УДК 533.6.01

МЕТОДЫ УПРАВЛЕНИЯ ТЕЧЕНИЕМ В УСЛОВИЯХ СИЛЬНОГО ГИПЕРЗВУКОВОГО ВЗАИМОДЕЙСТВИЯ

© 2020 г. И.И.Липатов^{а,b,*}, В.К. Фам^{b,**}

^а Центральный аэрогидродинамический институт, Москва, Россия ^b Московский физико-технический институт, Москва, Россия

> * E-mail: igor_lipatov@mail.ru ** E-mail: van.fam@phystech.edu Поступила в редакцию 28.08.2019 г. После доработки 08.10.2019 г. Принята к публикации 08.10.2019 г.

Исследованы методы управления течением в ламинарном пограничном слое при локальном охлаждении поверхности. Получена зависимость скорости распространения возмущений вверх по потоку от температурного фактора поверхности обтекаемого тела. Исследованы методы управления течением в пограничном слое в условиях сильного вязко-невязкого взаимодействия за счет подавления процессов распространения возмущений вверх по потоку.

Ключевые слова: пограничный слой, распространение возмущений, теория сильного вязконевязкого взаимодействия, управление течением

DOI: 10.31857/S0568528120020097

Распространение возмущений в пограничных слоях связано с процессами конвекции и диффузии [1]. При анализе системы уравнений пограничного слоя [1, 2] показано, что характеристики этой системы уравнений представляют собой линии, нормальные к обтекаемой поверхности. Исследование системы характеристик и субхарактеристик позволяет анализировать зоны зависимости и влияния около обтекаемого тела. Из-за вязкости возникает область дозвукового обтекания в пограничном слое, поэтому существует возможность распространения возмущений вверх по потоку, обусловленная волновыми процессами. Эксперименты, утверждающие это рассуждение, показаны в [3].

Математическая модель, использованная для описания процесса распространения возмущений, основывается на предположении, что распределение давления заранее неизвестно из-за взаимодействия пограничного слоя с невязким внешним потоком, оно должно определиться с учетом процесса вязко-невязкого взаимодействия. Теоретические результаты и эксперименты показывают, что эффекты сильного вязко-невязкого взаимодействия играют важную роль не только при процессе распространения возмущений вверх по потоку, но и в течениях в областях с большим градиентом давления.

При анализе процесса распространения возмущений в пограничном слое в условиях вязконевязкого взаимодействия выяснилось, что с помощью анализа соответствующих субхарактеристик можно отделять области до- и сверхзвукового течений в гиперзвуковом пограничном слое. Для данного случая определение зон до- и сверхзвуковых течений сформулировано для потоков, в которых возмущения распространяются вверх по течению на расстояния, большие, чем толщина пограничного слоя [4]. Как показано при исследовании гиперзвуковых течений, для стационарного режима сильного взаимодействия имеет место распространение возмущений вверх по потоку вдоль всей поверхности вплоть до передней кромки.

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрено стационарное обтекание плоской поверхности (в том числе пластины и клина) гиперзвуковым потоком вязкого газа, расположенной под нулевым углом атаки к набегающему потоку. Предполагается, что число Маха набегающего потока велико и режим сильного вязконевязкого взаимодействия имеет место

ЛИПАТОВ, ФАМ

$$\mathbf{M}_{\infty} \ge 1, \quad \mathbf{M}_{\infty} \tau \ge 1$$
 (1.1)

где M_{α} – число Маха набегающего потока, τ – безразмерная толщина ламинарного пограничного слоя.

Декартова система координат связана с пластиной, ось OX направлена вдоль поверхности пластины, ось OY – по нормали к поверхности. Вводятся следующие обозначения для координат, отсчитываемых вдоль поверхности пластины и по нормали к ней, времени, компонентов вектора скорости, плотности, давления, полной энтальпии, коэффициента вязкости: lx, ly,

 lt/u_{∞} , $u_{\infty}u$, $u_{\infty}v$, $u_{\infty}w$, $\rho_{0}\rho$, $\rho_{\infty}u_{\infty}^{2}p$, $H_{\infty}g$, $\mu_{0}\mu$ соответственно. Параметр l – некоторая характерная длина обтекаемого тела, $\tau = O(\rho_{0}u_{\infty}l/\mu_{0})^{-1/2}$, где индекс " ∞ " относится к величинам в набегающем потоке, μ_{0} – величина динамического коэффициента вязкости при температуре торможения. Газ совершенный и характеризуется постоянной величиной отношения удельных теплоем-костей γ . Предполагается, что число Рейнольдса велико, но не превосходит критического значения, при котором происходит переход от ламинарного к турбулентному течению. Кроме того, при увеличении числа Маха также возрастает число Рейнольдса перехода [5].

Согласно теории сильного вязко-невязкого взаимодействия область возмущенного течения вблизи обтекаемого тела разделяется на две подобласти: невязкое течение и пограничный слой [6].

Для невязкого течения функции течения и координат могут представляться в асимптотическом виде

$$x = x_{1}, \quad y = \tau y_{1}$$

$$u(x, y, \tau) = 1 + \dots, \quad v(x, y, \tau) = v_{1}(x_{1}, y_{1}) + \dots$$

$$p(x, y, \tau) = \tau^{2} p_{1}(x_{1}, y_{1}) + \dots$$

$$\rho(x, y, \tau) = \rho(x_{1}, y_{1}) + \dots$$
(1.2)

Подставляя (1.2) в систему уравнений Навье–Стокса и учитывая предельный переход (1.1), получим следующую систему уравнений

$$\frac{\partial \rho_1}{\partial x_1} + \frac{\partial \rho_1 v_1}{\partial y_1} = 0$$
$$\frac{\partial v_1}{\partial x_1} + v_1 \frac{\partial v_1}{\partial y_1} + \frac{1}{\rho_1} \frac{\partial p_1}{\partial y_1} = 0$$
$$\frac{\partial}{\partial x_1} \left(\frac{p_1}{\rho_1^{\gamma}}\right) + v_1 \frac{\partial}{\partial y_1} \left(\frac{p_1}{\rho_1^{\gamma}}\right) = 0$$

со следующим граничными условиями на ударной волне

$$y_1 = g_1(x_1), \quad \rho_1 = \frac{\gamma + 1}{\gamma - 1}$$
$$p_1 = \frac{(\gamma + 1)v_1^2}{2}, \quad v_1 = \frac{2}{\gamma + 1}\frac{\partial g_1}{\partial x_1}$$

и на внешней границе пограничного слоя

$$y_1 = \delta_1(x_1);$$
 $v_1 = \frac{2}{\gamma + 1} \frac{\partial \delta_1}{\partial x_1}$

Для получения связи между толщиной пограничного слоя δ_1 и возмущением давления $p_1(x_1)$ использована формула Ньютона

$$p_1 = (\gamma + 1) v_1^2 / 2$$

Дальше, для пограничного слоя характерны следующие асимптотические разложения и представления координат: МЕТОДЫ УПРАВЛЕНИЯ ТЕЧЕНИЕМ

$$x = x_{1}, \quad y = \tau y_{1}$$

$$u(x, y, \tau) = u_{2}(x_{1}, y_{1}) + \dots, \quad v(x, y, \tau) = \tau v_{2}(x_{1}, y_{1}) + \dots$$

$$p(x, y, \tau) = \tau^{2} p_{2}(x_{1}) + \dots, \quad \rho(x, y, \tau) = \tau^{2} \rho_{2}(x_{1}, y_{1}) + \dots$$

$$H(x, y, \tau) = H_{2}(x_{1}, y_{1}) + \dots$$
(1.3)

Подставляя (1.3) в систему уравнений Навье–Стокса и учитывая предельный переход (1.1), можно получить систему уравнений стационарного пограничного слоя. С помощью замены переменных (Дородницына–Лиза)

$$X = x_{1}, \quad Y = \sqrt{\frac{2\gamma C_{0}}{\gamma - 1}} x_{1}^{-1/4} \int_{0}^{y_{1}} R dy_{1}$$
$$u_{2} = \frac{\partial F}{\partial Y}, \quad p_{2} = x_{1}^{-1/2} P, \quad \rho_{2} = x_{1}^{-1/2} R$$
$$C_{0} = P_{X=0}, \quad G = H_{2}, \quad Q = G - U^{2}$$

определяется следующая система уравнений:

$$X\left(U\frac{\partial U}{\partial X} - \frac{\partial F}{\partial X}\frac{\partial U}{\partial Y}\right) - \frac{F}{4}\frac{\partial U}{\partial Y} + \beta\frac{\gamma - 1}{4\gamma}Q = \frac{P}{C_0}\frac{\partial^2 U}{\partial Y^2}$$

$$X\left(U\frac{\partial G}{\partial X} - \frac{\partial F}{\partial X}\frac{\partial G}{\partial Y}\right) - \frac{F}{4}\frac{\partial G}{\partial Y} = \frac{P}{C_0}\frac{\partial^2 G}{\partial Y^2}$$
(1.4)

с граничными условиями

$$U = F = 0, \quad G = g_w, \quad Y = 0$$
$$U = G = 1, \quad Y = \infty$$

где введены

$$\gamma = 1.4, \quad C_0 = P_{X=0}, \quad U = \frac{\partial F}{\partial Y}, \quad Q = G - U^2, \quad \beta = -1 + \frac{2X}{P} \frac{\partial P}{\partial X}$$
$$\Delta = \sqrt{\frac{(\gamma - 1)C_0}{2\gamma P^2}} \int_0^\infty Q dY \tag{1.5}$$

$$P = \frac{(\gamma+1)}{2} \left(\frac{3\Delta}{4} + X\frac{\partial\Delta}{\partial X}\right)^2 \tag{1.6}$$

Здесь $F - функция тока, U - продольная скорость, <math>G - энтальпия, P_{X=0} - давление при X = 0,$ $<math>\Delta$ - толщина вытеснения пограничного слоя, P - поле давления течения, g_w - температурный фактор.

2. ЧИСЛЕННЫЙ МЕТОД

Для решения задачи использован метод конечных разностей второго порядка точности по X и шестого порядка точности по Y, Δ вычисляется формулой Симпсона четвертого порядка точности.

Для дискретизации по *Y* воспользовалась неявная трехточечная компактная схема шестого порядка точности [7, 8].

В отличие от обычных конечных разностных схем производные первого и второго порядка определены неявным образом.

Для внутренних точек [7] применяются

$$\frac{(7f'_{i-1} + 16f''_{i} + 7f'_{i+1})}{16} + \frac{\Delta Y(f''_{i-1} - f''_{i+1})}{16} = \frac{15}{16\Delta Y}(f_{i+1} - f_{i-1}) + \frac{1349}{7781760}f_i^{(7)}\Delta Y^6$$
$$\frac{9(-f'_{i-1} + f'_{i+1})}{8\Delta Y} - \frac{1}{8}(f''_{i-1} + 8f''_{i} + f''_{i+1}) = \frac{3}{\Delta Y^2}(f_{i-1} - 2f_i + f_{i+1}) + \frac{1}{20160}f_i^{(8)}\Delta Y^6$$

Для граничных точек [8] используются

$$\begin{split} f_1' + \alpha f_2' &= \frac{(c_1 f_1 + c_2 f_2 + c_3 f_3 + c_4 f_4 + c_5 f_5 + c_6 f_6)}{\Delta Y} + O(\Delta Y^6) \\ f_{N-1}' + \alpha f_N' &= -\frac{(c_1 f_N + c_2 f_{N-1} + c_3 f_{N-2} + c_4 f_{N-3} + c_5 f_{N-4} + c_6 f_{N-5})}{\Delta Y} + O(\Delta Y^6) \\ \alpha &= 5, \quad c_1 = \frac{-197}{60}, \quad c_2 = \frac{-5}{12}, \quad c_3 = 5, \quad c_4 = \frac{-5}{3}, \quad c_5 = \frac{5}{12}, \quad c_6 = \frac{-1}{20} \\ f_1'' + \beta f_2'' &= \frac{(d_1 f_1 + d_2 f_2 + d_3 f_3 + d_4 f_4 + d_5 f_5 + d_6 f_6 + d_7 f_7)}{\Delta Y^2} + O(\Delta Y^6) \\ f_{N-1}'' + \beta f_N'' &= \frac{(d_1 f_N + d_2 f_{N-1} + d_3 f_{N-2} + d_4 f_{N-3} + d_5 f_{N-4} + d_6 f_{N-5} + d_7 f_{N-6})}{\Delta Y^2} + O(\Delta Y^6) \\ \beta &= \frac{126}{11}, \quad c_1 = \frac{2077}{157}, \quad c_2 = \frac{-2943}{110}, \quad c_3 = \frac{573}{44}, \\ c_4 &= \frac{167}{99}, \quad c_5 = \frac{-18}{11}, \quad c_6 = \frac{57}{110}, \quad c_7 = \frac{-131}{1980} \end{split}$$

Для определения 2N неизвестных f'_i , f''_i , i = 1...N используются 2N линейных уравнений, в том числе 2(N-2) уравнений для внутренних точек и 4 уравнения для граничных точек

$$\begin{bmatrix} A_{1} & B_{1} \\ A_{2} & B_{2} \end{bmatrix} \begin{bmatrix} f \\ f' \end{bmatrix} = \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix} \begin{bmatrix} f \end{bmatrix}$$

$$A_{1} = \frac{1}{16} \begin{bmatrix} 1 & \alpha & 0 & 0 & \dots & 0 \\ 7 & 16 & 7 & \dots & 0 \\ 0 & 7 & 16 & 7 & \dots & 0 \\ 0 & 0 & 7 & 16 & 7 & \dots \\ 0 & 0 & 0 & 0 & \alpha & 1 \end{bmatrix} \qquad B_{1} = \frac{\Delta Y}{16} \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & \dots & 0 \\ 0 & 0 & 1 & 0 & -1 & \dots \\ 0 & 0 & 0 & 0 & \alpha & 1 \end{bmatrix}$$

$$A_{2} = \frac{9}{8\Delta Y} \begin{bmatrix} 0 & 0 & 0 & 0 & \dots & 0 \\ -1 & 0 & 1 & 0 & \dots & 0 \\ 0 & -1 & 0 & 1 & \dots & 0 \\ 0 & -1 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B_{2} = -\frac{1}{8} \begin{bmatrix} 1 & \beta & 0 & \dots & 0 \\ 1 & 8 & 1 & \dots & 0 \\ 0 & 1 & 8 & 1 & \dots & 0 \\ 0 & 1 & 8 & 1 & \dots & 0 \\ 0 & 0 & 1 & 8 & 1 & \dots \\ 0 & 0 & 1 & 8 & 1 & \dots \\ 0 & 0 & 1 & 8 & 1 & \dots \\ 0 & 0 & 1 & 8 & 1 & \dots \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$C_{1} = \frac{15}{16\Delta Y} \begin{bmatrix} c_{11} & c_{12} & \dots & c_{16} & \dots & 0 \\ -1 & 0 & 1 & 0 & \dots & 0 \\ 0 & -1 & 0 & 1 & \dots & 0 \\ 0 & \dots & -1 & 0 & 1 & \dots & 0 \\ 0 & \dots & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C_{2} = \frac{3}{\Delta Y^{2}} \begin{bmatrix} d_{11} & d_{12} & \dots & d_{17} & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 \\ 0 & 1 & -2 & 1 & 0 & \dots \\ 0 & 1 & -2 & 1 & 0 & \dots \\ 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & \dots & 0 & 1 & -2 & 1 \\ 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

Для дискретизации по Хиспользовалась разностная схема второго порядка точности [9]

$$\begin{pmatrix} A \frac{\partial f}{\partial X} \end{pmatrix}_{I,J} = \frac{A_{I,J} + |A_{I,J}|}{2} \frac{3f_{I,J} - 4f_{I-1,J} + f_{I-2,J}}{2\Delta X} - \frac{A_{I,J} - |A_{I,J}|}{2} \frac{3f_{I,J} - 4f_{I+1,J} + f_{I+2,J}}{2\Delta X} \\ \left(\frac{\partial p}{\partial X} \right)_{I,J} = \frac{p_{I+1,J} - p_{I-1,J}}{2\Delta X};$$

$$I = 2, \quad \left(\frac{\partial \Delta}{\partial X} \right)_{I,J} = \frac{\Delta_{I,J} - \Delta_{I-1,J}}{\Delta X}; \quad I \ge 3, \quad \left(\frac{\partial \Delta}{\partial X} \right)_{I,J} = \frac{3\Delta_{I,J} - 4\Delta_{I-1,J} + \Delta_{I-2,J}}{2\Delta X}$$

Как представлено выше, из-за вязко-невязкого взаимодействия распределение давления заранее неизвестно, оно определяется в процессе решения задачи. Предлагается модификационный релаксационный метод для определения распределения давления [9–11]. На каждом шаге итерационной процедуры вводится функция невязки, представляющая собой разность между заданным и полученным в процессе решения задачи распределениями давления. Эта функция представляет собой решение обыкновенного дифференциального второго порядка относительно давления.

Пусть в начале *n*-й итерации задано распределение давления $p^{(n)}(x)$ на равномерной по *x* сетке в расчетной области [0, 1], удовлетворяющее граничному условию $p^{(n)}(0) = P_0$, $p^{(n)}(1) = P_1$. Тогда система уравнений (1.4) решается численно релаксационным методом. Рассчитанные переменные U(x, y), G(x, y) позволяют определить толщину вытеснения $\Delta^{(n)}(x)$ с помощью (1.5), таким образом вычислить полученное распределение давления $p_{\delta}^{(n)}(x)$ с помощью (1.6). Новое распределение давления определяется следующим образом:

$$p^{(n+1)}(x) = p^{(n)}(x) + \Delta p^{(n)}(x)$$

где функция поправки $\Delta p^{(n)}(x)$ представляет собой решение обыкновенного дифференциального уравнения второго порядка с граничными условиями. В отличие от итерационного метода, предложенного в [9], в данной статье вводится еще коэффициент α_1 , так что введение нового коэффициента позволяет ускорять итерационную процедуру

$$\frac{d^2 \Delta p^{(n)}}{dx^2} + \alpha_1 \frac{d \Delta p^{(n)}}{dx} - \alpha \Delta p^{(n)} = \alpha (p^{(n)} - p_{\delta}^{(n)}), \quad \Delta p^{(n)} (x = 0; 1) = 0$$

где α , α_1 – некоторые положительные константы

Итерационный процесс продолжается до тех пор, пока функции не совпадут с заданной точностью на всем расчетном интервале. Для обеспечения устойчивости итерационного процесса, численные эксперименты показывают, что значения коэффициентов α , α_1 должны лежать в следующих интервалах $0.01 \le \alpha \le 0.5$, $-30 \le \alpha_1 \le -20$. Итерационный процесс закончится, если удовлетворяются критерии для абсолютной разности $\max(p^{(n)}(x) - p_{\delta}^{(n)}(x)) \le 5 \times 10^{-5}$ или для относительной разности $\max(\{p^{(n)}(x) - p_{\delta}^{(n)}(x)\}/p^{(n)}(x)\} \le 10^{-4}$. Требуются 150–300 итераций для достижения этого критерия сходимости.

Чтобы доказать утверждение о том, что $\Delta p^{(n)}(x) \to 0$, $p^{(n+1)}(x) - p^{(n)}(x) \to 0$ при $p^{(n)}(x) - p_{\delta}^{(n)}(x) \to 0$, рассмотрим однородную задачу

$$\frac{d^{2}\Delta p^{(n)}}{dx^{2}} + \alpha_{1}\frac{d\Delta p^{(n)}}{dx} - \alpha\Delta p^{(n)} = 0, \quad \Delta p^{(n)} (x = 0; 1) = 0$$

$$\Delta p^{(n)} = C_{10}e^{\gamma_{1}x} + C_{20}e^{\gamma_{2}x}, \quad \gamma_{1,2} = -\alpha_{1} \pm \sqrt{\alpha_{1}^{2} + 4\alpha}$$

$$\Delta p^{(n)} (x = 0; 1) = 0 \Rightarrow \begin{cases} C_{10}e^{0} + C_{20}e^{0} = 0\\ C_{10}e^{\gamma_{1}} + C_{20}e^{\gamma_{2}} = 0 \end{cases} \Rightarrow \begin{cases} C_{10} = 0\\ C_{20} = 0 \end{cases}$$

$$\Delta p^{(n)} (x) \equiv 0 \quad \forall x$$

В этом случае обыкновенное дифференциальное уравнение второго порядка имеет только тривиальное решение.

Система уравнений (1.4) записана в следующем виде:

$$\frac{\partial F}{\partial Y} - U = 0$$

$$X\left(U\frac{\partial U}{\partial X} - \frac{\partial F}{\partial X}\frac{\partial U}{\partial Y}\right) - \frac{F}{4}\frac{\partial U}{\partial Y} + \beta\frac{\gamma - 1}{4\gamma}Q = \frac{P}{C_0}\frac{\partial^2 U}{\partial Y^2}$$

$$X\left(U\frac{\partial G}{\partial X} - \frac{\partial F}{\partial X}\frac{\partial G}{\partial Y}\right) - \frac{F}{4}\frac{\partial G}{\partial Y} = \frac{P}{C_0}\frac{\partial^2 G}{\partial Y^2}$$

Система уравнений (1.4) решена маршевым методом, процесс решения идет слева направо по каждому слою по *X*.

При X = 0 задача для первого слоя станет автомодельной

$$\frac{\partial F}{\partial Y} - U = 0$$

$$\frac{F}{4} \frac{\partial U}{\partial Y} + \frac{\gamma - 1}{4\gamma} (G - U^2) + \frac{\partial^2 U}{\partial Y^2} = 0$$

$$\frac{F}{4} \frac{\partial G}{\partial Y} + \frac{\partial^2 G}{\partial Y^2} = 0$$

Для следующих слоев по *X* имеем следующую систему уравнений для фиксированного значения *X*:

$$D_{IY}F_{I,J} - U_{I,J} = 0$$

$$X_{I}U_{I,J} \frac{\partial U_{I,J}}{\partial X} - X_{I} (D_{IY}U_{I,J}) \frac{\partial F_{I,J}}{\partial X} - \frac{F_{I,J}}{4} (D_{IY}U_{I,J}) + \beta_{I} \frac{\gamma - 1}{4\gamma} (G_{I,J} - U_{I,J}^{2}) = \frac{P_{I}}{C_{0}} (D_{2Y}U_{I,J})$$

$$X_{I}U_{I,J} \frac{\partial G_{I,J}}{\partial X} - X_{I} (D_{IY}G_{I,J}) \frac{\partial F_{I,J}}{\partial X} - \frac{F_{I,J}}{4} (D_{IY}G_{I,J}) = \frac{P_{I}}{C_{0}} (D_{2Y}G_{I,J})$$

Система уравнений представлена в матричном виде

$$\begin{bmatrix} D_{1Y} & -I & Z \\ Z & (XDuDx - XDfxDy) - FDy/4 - BGU - D_{2Y}, & \text{diag}(BGi) \\ Z & XDgDx & -XDfxDy - FDy/4 - D_{2Y} \end{bmatrix} \begin{bmatrix} F_0 \\ U_0 \\ G_0 \end{bmatrix} = \begin{bmatrix} RHS_1 \\ RHS_2 \\ RHS_3 \end{bmatrix}$$
(2.1)
$$C_{3ny^*3ny} \begin{bmatrix} F_0 \\ U_0 \\ G_0 \end{bmatrix}_{3N_Y \times 1} = \begin{bmatrix} RHS_1 \\ RHS_2 \\ RHS_3 \end{bmatrix}_{3N_Y \times 1}$$
$$U_{12} = U_{I-2,J}, \quad U_{11} = U_{I-1,J} \\ F_{12} = F_{I-2,J}, \quad F_{11} = F_{I-1,J} \\ G_{12} = G_{I-2,J}, \quad G_{11} = G_{I-1,J} \end{bmatrix}$$

Вводятся следующие обозначения:

$$\operatorname{diag}([V_1, V_2, \dots, V_n]^{\mathsf{T}}) = \begin{bmatrix} V_1 & 0 & \dots & 0 \\ 0 & V_2 & \dots & 0 \\ 0 & \dots & V_{n-1} & 0 \\ 0 & \dots & 0 & V_n \end{bmatrix}$$
$$[U_1, U_2, \dots, U_n] \cdot * [V_1, V_2, \dots, V_n] = [U_1 V_1, U_2 V_2, \dots, U_n V_n]$$

Рис. 1. Распределение давления при различных шагах дискретизаций по X (а) и Y (б): а -1-3-dX=0.02; 0.025; 0.033; б -1-3-dY=0.2; 0.25; 0.33.

$$XDuDx = \operatorname{diag}\left(\frac{X_{I}\left(U_{12} - 4U_{11} + 3U_{0}\right)}{2\Delta X}\right)$$
$$XDgDx = \operatorname{diag}\left(\frac{X_{I}\left(G_{12} - 4G_{11} + 3G_{0}\right)}{2\Delta X}\right)$$
$$XDfxDy = \operatorname{diag}\left(\frac{X_{I}\left(F_{12} - 4F_{11} + 3F_{0}\right)}{2\Delta X}\right). * D_{1Y}$$
$$FDy = \operatorname{diag}\left(F_{0}\right) * D_{1Y}$$
$$\operatorname{ones}\left(N_{Y}, N_{X}\right) = \begin{bmatrix}1 & 1 & \dots & 1\\ 1 & 1 & \dots & 1\\ \dots & \dots & \dots\\ 1 & 1 & \dots & 1\end{bmatrix}_{N_{Y}} \times N_{X}$$
$$BGi = \frac{\gamma - 1}{4\gamma} \left(-\operatorname{ones}\left(N_{Y}, 1\right) + 2 * \left((X./P) * DpDx\right)\right)_{I}$$
$$BGU = \operatorname{diag}(BGi. * U_{0})$$

Здесь Z, I – нулевая и единичная матрицы размера $N_Y \times N_Y$; N_X , N_Y – число узлов при дискретизациях по X и Y соответственно; D_{1Y} , D_{2Y} – дифференциальные матрицы первого и второго порядков, которые определены неявной компактной схемой шестого порядка точности. Размер этих матриц равен $N_Y \times N_Y$; F_0 , U_0 , G_0 – решение задачи на данном слое по X; F_{11} , U_{11} , G_{11} , F_{12} , U_{12} , G_{12} – решение задачи на двух предыдущих слоях по X; RHS – правая часть; (2.1) представляет собой систему нелинейных уравнений, для ее решения использовался квазиньютоновский метод (метод Бройдена [12]).

3. РЕЗУЛЬТАТЫ

В данной статье рассмотрены методы управления течением в гиперзвуковом пограничном слое в условиях сильного вязко-невязкого взаимодействия.

На рис. 1 представлено влияние шагов дискретизаций по пространству на распределение давления, показано, что шаги дискретизаций dX = 0.025, dY = 0.25 обеспечивают необходимую точность решения задачи. Поэтому для дальнейших расчетов воспользовались эти дискретизации по пространству.

Для показа методов управления течения выбрана величина донного давления $P_{X=1} = P_{X=0} \pm 0.1$ и температурный фактор $g_w = 0.8$. Для этого случая температурный фактор уменьшается по линейному закону на участке поверхности X = 0.75 - 0.85 с минимумом g_{w0} при X = 0.8. Скорость распространения возмущений вверх по потоку определяется через модифицированный интеграл Пирсона [13]

Рис. 2. Распределение давления (а) и скорости распространения возмущений вверх по потоку (б) при уменьшении температурного фактора участка поверхности X = 0.75 - 0.85 с минимумом g_{w0} при X = 0.8 и $P_{X=1} = P_{X=0} + 0.1$, $g_w = 0.8$: $I - 4 - g_{w0} = 0.8$; 0.4; 0.2; 0.05.

Рис. 3. Распределение давления (а) и скорости распространения возмущений вверх по потоку (б) при уменьшении температурного фактора участка поверхности X = 0.75 - 0.85 с минимумом g_{w0} при X = 0.8 и $P_{X=1} = P_{X=0} - 0.1$, $g_w = 0.8$: 1-4 как на рис. 3.

$$\frac{\gamma - 1}{2} \int_{0}^{\infty} \frac{(G - U^{2})^{2}}{(U + a)^{2}} dY - \int_{0}^{\infty} (G - U^{2}) dY = 0$$

На рис. 2, 3 показано, что при охлаждении участка поверхности наблюдалось уменьшение скорости распространения возмущений вверх по потоку. Скорость распространения возмуще-

Рис. 4. Распределение давления (а) и скорости распространения возмущений (б), распределение трения (в) и теплового потока (г) на пластине при уменьшении температурного фактора поверхности пластины, участок уменьшения температурного фактора X = 0.25 - 0.5 с температурным фактором g_{w0} , $P_{X=1} = P_{X=0} + 0.1$, $g_w = 0.8$: $1 - 4 - g_{w0} = 0.8$; 0.3; 0.15; 0.1.

ний стремится к нулю при температурном факторе, стремящемуся к нулю. Это есть эффект блокировки подачи возмущений вверх по потоку. Поэтому можно охлаждать участок поверхности для управления течением в гиперзвуковом пограничном слое.

Рассмотрено влияние охлаждения поверхности на распределение вязкого трения на пластине. На рис. 4 показано, что при внезапном уменьшении температурного фактора на участке X = 0.25 - 0.5 трение на пластине при X = 0.5 стремится к нулю. Можно видеть, что при уменьшении температурного фактора до нуля будет появляться отрывное течение при X = 0.5. Исследуя распределение теплового потока на пластине, мы заметим резкое изменение теплового потока на участке X = 0.25 - 0.50 особенно при X = 0.25 с максимумом $G'(X = 0.25, Y = 0) \approx 0.8$ и при X = 0.5 с минимумом $G'(X = 0.5, Y = 0) \approx -0.45$.

Рис. 5. Распределение давления (а) и скорости распространения возмущений (б), распределение трения (в) и теплового потока (г) на пластине при уменьшении температурного фактора поверхности пластины, участок уменьшения температурного фактора X = 0.5 - 1.0 с температурным фактором g_{w0} , как на рис. 4: $1 - 4 - g_{w0} = 0.8$; 0.6; 0.55; 0.5.

Дальше рассмотрено влияние охлаждения поверхности на распределение вязкого трения на пластине. На рис. 5 показано, что при внезапном уменьшении температурного фактора на участке X = 0.5-1 до определенной величины вязкое трение на задней кромке уменьшается до нуля. В результате чего возможно возникновение возвратного течения на задней кромке. Как и в предыдущем варианте, в этом случае также наблюдалось резкое изменение потока тепла на пластине, особенно при X = 0.5 с максимумом $G(X = 0.5, Y = 0) \approx 0.45$.

Дальше рассмотрен случай теплоизолированной пластины $(\partial G/\partial Y)_{Y=0} = 0$. Численные результаты, приведенные на рис. 6, показывают, что граничное условие типа Дирихле $g_w = 1$ и граничное условие теплоизолированности $(\partial G/\partial Y)_{Y=0} = 0$ эквивалентны друг другу.

Рис. 6. Распределение давления (а) и трения на пластине (б) при разных видах граничных условий для температурного фактора: $1 - g_w = 1$; 2 - G'(0) = 0.

ЗАКЛЮЧЕНИЕ

В статье показано, что в условиях сильного вязко-невязкого взаимодействия с помощью охлаждения участка обтекаемой поверхности можно воздействовать на аэротермодинамические характеристики течения.

В рассматриваемом случае существенную роль могут играть процессы распространения возмущений вверх по потоку. Установлено, что охлаждение поверхности препятствует распространению возмущений. Исследованы различные режимы охлаждения поверхности. Изученный метод управления течением в ламинарном пограничном слое не имеет аналогов в литературе.

Статья поддержана грантом Министерства образования и науки РФ (договор № 14.G39.31.0001 от 13.02.2017 г.) и грантом РФФИ (проект № 17-01-00129 а).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Нейланд В.Я., Боголепов В.В., Дудин Г.Н., Липатов И.И.* Асимптотическая теория сверхзвуковых течений вязкого газа, М.: ФИЗМАТЛИТ, 2003. 456 с.
- 2. *Wang K.C.* On the determination of the zones of influence and dependence for three-dimensional boundary layer equations // J. Fluid Mech. 1971. V. 48. Pt. 2. P. 397–404.
- 3. Lighthill M.J. On Boundary Layers and Upstream Influence // Proc. Roy. Soc. 1953. Ser. A. V. 217. P. 476-507.
- Crocco L. Consideration on the shock boundary layer interactions // Proc. Conf. High Speed Aeron. New York, 1955. Brooklyn: Polytechnic. Inst. P. 75–112.
- 5. *Chapman D.R., Kuehn D., Larson H.* Investigation of separated flows with emphasis on the effect of transition // NACA Rept. 1958. №. 1356.
- 6. *Липатов И.И., Чжо Т.А.* Распространение возмущений в сверхзвуковых пограничных слоях // Тр. МФТИ. 2010. Т. 2. № 2. С. 113–117.
- Chu P.C., Fan C. A Three Point Combined Compact Difference Scheme // Journal of Computational Physics. 1998. V. 140. P. 370–399.
- Li Jichun, Chen Yi-Tung. Computational Partial Differential Equations Using MATLAB, CRC Press, 2008. 384 p. ISBN-10: 1420089048
- 9. Башкин В.А., Дудин Г.Н. Пространственные гиперзвуковые течения вязкого газа. М.: Физмалит, 2000. 289 с.
- 10. Дудин Г.Н., Ледовский А.В. Течение в окрестности точки излома передней кромки тонкого крыла на режиме сильного взаимодействия // Уч. зап. ЦАГИ. 2011. Т. 42. № 2. С. 11–25.
- 11. Дудин Г.Н., Лыжин Д.О. Об одном методе расчета режима сильного вязкого взаимодействия на треугольном крыле // Изв. АН СССР. МЖГ. 1983. № 4. С. 119–124.
- 12. Broyden C.G. A Class of Methods for Solving Nonlinear Simultaneous Equations // Mathematics of Computation. 1965. V. 19. № 92. P. 577–593.
- 13. *Pearson H., Holliday J.B., Smith S.F.* A theory of the cylindrical ejector propelling nozzle // J. Roy. Aeron. Soc. 1958. V. 62. № 574. P. 746–751.