материалов и для всех режимов приведены в табл. 2.

Результаты расчетов температуры T_{wSiO2} поверхностей двух кварцевых датчиков толщиной d = 0.61 и 0.81 мм по экспериментально определенным тепловым потокам к их тепловоспринимающей поверхности q_{wSiO2} показаны в табл. 3. Для обоих датчиков площадь поверхности S = 1.506 см², расход охлаждающей воды $G_{water} = 6.49$ г/с.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Простая модель поверхностной рекомбинации атомов N и O с одним эффективным коэффициентом рекомбинации γ_w оказалась достаточной для описания всего массива экспериментальных данных для ряда металлов, кварца и спеченного карбида кремния. У всех металлов, за исключением меди, прослеживается явная тенденция к снижению γ_w при увеличении давления в два раза. При давлении 50 гПа серебро проявляет себя как абсолютно каталитичный материал, а при давлении 100 гПа таковым материалом является медь. С учетом того, что точность измерения тепловых потоков к охлаждаемой поверхности калориметра составляет ±5%, в условиях дозвукового обтекания диссоциированным воздухом как медь, так и серебро могут рассматриваться как стандартные высококаталитичные материалы. Существенно, что в интервале $\gamma_w = 0.1-1.0$ при $T_w = 300$ K изменения q_w меньше погрешности измерения теплового потока. Отметим, что по данным [40] для меди в потоке диссоциированного воздуха $\gamma_w = 0.15$, близкие значения для рекомбинации атомов O на меди $\gamma_w \approx 0.1$ получены в [41].

При обтекании сверхзвуковыми струями диссоциированного воздуха медь проявляет себя как средне каталитичный материал, причем соответствующее значение $\gamma_w \approx 0.1$ [42]. То есть значение $\gamma_w \approx 0.1$ при дозвуковом обтекании холодной поверхности ($T_w = 300$ K) диссоциированным воздухом соответствует высококаталитичному материалу, а при сверхзвуковом обтекании – средне каталитичному. Качественно эту разницу можно объяснить тем, что пограничный слой при сверхзвуковом обтекании значительно тоньше, чем при дозвуковом обтекании [2]. Поэтому в первом случае возбужденные молекулы, образовавшиеся на поверхности при рекомбинации атомов, уносят колебательную энергию во внешний поток. Во втором случае колебательно возбужденные молекулы тушатся при столкновениях в относительно толстом пограничном слое и выделяющаяся при этом энергия возвращается обратно к стенке, что учитывается в эффективном коэффициенте каталитической рекомбинации γ_w .

Данные табл. 2 хорошо согласуются с результатами [27], полученными при давлении 100 гПа на ВЧ-плазмотроне ВГУ-2 с разрядным каналом диаметром 60 мм на цилиндрической модели с плоским носком диаметром 30 мм по каталитичности меди ($\gamma_w = 1$), ниобия ($\gamma_w = 8 \times 10^{-3}$) и молибдена ($\gamma_w = 0$). Вместе с тем для меди настоящие данные существенно различаются с эффективными коэффициентами рекомбинации, полученными в [43] на ВЧ-плазмотроне при давлениях 15, 50, 100 и 200 гПа. Низкие значения коэффициента рекомбинации атомов на меди получены в других условиях в химическом реакторе с боковым рукавом [44]. Возможно, различие с данными [43] обусловлено разной подготовкой поверхности медных датчиков для измерений тепловых потоков. В настоящей работе перед экспериментом поверхность меди полировалась и предварительно тренировалась в потоке воздушной плазмы в течение 5 мин. Именно такой технологический подход обеспечивал реализацию максимальных тепловых потоков к поверхности окисленной меди, их высокую воспроизводимость и стабильные значения в течение длительного воздействия (до десятков минут).

Отметим, что полученные в [27] значения $\gamma_w = 6 \times 10^{-2}$ для серебра ниже настоящих данных, которые относятся к сильно окисленной поверхности серебра в результате ее тренировки в потоке диссоциированного воздуха в течение 5 мин. В течение этого времени значение измеряемого теплового потока в окрестности критической точки на модели выходило на стационарное значение.

У кварца очевидна явная зависимость эффективного коэффициента γ_w от давления, с увеличением давления в два раза γ_w уменьшается в 3–4 раза. По сравнению с предыдущими данными по рекомбинации атомов азота на кварце при давлении 100 гПа [23] настоящие значения γ_w в интервале температур 572–722 К практически на полпорядка меньше $\gamma_{wN} = 8 \times 10^{-3} - 1.6 \times 10^{-2}$ в интервале $T_w = 1070 - 1570$ К.

Установленная шкала каталитичности металлов и кварца Ag \approx Cu > Nb \approx Au > Ta \approx Be \approx SiO₂ > Mo качественно согласуется со шкалой, полученной в экспериментах по теплообмену металлов и кварца в сверхзвуковых недорасширенных струях диссоциированного воздуха [42]. При этом для всех материалов имеет место систематическое уменьшение значений γ_w , восстановленных по тепловым потокам в режимах сверхзвукового обтекания цилиндрических моделей диаметром 30 мм. Различие значений γ_w качественно объясняется неполной аккомодацией энергии, выделяющейся при гетерогенной рекомбинации атомов, в условиях обтекания поверхности модели сверхзвуковой струей диссоциированного воздуха.

Стабильное поведение в потоке воздушной плазмы и наиболее консервативные изменения γ_w в интервале $T_w = 1720-1910$ К по отношению к увеличению давления в два раза отмечаются на высокотемпературной поверхности образца SiC, причем явно видна тенденция к уменьшению γ_w при увеличении давления. Настоящие результаты показывают, что спеченный SiC является низкокаталитичным материалом вплоть до температур 1910 К. Это согласуется с данными [30–32] не только качественно, но и количественно. Так, для SiC в [30] при такой же стандартной геометрии эксперимента с евромоделью при давлениях 75 и 125 гПа и $T_w = 1770$ К было получено значение $\gamma_w = 3 \cdot 10^{-3}$, а по данным [32] при $T_w = 1650$ К и p = 170 гПа $\gamma_w = 4 \cdot 10^{-3}$. В эксперименте [32] использовался разрядный канал с коническим соплом диаметром 40 мм в выходном сечении и режим обтекания евромодели дозвуковой струей при низкой энтальпии 7.7 МДж/кг. Обобщая настоящие результаты и данные [30–32] для SiC можно заключить, что в области давлений 50–175 гПа и температур поверхности 1650–1910 К эффективный коэффициент рекомбинации атомов изменяется в пределах $\gamma_w = 2 \cdot 10^{-3} - 4 \cdot 10^{-3}$.

ЗАКЛЮЧЕНИЕ

В дозвуковых струях диссоциированного воздуха исследован теплообмен в критической точке водоохлаждаемой цилиндрической модели диаметром 50 мм с плоским носком и скругленной кромкой при давлениях в барокамере 50 и 100 гПа и мощности ВЧ-генератора в диапазоне 30-70 кВт. Измерены тепловые потоки к волоохлажлаемым поверхностям мели, серебра, тантала, молибдена, бериллия, ниобия, золота, кварца и высокотемпературной поверхности карбида кремния. В дозвуковых режимах обтекания модели струями диссоциированного воздуха продемонстрирован эффект влияния каталитичности поверхности по отношению к рекомбинации атомов N и O на тепловой поток.

Для условий экспериментов при давлениях 50, 100 гПа и мошности ВЧ-генератора 45, 64 кВт проведено численное моделирование течений равновесной воздушной плазмы в разрядном канале плазмотрона и в высокоэнтальпийной дозвуковой струе, обтекающей модель. С помощью численных расчетов химически неравновесного диссоциированного пограничного слоя конечной толщины, по экспериментальным данным (тепловой поток к водоохлаждаемой поверхности эталонного высококаталитичного материала, скоростной напор) восстановлены параметры дозвуковых потоков диссоциированного воздуха, набегающих на модель, — энтальпия h_e на внешней границе пограничного слоя и характерная скорость V_c на срезе разрядного канала ВЧ-плазмотрона. По экспериментальным данным (тепловой поток к поверхности материала, температура поверхности) определены эффективные коэффициенты каталитической рекомбинации атомов азота и кислорода γ_w на поверхности исследованных материалов — меди, серебра, тантала, молибдена, бериллия, ниобия, золота, кварца и высокотемпературной поверхности SiC. Установлено, что шкала каталитичности рассмотренных металлов и кварца качественно соглассется со шкалой, полученной для этих материалов ранее в сверхзвуковых струях диссоциированного воздуха. В рассмотренных режимах обтекания дозвуковыми струями диссоциированного воздуха охлаждаемые поверхности меди и серебра ($T_w = 300$ K) могут рассматриваться как эталонные абсолютно каталитичные поверхности по отношению к рекомбинации атомов N и O, тогда как в сверхзвуковых потоках диссоциированного воздуха медь и серебро проявляют себя как среднекаталитичные материалы. Подтверждено, что молибден ($T_w = 300$ K), кварц ($T_w = 572 - 722$ K) и карбид кремния ($T_w = 1720 - 1910$ K) относятся к низкокаталитичным материалам в дозвуковых потоках диссоциированного воздуха.

Данная работа выполнена в рамках Госзаданий № АААА-А20-120011690135-5 при частичной поддержке грантов РФФИ № 19-01-00056.

СПИСОК ЛИТЕРАТУРЫ

- 1. Goulard R. On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer // Jet Propulsion. 1958. V. 28 (11). P. 737.
- 2. Беркут В.Д., Дорошенко В.М., Ковтун В.В., Кудрявцев Н.Н. Неравновесные физико-химические процессы в гиперзвуковой аэродинамике. М.: Энергоатомиздат, 1994. 400 с.
- 3. Ковалев В.Л., Колесников А.Ф. Экспериментальное и теоретическое моделирование гетерогенного катализа в аэротермохимии (обзор) // Изв. РАН. МЖГ. 2005. № 5. С. 3–31.
- 4. Massuti-Ballester B., Pidan S., Herdrich G., Fertig M. Recent catalysis measurements at IRS // Advances in Space Research. 2015. V. 56. Iss.4. P. 742.
- 5. Васильевский С.А., Гордеев А.Н., Колесников А.Ф. Локальное моделирование аэродинамического нагрева поверхности затупленного тела в дозвуковых высокоэнтальпийных потоках воздуха: теория и эксперимент на ВЧ-плазмотроне // Изв. РАН. МЖГ. 2017. № 1. С. 160-167.
- 6. Balat-Pichelin M., Badie J.M., Berjoan R., Boubert P. Recombination Coefficient of Atomic Oxygen on Ceramic Materials under Earth Re-entry Conditions by Optical Emission Spectroscopy // Chemical Physics. 2003. V. 291. P. 181.
- 7. Холодков И.В., Холодкова Н.В., Смирнов С.А. Гетерогенная рекомбинация атомов кислорода на поверхности алюминиевой фольги в условиях низкотемпературной плазмы // ТВТ. 2016. Т. 54. № 5. С. 676.
- 8. Александров Е.Н., Жестков Б.Е., Козлов С.Н. Одновременное определение вероятности рекомбинации атомов азота и кислорода на кварце // ТВТ. 2014. Т. 52. № 1. С. 45.
- 9. Scott C.D. Catalytic Recombination of Nitrogen and Oxygen on High Temperature Reusable Surface Insulation / Ed. by A.L. Crosbie, V. 77. AIAA Progress in Astronautics and Aeronautics: Aerothermodynamics and Planetary Entry, AIAA, New York, 1981. P. 192-212.
- 10. Steward D.A., Chen Y.-K., Bamford D.J., Romanovsky A.B. Predicting Material Surface Catalytic Efficiency Using Arc-Jet Tests. AIAA 95-2013, June 1995.

- 11. Васильевский С.А., Колесников А.Ф., Якушин М.И. Определение эффективных вероятностей гетерогенной рекомбинации атомов в условиях влияния на тепловой поток газофазных реакций // ТВТ. 1991. Т. 29. № 3. С. 521.
- 12. *Gordeev A.N., Kolesnikov A.F., Yakushin M.I.* An Induction Plasma Application to "Buran's" Heat Protection Tiles Ground Tests // SAMPE J. 1992. V. 28. № 3. P. 27–31.
- Залогин Г.Н., Землянский Б.А., Кнотько В.Б., Кузьмин Л.А., Лунев В.В., Мурзинов И.Н., Румынский А.Н. Высокочастотный плазмотрон – установка для исследований аэрофизических проблем с использованием высокоэнтальпийных газовых потоков // Космонавтика и ракетостроение. Калининград, МО: Изд-во ЦНИИМаш, 1994. Вып. 2. С. 22–32.
- 14. Власов В.И., Залогин Г.Н., Землянский Б.А., Кнотько В.Б. Методика и результаты экспериментального определения каталитической активности материалов при высоких температурах // Изв. РАН. МЖГ. 2003. № 5. С. 178.
- 15. Гордеев А.Н., Колесников А.Ф. Индукционные плазмотроны серии ВГУ // Актуальные проблемы механики. Физико-химическая механика жидкостей и газов. М.: Наука, 2010. С. 151.
- 16. Auweter-Kurtz M., Kurtz H.L., Laure S. Plasma Generators for Re-Entry Simulation // J. Propulsion and Power. 1996. V. 12. № 6. P. 1053–1061.
- Bottin B., Carbonaro M., Van Der Haegen V., Paris S. Predicted and Measured Capability of the 1.2 MW Plasmatron Regarding Re-entry Simulation. Proc. of the Third European Symposium on Aerothermodynamics for Space Vehicles. ESTEC, Noordwijk, The Netherlands, 24–26 November 1998, ESA SP-426, pp. 553–560, Jan. 1999.
- 18. Zhestkov B.Eu., Ivanov D.V., Shvedchenko V.V., Yegorov I.V., Fischer W.P.P., Antonenko J. Calculated and Experimental Flat and Wavy Surface Temperature Distribution // AIAA Paper. 1999. 799-0733, January 1999.
- 19. *Bourdon A., Bultel A., Desportes A., van Ootegem B., Vervisch P.* Catalycity Studies of TPS in a 90 kW Plasmatron at CORIA. Presented at the 2nd International Symposium "Atmospheric Reentry Vehicles and Systems", Arcachon (France), March 26–29, 2001.
- 20. *Chazot O., Krassilchikoff H.V., Thomel J.* TPS Ground Testing in Plasma Wind Tunnel for Catalytic Properties Determination. 46th AIAA Aerospace Meeting and Exhibit, AIAA Paper 2008-1252, Jan. 2008.
- 21. *Fletcher D.G., Meyers J.M.* Surface Catalyzed Reaction Efficiencies in Oxygen Plasmas from Laser Induced Fluorescence Measurements // J. Thermophysics and Heat Transfer. 2017. V. 31. № 2. P. 410–420.
- 22. Vasil'evskii S.A., Kolesnikov A.F., Yakushin M.I. // Mathematical Models for Plasma and Gas Flows in Induction Plasmatrons. Ser. Molecular Physics and Hypersonic Flows / Ed. M. Capitelli, Kluwer. 1996. V. 482. P. 495.
- 23. *Колесников А.Ф., Гордеев А.Н., Васильевский С.А.* Теплообмен в дозвуковых струях диссоциированного азота: эксперимент на ВЧ-плазмотроне и численное моделирование // Теплофизика высоких температур. 2018. Т. 56. № 3. С. 417–423.
- 24. Kolesnikov A.F., Pershin I.S., Vasil'evskii S.A., Yakushin M.I. Study of Quartz Sirface Catalycity in Dissociated Carbon Dioxide Subsonic Flows // J. Spacecraft and Rockets. 2000. V. 37. № 5. P. 573.
- 25. *Колесников А.Ф., Гордеев А.Н., Васильевский С.А.* Эффекты каталитической рекомбинации на поверхностях металлов и кварца для условий входа в атмосферу Марса // ТВТ. 2016. Т. 54. № 1. С. 32.
- 26. Васильевский С.А., Колесников А.Ф. Численное исследование течений и теплообмена в индукционной плазме высокочастотного плазмотрона. Энциклопедия низкотемпературной плазмы. Сер. Б. Том VII-1. Часть 2. М.: Изд-во Янус-К, 2008. С. 220.
- 27. *Колесников А.Ф., Якушин М.И.* Об определении эффективных вероятностей гетерогенной рекомбинации атомов по тепловым потокам к поверхности, обтекаемой диссоциированным воздухом // Мат. моделирование. 1989. Т. 1. № 3. С. 44–60.
- 28. Провоторов В.П., Рябов В.В. Исследование неравновесного гиперзвукового ударного слоя // Труды ЦАГИ. 1981. Вып. 2111. С. 142–155.
- 29. Воронкин В.Г., Яхлаков Ю.В. Экспериментальное исследование теплообмена в окрестности критической точки при неравновесных физико-химических превращениях и определение константы скорости рекомбинации азота // Изв. АН СССР. МЖГ. 1973. № 3. С. 128–135.
- Kolesnikov A., Gordeev A., Vasil'evskii S., Vérant J.L. Technical Approach and Validation of Reentry Heating Simulation for the Pre-X and EXPERT Vehicles Using the IPG-4 Plasmatron. In Proc. European Conference for Aero-Space Sciences EUCASS2005 (CD-ROM). 2005. Moscow, Russia.
- Kolesnikov A., Gordeev A., Vasil'evskii S., Vérant J.L. Predicting Catalytic Properties of SiC Material for the Pre-X Vehiclery Conditions. In Proc. 2nd European Conference for Aero-Space Sciences EUCASS2007 (CD-ROM). 2007. Brussels, Belgium.
- Колесников А.Ф., Гордеев А.Н., Васильевский С.А. Моделирование нагрева в критической точке и определение каталитической активности поверхности для спускаемого аппарата "EXPERT" // Физико-химическая кинетика в газовой динамике. 2010. Т. 9. http://chemphys.edu.ru/issues/2010-9/articles/123/
- 33. *Колесников А.Ф.* Условия моделирования в дозвуковых течениях теплопередачи от высокоэнтальпийного потока к критической точке затупленного тела // Изв. РАН. МЖГ. 1993. № 1. С. 172.

- 34. *Kolesnikov A.F.* The Aerothermodynamic Simulation in Sub- and Supersonic High-Enthalpy Jets: Experiment and Theory // Proc. 2nd European Symposium on Aerothermodynamics for Space Vehicles. ESA Publication Division, Noordwijk, The Netherlands. ESA SP-367. 1995. P. 583.
- 35. *Колесников А.Ф.* Условия локального подобия термохимического взаимодействия высокоэнтальпийных потоков газов с неразрушаемой поверхностью // ТВТ. 2014. Т. 52. № 1. С. 118.
- 36. Суржиков С.Т. Тепловое излучение газов и плазмы. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 544 с.
- 37. Vasilevskii S.A., Kolesnikov A.F., Bryzgalov A.I., Yakush S.E. Computation of Inductively Coupled Air Plasma Flow in the Torches // J. Physics: Conf. Ser. 2018. 012027.
- 38. Patankar S.V., Spalding D.B. Heat and Mass Transfer in Boundary Layers. Intertext Books, London. 1970.
- 39. *Петухов И.В.* Численный расчет двумерных течений в пограничном слое / Сб. Численные методы решения дифференциальных и интегральных уравнений и квадратурные формулы. М.: Наука, 1964. С. 304–325.
- 40. Bityurin V.A., Bocharov A.N., Baranov D.S., Krasilnikov A.V., Knotko V.B., Plastinin Y.A. Experimental Study of Flow Parameters and MHD Generator Models at High Frequency Plasmatron. 15th Intern. Conf. MHD Energy Conversion and 6th Workshop on Magnetoplasma Aerodynamics. Moscow: Institute of High Temperatures of RAS, 2005. P. 444–458.
- 41. *Dickens P.G., Sutcliffe M.B.* Recombination of Oxygen Atoms on Oxide Surfaces. Part 1 Activation Energies of Recombination. Transactions of the Faraday Society. 1964.V. 60. P. 1272–1285.
- 42. *Гордеев А.Н., Колесников А.Ф., Сахаров В.И.* Экспериментальное и численное исследование теплообмена высокоэнтальпийных недорасширенных струй воздуха с цилиндрическими моделями // Изв. РАН. МЖГ. 2018. № 5. С. 125–133.
- 43. *Viladegut A., Chazot O.* Empirical Modeling of Copper Catalysis for Enthalpy Determination in Plasma Facilities// J. Thermophysics and Heat Transfer. 2020. V. 34. № 1. P. 26–36.
- 44. Driver D., Sepka S. Side Arm Reactor Study of Copper Catalysis, AIAA Paper 2015-2666.