УДК 532.516

ИССЛЕДОВАНИЕ НЕСТАЦИОНАРНЫХ ТЕЧЕНИЙ С ПОВЕРХНОСТЬЮ РАЗДЕЛА МЕТОДОМ ЧИСЛЕННОГО РЕШЕНИЯ УРАВНЕНИЙ НАВЬЕ–СТОКСА

© 2020 г. А. И. Алексюк^{а, b, *}, В. Я. Шкадов^{а, **}

^а Московский государственный университет им. М.В. Ломоносова, Москва, Россия

^b Институт водных проблем РАН, Москва, Россия

*E-mail: aleksyuk@mech.math.msu.su

**E-mail: shkadov@mech.math.msu.su

Поступила в редакцию 07.11.2019 г. После доработки 17.12.2019 г. Принята к публикации 17.12.2019 г.

Рассматриваются течения двух неперемешивающихся жидкостей с учетом капиллярных сил и силы тяжести. Движение жидкостей описывается в рамках модели вязкой несжимаемой жидкости в двумерной постановке. Уравнения Навье—Стокса численно решаются расширенным методом конечных элементов (extended finite element method), который допускает наличие сильных разрывов на поверхности раздела. Положение границы раздела отслеживается с помощью метода функции уровня (level set method). Такой подход позволяет исследовать течения с меняющейся топологией поверхности раздела. Приводятся результаты решения задач о всплытии "двумерного пузыря", о развитии неустойчивости Рэлея—Тейлора и о стекании пленки по вертикальной стенке в протяженнойобласти.

Ключевые слова: двухфазные течения, уравнения Навье–Стокса, метод функции уровня, течение пленки, двумерный пузырь, неустойчивость Рэлея–Тейлора

DOI: 10.31857/S0568528120030019

Сеточные методы моделирования нестационарных течений с поверхностью раздела можно разделить на методы с явным выделением границы раздела на деформируемых сетках и методы, в которых положение поверхности раздела может быть определено на неподвижных сетках. В первом классе методов во время счета граница раздела совпадает с линией сетки, что дает возможность относительно просто учитывать разрывы функций и их производных в расчетной схеме. Наиболее распространенными представителями второго класса методов являются метод объема жидкости в ячейке (volume of fluid method) и метод функции уровня (level set method). Преимуществом последнего метода является то, что граница раздела не сглаживается и может быть определена неявно с помощью вспомогательной функции – функции уровня, для которой решается уравнение переноса. Это позволяет явно рассматривать разрывы функций в математической формулировке метода. Наличие разрывов внутри ячеек может быть учтено, в частности, с помощью расширенного метода конечных элементов XFEM (extended finite element method) [1], в котором стандартные пространства пробных и весовых функций дополняются набором функций, допускающих разрывы на ячейках. Основное преимущество второго класса методов заключается в большей универсальности, например, при моделировании течений с меняющейся топологией поверхности раздела.

В настоящей статье описывается реализация метода функции уровня в сочетании с расширенным методом конечных элементов [2–5] для моделирования двухфазных течений неперемешивающихся жидкостей в протяженных областях с учетом капиллярных сил, силы тяжести и возможности сложных деформаций поверхности раздела. Представлено тестирование алгоритмов на примере задач о всплытии "двумерного пузыря", неустойчивости Рэлея–Тейлора. Обсуждаются результаты применения этого метода к задаче о развитии течения пленки в протяженной области.

Рис. 1. Схема области двухфазного течения с границей раздела.

1. ПОСТАНОВКА ЗАДАЧИ

Двумерное течение двух несжимаемых вязких жидкостей, разделенных поверхностью $\Gamma_{S}(t)$, описывается уравнениями Навье–Стокса:

$$\mathbf{u}_{,t}^{\alpha} + (\mathbf{u}^{\alpha} \cdot \nabla)\mathbf{u}^{\alpha} = -\frac{1}{\rho^{\alpha}}\nabla \cdot \mathbf{P}^{\alpha} + \mathbf{F}$$
(1.1)

$$\nabla \cdot \mathbf{u}^{\alpha} = 0 \tag{1.2}$$

Здесь индекс α принимает значения 1 и 2 для параметров первой и второй жидкости соответственно; ρ^{α} – плотность; $\mathbf{u}^{\alpha}(\mathbf{x},t) = (u_1^{\alpha}, u_2^{\alpha})$ и $\mathbf{F} = (F \cos \theta, F \sin \theta)$ – векторы скорости и массовых сил; $\mathbf{P}^{\alpha}(\mathbf{x},t)$ – тензор напряжений, компоненты которого имеют следующий вид в декартовых координатах $\mathbf{x} = (x_1, x_2)$:

$$P_{ij}^{\alpha}(\mathbf{x},t) = -p^{\alpha}\delta_{ij} + \mu^{\alpha} \left(u_{i,j}^{\alpha} + u_{j,i}^{\alpha} \right)$$

где $p^{\alpha}(\mathbf{x},t)$ и μ^{α} – давление и коэффициент динамической вязкости; δ_{ij} – символ Кронекера; $(\cdot)_{,i} = \partial/\partial x_i, (\cdot)_{,i} = \partial/\partial t$.

На поверхности раздела выполняются условия

$$\mathbf{u}^1 = \mathbf{u}^2$$
, $(\mathbf{P}^1 - \mathbf{P}^2) \cdot \mathbf{n} = \sigma \kappa \mathbf{n}$, $\mathbf{x} \in \Gamma_S$

Здесь σ и к(x, t)|_{x \in \Gamma_s} – постоянный коэффициент поверхностного натяжения и кривизна линии раздела двух жидкостей, **n** – вектор нормали. На неподвижных границах рассматриваемой области течения Ω ставятся условия Дирихле или Неймана для скорости, либо задается вектор напряжений. В начальный момент времени известно положение поверхности раздела и поле скорости.

Представим Ω в виде объединения областей Ω^1 и Ω^2 (рис. 1), занимаемых первой и второй жидкостями, и введем общие обозначения для параметров двух сред, опуская индекс α , например, для давления: $p(\mathbf{x},t) = p^{\alpha}(\mathbf{x},t)$, если $\mathbf{x} \in \Omega^{\alpha}$.

Пусть L_0 , U_0 , ρ_0 и μ_0 – характерные длина, скорость, плотность и вязкость (в качестве последних двух параметров можно выбрать плотность и вязкость одной из сред). В результате обезразмеривания по формулам (штрихом ' обозначены безразмерные параметры)

$$t' = \frac{tU_0}{L_0}, \quad \mathbf{x}' = \frac{\mathbf{x}}{L_0}, \quad \mathbf{u}' = \frac{\mathbf{u}}{U_0}, \quad p' = \frac{p}{\rho_0 U_0^2}, \quad \rho' = \frac{\rho}{\rho_0}, \quad \mu' = \frac{\mu}{\mu_0}, \quad \kappa' = \kappa L_0$$

ИЗВЕСТИЯ РАН. МЕХАНИКА ЖИДКОСТИ И ГАЗА № 3 2020

в задаче возникают безразмерные комбинации, характеризующие течение:

Re =
$$\frac{\rho_0 U_0 L_0}{\mu_0}$$
, We = $\frac{\sigma}{\rho_0 U_0^2 L_0}$, Fr = $\frac{U_0^2}{FL_0}$, $\frac{\rho^1}{\rho^2}$, $\frac{\mu^1}{\mu^2}$

Штрихи над безразмерными параметрами далее опускаем.

2. ЧИСЛЕННЫЙ МЕТОД

В разделе кратко описываются ключевые составляющие применяемого подхода. Основные идеи реализованных в работе алгоритмов для моделирования течений с границей раздела, а также другие вариации рассматриваемых методов подробно обсуждаются в работах [2–5].

Для отслеживания движения границы раздела применяется метод функции уровня [6]. Вводится функция $\varphi(\mathbf{x}, t)$, которая обладает следующими свойствами:

1.
$$\Gamma_{S}(t) = {\mathbf{x} : \phi(\mathbf{x}, t) = 0};$$

2.
$$\phi(\mathbf{x}, t) > 0$$
, если $\mathbf{x} \in \Omega^1$ и $\phi(\mathbf{x}, t) < 0$, если $\mathbf{x} \in \Omega^2$;

2. $\varphi(\mathbf{x}, t) > 0$, echi $\mathbf{x} \in \Omega$ if $\varphi(\mathbf{y}, t)$ 3. $|\varphi(\mathbf{x}, t)| = \min_{\mathbf{x}_S \in \Gamma_S} |\mathbf{x} - \mathbf{x}_S|$.

Первые два свойства этой функции сохраняются, если она удовлетворяет уравнению переноса

$$\boldsymbol{\varphi}_t + \mathbf{u} \cdot \nabla \boldsymbol{\varphi} = 0 \tag{2.1}$$

Третье условие позволяет получить направление нормали к поверхности раздела, используя соотношение $\mathbf{n} = \nabla \varphi$ при $\mathbf{x} \in \Gamma_s$. Однако для сохранения этого свойства необходимо периодически проводить реинициализацию функции $\varphi(\mathbf{x}, t)$ так, чтобы выполнялось третье свойство и положение границы раздела ($\varphi(\mathbf{x}, t) = 0$) не изменялось.

Начально-краевая задача для уравнений Навье–Стокса численно решается стабилизированным методом конечных элементов GLS (Galerkin/Least-Squares). Возможные разрывы решения и его производных на границе раздела описываются с помощью расширенного метода конечных элементов XFEM (Extended Finite Element Method) [1–5]. Расчетная область Ω представляется в виде объединения прямоугольников Ω_e , $e = 1, ..., n_e$, регулярной сетки с шагами Δ_1 , Δ_2 вдоль координат x_1 и x_2 , сетка имеет m узлов \mathbf{x}_i . Стандартные конечномерные аппроксимации пространств пробных и весовых функций на сетке дополняются функциями, которые допускают сильные разрывы давления внутри ячеек, содержащих границу раздела. Приближенное решение \mathbf{u}^h , p^h ищется в виде

$$\mathbf{u}^{h}(\mathbf{x},t) = \sum_{i=1}^{m} \mathbf{v}_{i} N_{i}(\mathbf{x}); \quad p^{h}(\mathbf{x},t) = \sum_{i=1}^{m} p_{i} N_{i}(\mathbf{x}) + \sum_{k=1}^{m^{*}} p_{k}^{*} M_{k}(\mathbf{x},t)$$
(2.2)

Здесь \mathbf{v}_i , p_i , p_k^* – искомые коэффициенты, зависящие от времени; $N_i(\mathbf{x})$ – кусочно-билинейные непрерывные функции, $N_i(\mathbf{x}_j) = \delta_{ij}$; $i = 1, ..., m, j = 1, ..., m, k = 1, ..., m^*$. Вторая сумма в выражении для p^h проводится по узлам каждой ячейки, содержащей границу раздела. Функции $M_k(\mathbf{x}, t)$ определяются на этих ячейках следующим образом:

$$M_k(\mathbf{x},t) = N_k^*(\mathbf{x}) \big[\boldsymbol{\psi}(\mathbf{x},t) - \boldsymbol{\psi}(\mathbf{x}_k,t) \big], \quad \boldsymbol{\psi}(\mathbf{x},t) = \begin{cases} -1, \quad \boldsymbol{\phi}(\mathbf{x},t) < 0\\ 0, \quad \boldsymbol{\phi}(\mathbf{x},t) = 0\\ 1, \quad \boldsymbol{\phi}(\mathbf{x},t) > 0 \end{cases}$$

где N_k^* – сужение функции N_k на ячейки, содержащие границу раздела Γ_s . Отметим, что для скорости в (2.2) используется стандартная аппроксимация. Дискретизация по времени проводилась с помощью неявной схемы Эйлера первого порядка с постоянным шагом Δt .

Для того, чтобы избежать явного нахождения кривизны к при численном решении, используется подход с применением оператора Лапласа–Бельтрами, описанный, например, в [2].

Уравнение переноса (2.1) также решается стабилизированным методом конечных элементов. На каждой глобальной итерации по времени используется метод последовательных приближений, с помощью которого достигается согласованность решения уравнений движения (1.1), (1.2) и решения уравнения (2.1) для определения поверхности раздела. Система линейных алгебраи-

ИССЛЕДОВАНИЕ НЕСТАЦИОНАРНЫХ ТЕЧЕНИЙ

Режим	ρ ¹ (кг/м ³)	ρ ² (кг/м ³)	$\mu^1 (\kappa r / (\mathbf{M} \cdot \mathbf{c}))$	$\mu^2 (\kappa \Gamma / (\mathbf{M} \cdot \mathbf{c}))$	σ (κг/c ²)	$\Delta_1 (= \Delta_2), \Delta t$
Ι	1000	100	10	1	24.5	0.02, 0.002
II	1000	1	10	0.1	1.96	0.005, 0.001

Таблица 1. Рассматриваемые в работе режимы всплытия "двумерного" пузыря

ческих уравнений с плохо обусловленной матрицей для уравнений (1.1), (1.2) решается прямым методом LU-разложения, что позволяет избежать проблемы, связанной с плохой сходимостью итерационных методов из-за расширения пространств пробных и весовых функций [8].

Используемый в работе стабилизированный метод конечных элементов ранее успешно применялся авторами для исследования однофазных течений, возникающих при двумерном и трехмерном обтекании тел потоком вязкой жидкости (газа) [9–11]. Кроме того, в этих работах можно найти результаты тестирования метода для однофазных течений, а также детали, касающиеся реализации алгоритмов. В следующих разделах приводятся результаты применения описанного метода для трех задач с поверхностью раздела. Первые две задачи — классические примеры для тестирования численных алгоритмов расчета двухфазных потоков, см., например, [12, 13]. Третья задача является демонстрацией возможности применения метода для расчета течений в протяженных областях с перестройками волновых структур.

3. РЕЗУЛЬТАТЫ ПРИМЕНЕНИЯ МЕТОДА

3.1. Всплытие "двумерного пузыря"

Моделируются два режима всплытия двумерного пузыря с учетом капиллярных сил (см. табл. 1). Эти режимы являются искусственными тестами [12], в первом из которых параметры подобраны так, что пузырь деформируется слабо (рис. 2а), во втором — в некоторый момент времени происходит изменение топологии поверхности раздела — от основного пузыря отделяются вторичные (рис. 26). В [12] приведены результаты численных расчетов с использованием программных кодов трех независимых групп исследователей.

Далее результаты представлены в размерном виде для удобства сопоставления с [12]. В начальный момент обе жидкости покоятся, а поверхность раздела представляет собой окружность радиуса 0.25 м с центром в точке $x_1 = 0.5$ м, $x_2 = 0.5$ м. В поле силы тяжести F = 0.98 м/с², $\theta = -\pi/2$ более легкая жидкость (двумерный пузырь) начинает всплывать. Область течения представляет собой прямоугольник { $0 \le x_1 \le 1$; $0 \le x_2 \le 2$ }, у которого на границах $x_2 = 0$, $x_2 = 2$ ставятся условия прилипания, а на границах $x_1 = 0$, $x_1 = 1$ – проскальзывания.

Сопоставление поверхности раздела при t = 3 с и зависимости ординаты центра масс пузыря от времени с данными [12] приведено на рис. 3. Заметное количественное отличие наблюдается только при описании процесса отделения вторичных пузырей, в остальном результаты хорошо согласуются. Авторы [12] отмечают, что во втором тесте все три рассмотренные программы также по-разному описывают процесс отделения вторичных пузырей, несмотря на полную согласованность результатов до начала этого процесса (а также для первого теста). На рисунке видно, что результаты расчета в настоящей работе оказались наиболее близки к алгоритму MooNMD, в котором использовались деформируемые сетки с узлами, перемещающимися вместе с границей раздела.

3.2. Неустойчивость Рэлея-Тейлора

В поле силы тяжести покоятся два слоя жидкости, разделенные горизонтальной поверхностью. Рассматривается ситуация, когда такое положение равновесия неустойчиво: жидкость сверху имеет большую плотность, чем жидкость снизу. В начальный момент времени вносятся возмущения поверхности раздела. Капиллярные силы не учитываются.

На рис. 4 приведено сопоставление с данными [13] для следующих параметров. Область течения представляет собой прямоугольник { $0 \le x_1 \le 1$; $0 \le x_2 \le 2$ } с условиями прилипания на границе. Возмущение поверхности раздела в начальный момент времени задается уравнением $x_2 = 1 - 0.15 \sin 2\pi x_1$. Плотности жидкостей отличаются в 1.8 раза, коэффициенты кинематической

Рис. 2. Эволюция границы раздела всплывающего "двумерного пузыря" для режимов I (а) и II (б).

вязкости совпадают. Число Рейнольдса Re = 420 (характерный размер L_0 – длина области вдоль координаты x_1 , характерная скорость $U_0 = \sqrt{L_0 g}$, где g – величина ускорения свободного падения).

Расчеты проведены на сетке с шагами по пространству и времени $\Delta_1 = \Delta_2 = 0.01$, $\Delta t = 0.005$. Для сопоставления на рис. 4 представлены данные, полученные в [13] с помощью метода функции уровня на сетке 312 × 614. Несмотря на качественное совпадение, результаты имеют некоторые отличия, которые могут быть связаны с разрешением сетки.

3.3. Стекание пленки по плоской вертикальной стенке

Рассматриваются пять режимов стекания пленки по вертикальной стенке, которые представлены в табл. 2. В качестве характерных размерных параметров выбраны: плотность (ρ_0), динамическая вязкость (μ_0) и толщина (L_0) пленки, характерная скорость – $U_0 = gL_0^2\rho_0/(3\mu_0)$. Параметры второй среды выбраны таким образом, чтобы их влияние на течение было несущественным: $\rho^1/\rho^2 = 10^3$, $\mu^1/\mu^2 = 5 \times 10^{-3}$.

В начальный момент времени поверхность раздела Γ_s задается соотношением $x_2 = 1$, а параметры потока соответствуют стационарному решению с параболическим профилем скорости $u_1(\mathbf{x}, 0) = 1.5x_2(2 - x_2), u_2(\mathbf{x}, 0) = 0$. На вертикальной плоской стенке $(x_2 = 0)$ ставится условие прилипания. На входной границе $(x_1 = 0)$ фиксируется толщина пленки и задается периодическое изменение скорости: $u_1(0, x_2, t) = 1.5x_2(2 - x_2)[1 + a\sin(2\pi ft)], u_2(0, x_2, t) = 0$, где a иf – заданные амплитуда и частота пульсаций скорости на входе. На выходной границе $(x_1 = L)$ ставятся мягкие граничные условия $u_{1,1}(L, x_2, t) = u_{2,1}(L, x_2, t) = 0$. Размеры расчетной области, шаги по пространству и времени, а также значения параметров Re, We иf приведены в табл. 2 (амплитуда a = 0.03 для режимов B—E и a = 0.1 для режима A).

31

Рис. 3. Граница раздела при t = 3 (а, б) и зависимость x_2 -координаты центра масс всплывающего "двумерного пузыря" от времени (в, г) для режимов I (а, в) и II (б, г). Сплошная линия – результаты настоящей работы; штриховая линия и точки – данные [12]; три разных маркера точек на рисунке (б) соответствуют расчетам по трем разным программам; на рисунках (а), (г) штриховая линия соответствует расчету с использованием кода MooNMD [12] (для режима І результаты по двум другим программам в масштабе рисунков ложатся на приведенные штриховые кривые).

Зависимости толщины пленки от продольной координаты для режимов А-Е изображены на рис. 5. Начальный этап развития волн может быть описан с помощью линейной теории устойчивости. Линеаризуя эволюционные уравнения Шкадова [14] и используя метод нормальных мод

Таблица 2. Рассматриваемые в работе режимы стекания пленки и комплексные волновые числа, которые являются решениями дисперсионных соотношений (3.1) и (3.2) с положительной фазовой скоростью и наименьшим по модулю отрицательным коэффициентом усиления k_i при $\omega = f/2\pi$

Режим	Re	We	f	Область	$\Delta_1, \Delta_2, \Delta t$	<i>k</i> – решение (3.1)	<i>k</i> – решение (3.2)
А	16.2	46.87	0.0054	1500 × 5	1, 0.1, 0.0050	0.01138 – 0.00068 <i>i</i>	0.01141 - 0.00082i
В	16.2	46.87	0.0252	600 × 2.2	1, 0.1, 0.0025	0.05847 - 0.01147i	0.06028 - 0.01294i
С	16.2	46.87	0.0404	1000×2.5	1, 0.1, 0.0020	0.10260 — 0.01787 <i>i</i>	0.10680 - 0.01882i
D	16.2	46.87	0.0718	1500 × 5	1, 0.1, 0.0050	0.17656 – 0.00861 <i>i</i>	0.18236 – 0.00819 <i>i</i>
E	32.4	46.87	0.0718	1500 × 5	1, 0.1, 0.0050	0.17839 - 0.00453i	0.18390 - 0.00426i

АЛЕКСЮК, ШКАДОВ

Рис. 4. Эволюция границы раздела между тяжелой и легкой жидкостью для задачи о неустойчивости Рэлея— Тейлора. Граница раздела изображена при t = 1 (а), 3 (б), 5 (в). Сплошная линия — результаты настоящей работы на сетке 100×200 ; штриховая линия — данные [13] на сетке 312×624 .

Рис. 5. Граница раздела для режимов А–Е: сплошная линия (синяя) – настоящая работа; штриховая линия (черная) на рисунке (б) – данные [16]; тонкая сплошная линия (красная) – линейный этап роста возмущений, соответствующий решению уравнения (3.2).

(толщина пленки разыскивается в виде $h(x_1, t) = 1 + \varepsilon \exp i(kx_1 - \omega t))$, получим дисперсионное соотношение

$$\frac{1}{3}\text{ReWe}k^4 - \frac{2}{5}\text{Re}k^2 + \left(3i + \frac{4}{5}\omega\text{Re}\right)k - \frac{1}{3}\text{Re}\omega^2 - i\omega = 0$$
(3.1)

Также рассматривается дисперсионное соотношение, полученное из уравнений второго порядка [15], в котором учитывается отклонение от параболического профиля скорости, используемого в методе Капицы–Шкадова

$$\frac{1}{3}\operatorname{ReWe}k^{4} + \frac{12}{5}ik^{3} - \left(\frac{18}{35}\operatorname{Re} + \frac{9}{5}i\omega\right)k^{2} + \left(3i + \frac{34}{35}\omega\operatorname{Re}\right)k - \frac{2}{5}\operatorname{Re}\omega^{2} - i\omega = 0$$
(3.2)

Рис. 6. Развитие границы раздела по времени и по пространству для режимов A и D: (а) и (б) – зависимости толщины пленки от времени для режимов A и D в точках $x_1 = 200$; 400; 600; 800; 1000; 1200; (в) – граница раздела для режима D в разные моменты времени с шагом $\Delta t = 14$ (значение $1/\Delta t \approx 0.0714$ близко к частоте на входе, f = 0.0718).

В уравнениях (3.1), (3.2) разыскивается комплексное волновое число $k = k_r + ik_i$, а частота ω считается известной и связана с вынужденной частотой на входе – $f = 2\pi\omega$. Если коэффициент усиления k_i отрицательный (положительный), то волны растут (затухают) по пространству. Подробный вывод дисперсионных соотношений, например, приведен в [15].

Для рассматриваемых случаев уравнения (3.1) и (3.2) имеют три корня, которые соответствуют растущим решениям, и один — затухающему. Так, например, для режима Е корнями дисперсионного соотношения (3.1) являются

$$0.1784 - 0.0045i; \quad 0.1073 - 0.2346i; \quad -0.3558 - 0.0217i; \quad 0.0700 + 0.2609i$$
(3.3)

Реализующимся при численном моделировании режимов А–Е решениям соответствуют корни с положительной фазовой скоростью и наименьшим по модулю значением коэффициента усиления $k_i < 0$, т.е. первый корень в данном случае. В табл. 2 приведены соответствующие корни для каждого режима. На рис. 5б–д представлено сопоставление результатов с линейной теорией устойчивости на основе дисперсионного соотношения (3.2) – для всех рассмотренных режимов скорости роста возмущений и волновые числа согласуются. Решение классического дисперсионного соотношения (3.1) дает близкие значения (см. табл. 2): частота отличается не более чем на 4%, по коэффициенту усиления отличие доходит до 11% и 16% при низких частотах (режимы A и B). На рис. 5а не представлено сопоставление с линейной теорией, поскольку в этом случае на фоне низкочастотных волн, определяемых частотой на входе, относительно быстро начинают нарастать более неустойчивые высокочастотные возмущения (см. рис. 5а при $x_1 \approx 400$).

Режимы B–D ранее моделировались в работе [16] (см. рис. 2a, b и d в [16]), в которой для однофазных течений применялся конечно-разностный метод маркеров в ячейках (marker-and-cell method) на сетках $\Delta_1 = 0.436$, $\Delta_2 = 0.08333$ и $\Delta t = 0.01$. Результаты расчетов согласуются между собой: это, например, видно при сопоставлении нелинейного этапа формирования волн и предельного волнового режима на рис. 56. Следует отметить, что предельные режимы также хорошо воспроизводятся путем определения оптимальных волн глобального аттрактора [17], полученного на основе интегральных эволюционных уравнений [14].

За развитием волновых структур можно проследить по графикам зависимости толщины от времени в фиксированных точках пространства и изменению поверхности раздела с течением времени, приведенным на рис. 6. Интересной особенностью, возникающей при численном моделировании, является волна, распространяющаяся в область безволнового решения. Для режимов A и D (с максимальным отличием по частоте возмущений во входном сечении) на рис. 6а, б

АЛЕКСЮК, ШКАДОВ

видно, что распространение этой волны происходит с похожей скоростью, приближенно равной 4 (однако для режима A граница фронта на плоскости (t, x_1) немного смещена вправо, что связано с различием амплитуды возмущений во входном сечении). Кроме того, на протяжении некоторого интервала времени после прохождения волны зависимость толщины от времени качественно повторяется для режимов A и D. На рис. 6в наблюдаются два переходных этапа. Сначала в результате потери устойчивости безволнового режима формируются регулярные волны. Эти волны также оказываются неустойчивыми — возникает вторая область перехода к предельному волновому режиму. При этом граница существования режима с регулярными волнами может смещаться на расстояния порядка сотен толщин пленки.

ЗАКЛЮЧЕНИЕ

Представлены результаты применения метода функции уровня в сочетании с расширенным методом конечных элементов для численного решения уравнений Навье—Стокса, описывающих двухфазные течения с границей раздела. Рассмотрены три задачи о течении с поверхностью раздела: о всплытии двумерного пузыря, о развитии неустойчивости Рэлея—Тейлора и о стекании пленки по вертикальной стенке. Во всех случаях результаты согласуются с данными других авторов. Описанный подход позволяет проводить количественные расчеты нестационарных двухфазных течений с поверхностью раздела в протяженных областях, а также задач с изменяющейся топологией поверхности раздела.

Работа выполнена при финансовой поддержке РФФИ в рамках научных проектов № 18-01-00762 и № 18-51-00006.

СПИСОК ЛИТЕРАТУРЫ

- Moës N., Dolbow J., Belytschko T. A finite element method for crack growth without remeshing // Int. J. Numer. Meth. Eng. 1999. V. 46. № 1. P. 131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
- 2. *Fries T.P.* The intrinsic XFEM for two-fluid flows // Int. J. Numer. Methods Fluids. 2009. V. 60. № 4. P. 437–471. https://doi.org/10.1002/fld.1901
- 3. *Fries T.P., Belytschko T.* The extended/generalized finite element method: An overview of the method and its applications // Int. J. Numer. Meth. Eng. 2010. V. 84. № 3. P. 253–304. https://doi.org/10.1002/nme.2914
- 4. *Sauerland H.* An XFEM Based Sharp Interface Approach for Two-Phase and Free-Surface Flows // Diss. RWTH Aachen. 2013.
- 5. *Sauerland H., Fries T.P.* The extended finite element method for two-phase and free-surface flows: A systematic study // J. Comput. Phys. 2011. V. 230. № 9. P. 3369–3390. https://doi.org/10.1016/j.jcp.2011.01.033
- Osher S., Fedkiw R.P. Level set methods: An overview and some recent results // J. Comput. Phys. 2001. V. 169. № 2. P. 463–502. https://doi.org/10.1006/jcph.2000.6636
- Hughes T.J.R., Franca L.P., Hulbert G.M. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations // Comput. Methods in Appl. Mech. Eng. 1989. V. 73. № 2. P. 173–189. https://doi.org/10.1016/0045-7825(89)90111-4
- Babuška I., Banerjee U. Stable Generalized Finite Element Method (SGFEM) // Comput. Methods in Appl. Mech. Eng. 2012. V. 201–204. P. 91–111. https://doi.org/10.1016/j.cma.2011.09.012
- Aleksyuk A.I., Shkadov V.Y. Analysis of three-dimensional transition mechanisms in the near wake behind a circular cylinder // Eur. J. Mech. B/Fluids. 2018. V. 72. P. 456–466. https://doi.org/10.1016/j.euromechflu.2018.07.011
- Aleksyuk A.I., Osiptsov A.N. Direct numerical simulation of energy separation effect in the near wake behind a circular cylinder // Int. J. Heat Mass Transfer. 2018. V. 119. P. 665–677. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.133
- Aleksyuk A.I. Influence of vortex street structure on the efficiency of energy separation // Int. J. Heat Mass Transfer. 2019. V. 135. P. 284–293. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.103

2020

- 12. *Hysing S., Turek S., Kuzmin D., Parolini N., Burman E., Ganesan S., Tobiska L.* Quantitative benchmark computations of two-dimensional bubble dynamics // Int. J. Numer. Methods Fluids. 2009. V. 60. № 11. P. 1259–1288. https://doi.org/10.1002/fld.1934
- 13. *Grenier N., Antuono M., Colagrossi A., Le Touzé, D., Alessandrini B.* An Hamiltonian interface SPH formulation for multi-fluid and free surface flows // J. Comput. Phys. 2009. V. 228. № 22. P. 8380–8393. https://doi.org/10.1016/j.jcp.2009.08.009
- 14. Шкадов В.Я. Волновые режимы течения тонкого слоя вязкой жидкости под действием силы тяжести // Изв. АН СССР. МЖГ. 1967. № 1. С. 43–51.
- Kalliadasis S., Ruyer-Quil C., Scheid B., Velarde M.G. Falling liquid films, V. 176 of Applied mathematical sciences. Springer London, London. 2012. https://doi.org/10.1007/978-1-84882-367-9
- Nosoko T., Miyara A. The evolution and subsequent dynamics of waves on a vertically falling liquid film // Phys. Fluids. 2004. V. 16. № 4. P. 1118–1126. https://doi.org/10.1063/1.1650840
- 17. *Белоглазкин А.Н., Шкадов В.Я., Кулаго А.Е.* Предельные волновые режимы при пространственном и временном развитии возмущений в стекающей пленке жидкости // Вестн. Моск. ун-та. Сер. 1. Матем. Mex. 2019. № 3. С. 58–64.