УДК 533.95:534.13

О ТОЧНЫХ АНАЛИТИЧЕСКИХ РЕШЕНИЯХ УРАВНЕНИЙ ГАЗОВОЙ ДИНАМИКИ

© 2020 г. А. Н. Голубятников^{*a*}, Д. В. Украинский^{*a*,*}

^a МГУ им. М.В. Ломоносова, Москва, Россия *E-mail: d.v.ukrainskiv@gmail.com

> Поступила в редакцию 29.10.2019 г. После доработки 17.12.2019 г. Принята к публикации 17.12.2019 г.

В рамках одномерной нестационарной газовой динамики с плоскими волнами развивается теория построения точных аналитических решений задачи Коши с помощью степенных рядов по специальной временной переменной, вид которой определяет конкретный класс движения. В общем виде рекуррентные соотношения на коэффициенты конечны и устроены таким образом, что для вычисления искомых функций не нужно решать дифференциальных уравнений или интегрировать, все члены рядов определяются последовательно по начальным условиям только с использованием алгебраических операций и дифференцирования. Данное обстоятельство позволяет также находить члены рядов точно с помощью любого математического пакета, допускающего символьные преобразования. Обсуждаются необходимые граничные условия и излагается методика контроля поведения рядов. Разбираются примеры физических задач, решаемых разработанным методом.

Ключевые слова: газовая динамика, нелинейные уравнения, точные решения, неортогональные системы функций

DOI: 10.31857/S0568528120030044

Общая задача трех тел в небесной механике (при невозможности тройного столкновения) была разрешена с использованием так называемых рядов К.Ф. Зундмана [1], представляющих собой степенные ряды по специальной параметрической переменной, от которой зависят время и координаты тел. Данный подход был связан с методами, развиваемыми Т. Леви-Чивитой [2], и представлял собой глобальную регуляризацию уравнений движения, в которых оставалась возможность парного столкновения, с помощью вводимого параметра.

При решении уравнений газовой динамики также использовались подходы, связанные с поиском решений в виде рядов. В [3] дано решение уравнений одномерных неустановившихся движений газа вблизи центра симметрии с использованием рядов по дробным степеням радиальной переменной с определением коэффициентов, зависящих от времени. В [4] получен класс осесимметричных неустановившихся адиабатических движений совершенного газа, характеристики которого допускают представления в виде степенных рядов по положительным степеням линейной координаты с коэффициентами, являющимися функциями угловой координаты и времени, указан алгоритм, позволивший найти общее решение системы уравнений для определения всех коэффициентов разложений. Также можно отметить работы о распространении слабых ударных волн [5] и о трехволновом резонансе в плоской стационарной задаче [6]. В [7] решена задача о периодических по пространственной перемениой политропных движений газа. В [8] дано решение задачи об определении периодического по времени решения в виде разложения по малой амплитуде волны с учетом квадратичных членов. Классические задачи о движениях поршня с оптимизацией процесса приведены в [9].

В настоящей работе идея о поиске решений нелинейных уравнений в виде разложения в степенной ряд по специальной, зависящей от времени переменной, которая определяет характер движения, применяется к решению задачи Коши с необходимыми краевыми условиями для одномерных адиабатических процессов динамики совершенного идеального газа с плоскими волнами при переменной энтропии. Даны решения задач с ограниченным движением газа, периодическим по времени, а также с учетом явлений обострения. ГОЛУБЯТНИКОВ, УКРАИНСКИЙ

1. ПОСТРОЕНИЕ ТОЧНЫХ АНАЛИТИЧЕСКИХ РЕШЕНИЙ

С использованием массовой лагранжевой переменной *m* уравнения одномерной нестационарной газовой динамики могут быть сведены к системе с квадратичной нелинейностью [9, 10]

$$x_{tt} + p_m = g(m) \tag{1.1}$$

$$x_m p_t + \gamma p x_{mt} = 0 \tag{1.2}$$

где x = x(m,t) — закон движения, t — время, p = p(m,t) — давление, γ — показатель адиабаты, g(m) — массовая сила (например, для газа в однородном поле тяготения g(m) = -g, где g — величина ускорения свободного падения; можно также учесть наличие в заряженном газе вмороженного электрического поля в рамках электрогидродинамики [9]). Плотность выражается через закон движения с помощью соотношения $\rho = 1/x_m$. В дальнейшем для функций одной переменной приняты обозначения: точка — производная по времени, штрих — производная по массе.

Важно заметить, что уравнение (1.2) представляет собой закон сохранения

$$p(x_m)^{\gamma} = \sigma(m) \tag{1.3}$$

в правой части которого стоит функция $\sigma(m)$, связанная с энтропией.

В уравнениях (1.1), (1.2) можно совершить взаимно-однозначную замену переменной a = a(t). Пусть *а* удовлетворяет уравнению $\dot{a}^2/2 = U(a)$ (т.к. фактически можно считать, что *a* определяется гамильтонианом). В этом случае получается система

$$2U(a)x_{aa} + \frac{dU(a)}{da}x_a + p_m = g(m)$$
(1.4)

$$x_m p_a + \gamma p x_{ma} = 0 \tag{1.5}$$

В уравнение (1.4) входит потенциал U(a), который определяет характер движения. Предполагается, что a(0) = 0.

Решение системы (1.4), (1.5) ищется в виде ряда Тейлора по а в окрестности нуля

$$x = \sum_{n=0}^{\infty} A_n(m)a^n \tag{1.6}$$

$$p = \sum_{n=0}^{\infty} B_n(m) a^n \tag{1.7}$$

При этом начальные условия выражаются через члены рядов следующим образом:

$$x(m,0) = A_0(m), \quad x_t(m,0) = \sqrt{2U(0)}A_1(m), \quad p(m,0) = B_0(m)$$
(1.8)

Пусть функция $\sqrt{U(a)}$ является гладкой. В этом случае, поскольку $\dot{a} = \sqrt{2U(a)}$ и a(0) = 0, в силу теоремы о существовании и единственности решения задачи Коши для a(t), нельзя считать U(0) = 0, что приводит к $a \equiv 0$. Это не пригодно с точки зрения замены переменной. Кроме того, для исследования поведения решения в терминах *a* отсутствует необходимость определения зависимости a(t) как таковой. При этом теорема гарантирует существование и единственность такой зависимости.

Стоит отметить, что в соответствии со структурой рядов (1.6), (1.7) существует инвариантность относительно растяжения переменной *а* и коэффициентов разложений. Ясно, что для достаточно малых *а* ряды будут сходиться при любых ограниченных коэффициентах.

При подстановке (1.6), (1.7) в закон сохранения (1.5) и перемножении рядов по правилу Коши, при одинаковых степенях *а* получаются рекуррентные соотношения

$$B_{n}(m)A_{0}'(m) + \gamma B_{0}(m)A_{n}'(m) = -\sum_{k=1}^{n-1} \frac{n-k}{n} (A_{k}'(m)B_{n-k}(m) + \gamma B_{k}(m)A_{n-k}'(m))$$
(1.9)

где n = 1, 2, 3, ... (правая часть равняется нулю при n = 1). Следует сказать, что функция $A'_0(m)$, вообще говоря, не может быть тождественно равна нулю в силу ее механического смысла: величина, обратная начальной плотности.

Рекуррентные соотношения, следующие из уравнения движения (1.4), зависят от разложения функции *U*(*a*)

$$U(a) = \sum_{n=0}^{\infty} C_n a^n \tag{1.10}$$

и имеют вид

$$2n(n-1)C_0A_n(m) + \sum_{k=1}^{n-1} k(n+k-2)C_{n-k}A_k(m) + B'_{n-2}(m) = \delta_{2n}g(m)$$
(1.11)

где n = 2, 3, 4, ... и δ_{ii} – символы Кронекера. Важно заметить, что $C_0 = U(0) \neq 0$.

Соотношения (1.9) и (1.11) устроены таким образом, что все члены ряда могут быть найдены последовательно исходя из заданных начальными условиями $A_0(m)$, $A_1(m)$ и $B_0(m)$, при этом не нужно решать дифференциальных уравнений и интегрировать

$$A_{2}(m) = \frac{g(m) - B'_{0}(m)}{4C_{0}} - \frac{C_{1}A_{1}(m)}{4C_{0}}, \quad B_{1}(m) = -\frac{\gamma B_{0}(m)A'_{1}(m)}{A'_{0}(m)}$$
(1.12)

$$A_{n}(m) = -\frac{B_{n-2}(m)}{2n(n-1)C_{0}} - \sum_{k=1}^{n-1} \frac{k(n+k-2)}{2n(n-1)} \frac{C_{n-k}}{C_{0}} A_{k}(m), \quad n = 3, 4, 5, \dots$$
(1.13)

$$B_{n}(m) = -\frac{\gamma B_{0}(m)A_{n}'(m)}{A_{0}'(m)} - \sum_{k=1}^{n-1} \frac{n-k}{n} \frac{A_{k}'(m)B_{n-k}(m) + \gamma B_{k}(m)A_{n-k}'(m)}{A_{0}'(m)}, \quad n = 2, 3, 4, \dots$$
(1.14)

Соотношения (1.12)-(1.14) позволяют точно находить коэффициенты рядов при произвольном разложении (1.10) функции U(a) с помощью любого математического пакета, допускающего символьные преобразования.

Стоит подчеркнуть, что для произвольного момента времени решение при заданном *m* зависит от вида начальных условий (1.8) и их производных. Кроме того, из вида рекуррентных формул также следует, что равновесные начальные условия, т.е. условия вида

$$A_0 = A_0(m), \quad A_1(m) \equiv 0, \quad B_0(m) = \int g(m)dm + C$$

всегда приводят к равновесному решению

$$x(m,t) \equiv A_0(m), \quad p(m,t) \equiv B_0(m)$$

т.е. равновесие в начальный момент сохраняется во все последующие моменты времени для любого U(a).

Для того чтобы использовать построенные решения в расчетах, необходимо совершить переход от рядов к их частичным суммам. С целью контроля точности такой процедуры, а также с целью проверки необходимого условия сходимости можно вычислить сохраняющуюся во времени энтропийную функцию $\sigma(m)$ (1.3), известную из начальных условий, и сравнить ее точное значение с этой же величиной, но уже вычисленной с помощью построенных частичных сумм рядов. При этом удобно воспользоваться относительной погрешностью

$$r(m,t) = \frac{p(m,t)(x_m(m,t))^{\gamma} - B_0(m)(A_0'(m))^{\gamma}}{B_0(m)(A_0'(m))^{\gamma}}$$
(1.15)

.

Здесь ряды р и х представлены с помощью своих частичных сумм.

. .

В случае приближения r(m,t) к 0 с ростом числа вычисляемых членов рядов возможность расходимости ряда для p(m,t) можно проверить, проанализировав стремление к 0 ряда для $x_m(m,t)$, и соответственно наоборот.

Граничные условия в рамках данного подхода определяются необходимым для существования решения образом, например, в виде непротекания на поверхностях пары поршней, в области между которыми происходит рассматриваемое движение. Законы движения поршней находятся a posteriori, т.е. после вычисления решения задачи, и представляются функциями x(0,t) и

x(M,t) соответственно (если масса *m* изменяется в пределах [0, *M*]). В этом смысле можно считать, что для решения конкретных задач применяется полуобратный метод.

Однако можно поставить задачу о равенстве a(t) закону движения одного из поршней. Пусть координате поршня отвечает точка m = 0, и начальные условия, по предположению, согласуются с указанными краевыми условиями при t = 0, так что отсутствуют начальные разрывы. При этом требуется определить подходящее U(a).

В этом случае закон движения поршня имеет вид x(0,t) = a(t). В соответствии с (1.6) получается, что

$$A_1(0) = 1$$
, $A_0(0) = A_2(0) = A_3(0) = \dots = 0$

Данные соотношения можно выполнить, если на каждой итерации рекуррентных соотношений, прежде чем вычислять очередной $A_n(m)$, определять

$$C_{1} = g(0) - B'_{0}(0), \quad n = 2$$
$$C_{n-1} = -\frac{B'_{n-2}(0)}{n-1}, \quad n = 3, 4, 5, \dots$$

Таким образом, функция *U*(*a*) выстраивается по начальным условиям в процессе решения задачи. В конечном счете она имеет вид

$$U(a) = C_0 + g(0)a - \sum_{n=0}^{\infty} \frac{B'_n(0)}{n+1}a^{n+1} = C_0 + g(0)a - \int_0^a p_m(0,a)da$$

Выбирать C_0 следует, если возможно, исходя из неотрицательности U(a). При малых t, а значит и малых a в силу a(0) = 0, этого добиться несложно. Вообще говоря, возможность выполнения условия неотрицательности при произвольном a зависит от начальных данных и массовой силы. Стоит отметить, что конкретизация C_0 также влияет на получаемое решение. Сам вид a(t) определяется через полученную U(a) из соответствующих дифференциального уравнения и начального условия.

2. СРАВНЕНИЕ РЕШЕНИЙ В РЯДАХ С ИЗВЕСТНЫМИ РЕШЕНИЯМИ

Указанные рассуждения оказываются полезными при решении следующей задачи Коши с краевыми условиями. Пусть начальные данные имеют вид

$$A_0(m) = m, \quad A_1(m) = \alpha m, \quad B_0(m) = 1$$
 (2.1)

и массовые силы отсутствуют: g(m) = 0.

Линейность начальной скорости по *m* и постоянство начальных плотности и давления в соответствии с (1.12)–(1.14) приводят к тому, что какими бы ни были постоянные C_n , $x(m, t) = mq_1(t)$ и $p(m,t) = q_2(t)$ с некоторыми функциями времени q_1 и q_2 . Отсюда следует, что $x(0,t) \equiv 0$, т.е. поршень в точке m = 0 остается неподвижным во все моменты времени.

Задача нахождения закона движения поршня в точке m = 1 в виде a(t) дает, в свою очередь, что

 $C_n = 0$ для любого натурального *n*, поскольку $B'_{n-1}(1) = 0$. Следовательно, $U(a) \equiv C_0 > 0$ и $a(t) = \sqrt{2C_0}t = Vt$. В итоге закон движения второго поршня будет иметь вид $x(1,t) = A_0(1) + A_1(1)a(t) = 1 + \alpha Vt$, где можно положить V = 1.

Таким образом, с помощью определения в рамках изложенной теории a(t) = t при начальных условиях (2.1) и отсутствии массовых сил, решается точно задача Коши с граничными условиями

$$x_{tt} + p_m = 0, \quad x_m p_t + \gamma p x_{mt} = 0, \quad t \ge 0, \quad m \in [0, 1]$$
 (2.2)

$$x(m,0) = m, \quad x_t(m,0) = \alpha m, \quad p(m,0) \equiv 1$$
 (2.3)

$$x(0,t) \equiv 0, \quad x(1,t) = 1 + \alpha t$$
 (2.4)

которая моделирует процесс расширения газа с однородной деформацией в трубе с подвижной стенкой.

Рис. 1. Сравнение решения задачи Коши с краевыми условиями, полученного через разложения по степеням функции времени (*1*), с известным точным решением: его представление в квадратурах (2), разложение в ряд Тейлора (3); графики приведены для 20 (а), 50 (б) и 100 (в) членов рядов.

Задача (2.2)–(2.4) имеет точное решение в квадратурах [3]

$$x(m,t) = m(1 + \alpha t), \quad p(m,t) = (1 + \alpha t)^{-\gamma}$$
(2.5)

Решение, получаемое исходя из формул (1.12)–(1.14), в точности представляет собой разложение в ряд Тейлора по времени в окрестности нуля решения (2.5) и представлено на рис. 1.

На данном рисунке для $\gamma = 1.4$ и $\alpha = 0.1$ изображены сравнительные графики давления согласно решению через разложение по степеням функции времени (*1*), решению в квадратурах (*2*), разложению решения в квадратурах в ряд Тейлора (*3*) при 20, 50 и 100 взятых членах рядов соответственно.

Следует отметить, что в данной задаче

$$r(m,t) = \frac{p(m,t) - (1 + \alpha t)^{-\gamma}}{(1 + \alpha t)^{-\gamma}}$$

т.е. в точности является погрешностью ряда давления относительно его суммы — решения в квадратурах. При $\alpha t < 1$ функция r(m,t) достаточно быстро убывает с ростом числа членов ряда, достигая в точке $\alpha t = 0.9$ значений 0.58981, 0.03597 и 0.00024 при 20, 50 и 100 взятых членов ряда соответственно.

В качестве другого примера можно рассмотреть, наоборот, линейное по m начальное давление и постоянную начальную скорость. В соответствии с рекуррентными соотношениями (1.12)–(1.14) при произвольном U(a) это приводит к решению, которое сходится (вообще говоря в некоторой области) в терминах a к известному решению [3] с постоянной по массе m и линейной по времени t скоростью с сохраняющимися начальными плотностью и давлением, т.е. к твердотельному движению с постоянным ускорением.

Если задать начальные условия в виде

$$A_0(m) = m, \quad A_1(m) = 0, \quad B_0(m) = 1 + \alpha m, \quad m \in [0,1]$$

и строить решение с помощью разложения в степенной ряд по функции $a(t) = \sin t$, где $t \in [-\pi/2, \pi/2]$, то в терминах *a* получается решение, в точности представляющее собой разложение в ряд Тейлора следующих функций:

$$x(m,a) = m - (\alpha/2) \arcsin^2 a, \quad p(m,a) \equiv 1 + \alpha m$$

На рис. 2 при $\alpha = 1$ показан график скорости (1) в терминах *t* для полученного через формулы (1.12)–(1.14) решения с 20, 50 и 100 вычисленными членами ряда соответственно. Хорошо видна сходимость скорости к точному решению v = -t (изображено линией 2). Поведение в окрестности точек $t = \pm \pi / 2$ регулярно, несмотря на отсутствие производной арксинуса при $a = \pm 1$.

Рис. 2. Сходимость решения, построенного с помощью разложения в степенной ряд по специальной функции времени (*1*), к известному аналитическому решению (*2*); графики приведены для 20 (a), 50 (б) и 100 (в) членов ряда.

Нужно отметить, что, согласно теории размерности, в приведенных примерах и далее можно выбрать заданным образом только три масштаба. Последний пример показывает, что построенное решение, в некотором смысле, может не зависеть почти во всей области определения от выбора функции a(t).

3. ОГРАНИЧЕННОЕ ДВИЖЕНИЕ

В данном разделе рассматривается более сложная по сравнению с первым примером задача о расширении газа в трубе, одна стенка которой по-прежнему неподвижна, а закон движения второй представляется в терминах монотонно растущих ограниченных функций.

Для моделирования соответствующего процесса можно взять функцию a(t) в виде $a = \exp(-t) - 1$. Задаются те же начальные условия (2.1), чтобы можно было оценить различия решений

$$A_0(m) = m, \quad A_1(m) = -0.1m, \quad B_0(m) = 1, \quad m \in [0,1]$$

Здесь знак $A_i(m)$ поменялся, поскольку поменялся знак $\dot{a}(0)$. Для этого и всех дальнейших примеров будем также использовать $\gamma = 1.4$ и g(m) = 0, кроме последнего примера, в котором учитывается гравитация.

Решение для 20 членов ряда представлено на рис. 3. Здесь и в дальнейшем графики всегда идут в порядке слева направо сверху вниз: закон движения, скорость, плотность, давление, относительная энтропийная погрешность (1.15).

Исходя из рисунка видно, что каждая из функций, входящих в решение, при $t \to \infty$ выходит на свое асимптотическое значение (для каждого *m*), при этом, как и в предыдущем случае, давление и плотность, а значит и относительная энтропийная погрешность, от *m* не зависят. Поршень, соответствующий массовой координате m = 0, покоится, закон движения второго поршня изображен на графике x(m,t) при m = 1. Максимальное значение r(m,t) убывает с ростом числа взятых членов рядов. Так, получаются значения порядка 0.016, 0.014 и 0.013 для 20, 50 и 100 членов рядов соответственно. Если вычислить 1000 коэффициентов, то относительная энтропийная погрешность будет составлять менее 1%.

4. ПЕРИОДИЧЕСКОЕ ДВИЖЕНИЕ

Решается задача о распространении возмущений, создаваемых периодическими колебаниями поршня с лагранжевой координатой m = 0, на фоне неоднородно распределенного в начальный момент времени давления.

Для этой цели выбирается $a(t) = \sin t$ и рассматриваются начальные условия

$$A_0(m) = m, \quad A_1(m) = 0, \quad B_0(m) = 1 + 0.05 \exp(-m), \quad m \in [0, \infty)$$

В данной задаче предполагается, что второй поршень отсутствует.

Рис. 3. Графики закона движения (а), скорости (б), плотности (в), давления (г), относительной энтропийной погрешности (д) для задачи о расшении газа в трубе, одна стенка которой неподвижна, а закон движения второй представляется в терминах монотонно растущих ограниченных функций.

В соответствии с тригонометрическими формулами, разложение по степеням синуса времени представляет собой комбинацию ряда Фурье [11], взятую с целью справиться с нелинейностью системы уравнений газовой динамики. Прямое использование рядов Фурье оказывается неэффективным, поскольку при перемножении рядов такой подход приводит к бесконечным выражениям, вместо конечных рекуррентных формул.

Для первых 16 взятых коэффициентов решение показано на рис. 4 (в этой и следующей задачах решение изображено на полном периоде с целью наглядности). Колебания поршня изображены на рисунке для закона движения при m = 0.

Опираясь на графики, можно утверждать, что при больших *m* все возмущения затухают. Данное обстоятельство согласуется с упомянутым сохранением изначального равновесия: при больших *m* начальные условия стремятся к равновесным, а решение в конкретной массовой точке определяется лишь начальными условиями в ее малой окрестности. Поскольку при больших *m* полученное решение во все моменты времени стремится к равновесному, можно сказать, что в этом смысле равновесие устойчиво.

Порядок относительной энтропийной погрешности убывает с ростом числа взятых членов рядов и составляет 0.0012, 0.0011 и 0.0010 для 8, 12 и 16 коэффициентов соответственно. Число 0.05 в начальных условиях подбиралось именно с той целью, чтобы создаваемое возмущение равновесного давления приводило к регулярному поведению решения в рядах.

В качестве следующего примера решается задача об эволюции зоны высокого давления при сильной неоднородности начальной плотности в трубе с колеблющимися поршнями.

В соответствии с постановкой задачи следует определить начальные условия в виде

$$A_0(m) = \operatorname{arctg}\left(m - \frac{1}{2}\right), \quad A_1(m) = 0, \quad B_0(m) = 0.1 \exp\left(-\left(m - \frac{1}{2}\right)^2\right), \quad m \in [0, 1]$$

Указанная задача представляет интерес в приложениях, однако устройство начальных условий и требования к краевым условиям усложняют процесс поиска аналитического решения.

Рис. 4. Графики закона движения (а), скорости (б), плотности (в), давления (г), относительной энтропийной погрешности (д) для задачи о распространении возмущений, создаваемых периодическими колебаниями поршня, на фоне неоднородно распределенного в начальный момент времени давления.

Рис. 5. Графики закона движения (а), скорости (б), плотности (в), давления (г), относительной энтропийной погрешности (д) для задачи об эволюции зоны высокого давления при сильной неоднородности начальной плотности в трубе с колебющимися прошнями.

Рис. 6. Графики закона движения (а), скорости (б), плотности (в), давления (г), относительной энтропийной погрешности (д) для задачи о движении поршней, описывающемся в терминах неограничнено растущих функций, на неоднородном фоне при наличии гравитации.

Обойти соответствующие сложности помогает поиск решения в виде разложения по степеням синуса времени $a(t) = \sin t$.

На рис. 5 показаны графики физических величин, характеризующих рассматриваемый процесс, для 12 членов рядов. Колебания, совершаемые поршнями, изображены на рисунке для закона движения при m = 0 и m = 1. Функционально решение устроено сложно, но при этом порядок относительной энтропийной погрешности остается невысоким и составляет 0.005, 0.004 и 0.003 для 8, 10 и 12 коэффициентов соответственно. Максимум погрешности достигается, как и в прошлом случае, в точках, где косинус времени равен нулю.

5. ДВИЖЕНИЕ С ОБОСТРЕНИЕМ

В настоящем пункте рассматривается задача о движении поршней, описывающемся в терминах неограниченно растущих функций, на неоднородном фоне при наличии гравитации.

Для получения решения такой задачи можно выбрать a(t) = 1/(1-t) - 1, задать g(m) = -1 и положить начальные данные в виде

$$A_0(m) = \operatorname{arctg}\left(m - \frac{1}{2}\right), \quad A_1(m) = 0, \quad B_0(m) = 1 + 0.1 \exp\left(-\left(m - \frac{1}{2}\right)^2\right), \quad m \in [0, 1]$$

Построенное решение для 10 членов рядов приведено на рис. 6. Функция a(t) является неограниченно растущей при $t \rightarrow 1$, поэтому степенные ряды по этой функции начнут расходиться с определенного момента времени. Однако построенное решение хорошо описывается при небольших *a*: при t = 0.333 порядок относительной энтропийной погрешности мал и составляет 0.0012, 0.0007 и 0.0003 для 6, 8 и 10 коэффициентов.

Законы движения поршней изображены на рисунке для x(m,t) при m = 0 и 1. Чтобы перейти от изображения решения в переменных Лагранжа к изображению решения в переменных Эйлера, достаточно построить графики в соответствующих координатах, исключая массу *m* как параметр.

ЗАКЛЮЧЕНИЕ

В рамках адиабатического движения совершенного идеального газа развита теория построения точных аналитических решений задач Коши с краевыми условиями с помощью разложений в степенные ряды по функции от времени, задающей характер рассматриваемого явления. Для исследования используются удавнения в лагданжевой форме, в частности, записанные с использованием массовой переменной. Рекуррентные соотношения для зависящих от массы коэффициентов устроены так, что все неизвестные величины находятся из начальных условий только с помощью дифференцирования и алгебраических операций. Отсутствие необходимости решать дифференциальные уравнения и интегрировать позволяют использовать символьные вычисления, реализованные в математических пакетах, для точного нахождения коэффициентов рядов при любых заданных наперед начальных данных. Краевые условия определяются после решения залачи, например, в виле непротекания на поверхностях пары поршней, в области межлу которыми происходит рассматриваемое движение. Закон сохранения энтропии помогает контролировать поведение рядов и судить о погрешности при переходе от рядов к их частичным суммам. Решения, строящиеся на основе разработанного метода, проходят проверку на известных в газовой динамике точных решениях и позволяют распространить результаты на более общие случаи. Также метод позволяет получить новые решения физических задач, связанных, например, с ограниченными и периолическими движениями, течениями с обострением, и другими, задаваемыми заменой времени.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 20-01-00017).

СПИСОК ЛИТЕРАТУРЫ

- 1. Sundman K.F. Memoire sur le probleme des trois corps // Acta mathematica. 1912. V. 36. № 2. P. 105–179.
- 2. *Levi-Civita T*. Sulla regolarizzazione del problema piano dei trei corpi // Rendiconti dell'Accademia Nazionale dei Lincei. Classe di scienze fisiche, matematiche e naturali. 1915. V. 24. P. 61–75.
- 3. Седов Л.И. Методы подобия и размерности в механике. М.: Наука, 1981. 448 с.
- 4. *Карликов В.П.* К общей теории осесимметричных движений газа // Доклады Академии наук СССР. 1960. Т. 133. № 5. С. 1049–1052.
- 5. Голубятников А.Н. Разрывы малой амплитуды решений уравнений механики сплошной среды // Труды математического института имени В.А. Стеклова. 2018. Т. 300. С. 65–75.
- 6. Голубятников А.Н., Украинский Д.В. Трехволновой резонанс в двумерной стационарной задаче газовой динамики // Вестник Московского университета. Серия 1. Математика. Механика. 2019. № 2. С. 63–67.
- 7. *Аксенов А.В.* Нелинейные периодические волны в газе // Известия Академии наук. Механика жидкости и газа. 2012. № 5. С. 88–98.
- 8. *Петров А.Г.* Возбуждение нелинейных периодических стоячих волн в сжимаемых средах // Известия Академии наук. Механика жидкости и газа. 2015. № 6. С. 102–105.
- 9. Галин Г.Я., Голубятников А.Н., Каменярж Я.А., Карликов В.П., Куликовский А.Г., Петров А.Г., Свешникова Е.И., Шикина И.С., Эглит М.Э. Механика сплошных сред в задачах (Классический учебник МГУ). М.: Ленанд, 2017. 640 с.
- 10. Черный Г.Г. Газовая динамика. М.: Наука, 1988. 424 с.
- 11. Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Наука, 1963. 1108 с.