УДК 539.374

МОДИФИЦИРОВАННАЯ ТЕОРИЯ ПЛАСТИЧНОСТИ ДЛЯ МОНОТОННЫХ И ЦИКЛИЧЕСКИХ ПРОЦЕССОВ ДЕФОРМИРОВАНИЯ

© 2021 г. Д. Р. Абашев^{*a*}, В. С. Бондарь^{*a*,*}

^а Московский политехнический университет, Москва, Россия *e-mail: v.s.bondar@mospolytech.ru

> Поступила в редакцию 01.11.2018 г. После доработки 08.10.2019 г. Принята к публикации 05.12.2019 г.

На основе анализа результатов экспериментальных исследований образцов из нержавеющей стали 12X18Н10Т при жестком (контролируемые деформации) процессе деформирования, включающем в себя последовательности монотонных и циклических режимов нагружения, выявлены некоторые особенности и различия процессов изотропного и анизотропного упрочнений при монотонных и циклических нагружениях. Для описания этих особенностей в рамках теории пластичности в пространстве тензора пластических деформаций вводится критерий смены направления пластического деформирования и поверхность памяти, позволившие разделить процессы монотонного и циклического деформирования. Для описания переходных процессов формулируются эволюционные уравнения для параметров изотропного и анизотропного упрочнений. Сравниваются расчетные и экспериментальные изменения напряженно-деформированных состояний по процессу монотонных и циклических нагружений.

Ключевые слова: монотонные и циклические нагружения, теория пластичности, поверхность памяти, базовый эксперимент, метод идентификации

DOI: 10.31857/S0572329921010025

Введение. Нестационарные и несимметричные процессы циклического деформирования состоят из последовательности монотонных и циклических режимов нагружения. Математическое моделирование таких процессов в условиях жесткого (контролируемые деформации) нагружения и особенно мягкого (контролируемые напряжения) нагружения представляют собой весьма сложную задачу. К тому же при реализации таких режимов возникают трудно описываемые процессы посадки и вышагивания (ratcheting) петли гистерезиса. Что же касается оценки и прогнозирования ресурса в условиях нестационарных и несимметричных циклических нагружений, то в этих случаях накопление повреждений необходимо определять по всему процессу деформирования, учитывая, что накопление повреждений существенно нелинейно.

Математическое моделирование процессов деформирования и накопления повреждений при циклических нагружениях строится, в основном, на вариантах теорий пластичности, относящихся к классу теорий пластического течения при комбинированном (изотропном и анизотропном) упрочнении, обзор и анализ которых содержатся в работах [1–12]. В настоящей работе математическое моделирование процессов деформирования и накопления повреждений базируется на варианте теории пластичности [1, 9], который, как показано в работе [10], является наиболее адекватным вариантом описания процессов деформирования и разрушения при циклических нагружениях по сравнению с моделями Коротких [2] и Шабоша [6–8].

Для выявления особенностей деформирования при нестационарном и несимметричном циклическом нагружении рассматривается жесткое нагружение в условиях растяжения-сжатия образцов из нержавеющей стали 12Х18Н10Т, которое представляет собой последовательность пяти этапов: циклическое, монотонное, циклическое монотонное, циклическое вплоть до разрушения. Анализ переходных процессов от циклического к монотонному и от монотонного к циклическому показывает необходимость разделения процессов монотонного и циклического деформирования. Для этого в пространстве пластических деформаций вводится критерий смены направления пластического деформирования и поверхность памяти, разделяющая циклические и монотонные процессы деформирования. Далее в уравнения теории пластичности вводятся уравнения эволюции параметров изотропного и анизотропного упрочнений для монотонных и циклических режимов нагружения.

Разделение процессов монотонного и циклического деформирования имеет место и в модели Коротких [2–4], но только для описания эволюции изотропного упрочнения. Поверхность памяти в этой модели строится в пространстве девиатора микронапряжений с определением в процессе деформирования максимального значения интенсивности микронапряжений. В работах [2, 11] для описания эволюции анизотропного упрочнения в пространстве девиатора пластических деформаций вводится поверхность памяти с определением в процессе деформирования интенсивности максимальной амплитуды пластической деформации. Далее в работе [12] для описания эволюции анизотропного упрочнения используется такая же поверхность памяти, как и ранее для изотропного упрочнения. Все эти подходы [2, 11, 12] обладают одним существенным недостатком – достигнутый размер поверхности памяти имеет возможность в конце цикла и уменьшиться и увеличиться и это приводит к тому, что в конце каждого цикла возможно как монотонное, так и циклическое нагружение. К томе же согласно эволюционному уравнению для максимальной интенсивности микронапряжений при циклическом нагружении эта величина всегда уменьшается, хотя она должна оставаться постоянной на стабилизированном цикле. В заключение следует также сказать, что достаточного обоснования рассматриваемых подходов [2, 11, 12] в литературе нет.

С учетом выявленных особенностей монотонных и циклических нагружений для уточненных уравнений модифицированной теории пластичности определен базовый эксперимент и сформулирован метод идентификации материальных функций. Получены материальные функции нержавеющей стали 12Х18Н10Т при комнатной температуре. Приводится сравнение результатов расчетных и экспериментальных исследований нержавеющей стали 12Х18Н10Т при жестком нагружении, состоящем из последовательности монотонных и циклических режимов нагружения. Анализируется кинетика напряженно-деформированного состояния, рассматриваются изменения размаха и среднего напряжения цикла в процессе этапов циклических нагружений.

1. Основные уравнения теории пластичности. Рассматривается весьма простой вариант теории пластичности [9, 10], являющийся частичным вариантом теории неупругости [1]. Вариант теории пластичности относится к классу одноповерхностных теорий течения при комбинированном упрочнении. Область применимости варианта теории пластичности ограничивается малыми деформациями начально изотропных металлов при температурах, когда нет фазовых превращений, и скоростях деформаций, когда динамическими и реологическими эффектами можно пренебречь. Далее приводится сводка основных уравнений варианта теории пластичности.

$$\dot{\boldsymbol{\varepsilon}} = \dot{\boldsymbol{\varepsilon}}^{\mathbf{e}} + \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} \tag{1.1}$$

$$\dot{\boldsymbol{\varepsilon}}^{\mathbf{e}} = \frac{1+\nu}{E} \dot{\boldsymbol{\sigma}} - \frac{\nu}{E} \operatorname{tr}(\dot{\boldsymbol{\sigma}}) \mathbf{I}$$
(1.2)

$$f(\mathbf{\sigma}) = \frac{3}{2}(\mathbf{s} - \mathbf{a}) : (\mathbf{s} - \mathbf{a}) - C^2 = 0$$
(1.3)

$$\dot{C} = q_{\varepsilon} \dot{\varepsilon}_{u^*}^p, \quad \dot{\varepsilon}_{u^*}^p = \left(\frac{2}{3} \dot{\varepsilon}^{\mathbf{p}} : \dot{\varepsilon}^{\mathbf{p}}\right)^{\frac{1}{2}}$$
(1.4)

$$\dot{\mathbf{a}} = \sum_{m=1}^{M} \dot{\mathbf{a}}^{(m)} \tag{1.5}$$

$$\dot{\mathbf{a}}^{(1)} = \frac{2}{3}g^{(1)}\dot{\mathbf{\epsilon}}^{\mathbf{p}} + g_a^{(1)}\mathbf{a}^{(1)}\dot{\mathbf{\epsilon}}_{u^*}^p$$
(1.6)

$$\dot{\mathbf{a}}^{(2)} = \frac{2}{3}g^{(2)}\dot{\mathbf{\varepsilon}}^{\mathbf{p}} + g_a^{(2)}\mathbf{a}^{(2)}\dot{\mathbf{\varepsilon}}_{u^*}^p \tag{1.7}$$

$$\dot{\mathbf{a}}^{(m)} = \frac{2}{3} g^{(m)} \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} \quad (m = 3, ..., M)$$
 (1.8)

$$\dot{\boldsymbol{\varepsilon}}^{\mathbf{p}} = \frac{\partial f}{\partial \boldsymbol{\sigma}} \boldsymbol{\lambda} = \frac{3}{2} \frac{\mathbf{s}^*}{\boldsymbol{\sigma}_u^*} \dot{\boldsymbol{\varepsilon}}_u^p, \quad \mathbf{s}^* = \mathbf{s} - \mathbf{a}, \quad \boldsymbol{\sigma}_u^* = \left(\frac{3}{2} \mathbf{s}^* : \mathbf{s}^*\right)^{\frac{1}{2}}$$
(1.9)

$$\dot{\varepsilon}_{u^*}^p = \frac{1}{E_*} \frac{3}{2} \frac{\mathbf{s}^* : \dot{\mathbf{\sigma}}}{\mathbf{\sigma}_u^*}, \quad E_* = q_{\varepsilon} \sum_{m=1}^M g^{(m)} + \sum_{m=1}^2 g_a^{(m)} a_u^{(m)^*}, \quad a_u^{(m)^*} = \frac{3}{2} \frac{\mathbf{s}^* : \mathbf{a}^{(m)}}{\mathbf{\sigma}_u^*}$$
(1.10)

$$\dot{\varepsilon}_{u^*}^p = \frac{1}{E_* + 3G} 3G \frac{\mathbf{s}^* : \dot{\varepsilon}}{\sigma_u^*}, \quad G = \frac{E}{2(1+\nu)}$$
(1.11)

$$\sigma_u^* < C \cup \dot{\varepsilon}_{u^*}^{\rho} \le 0 - \text{упругость}$$
(1.12)

$$\sigma_u^* = C \cap \dot{\varepsilon}_{u^*}^p > 0$$
 – упругопластичность

$$\dot{\omega} = \alpha \omega^{\frac{\alpha-1}{\alpha}} \frac{\mathbf{a}^{(2)} : \dot{\boldsymbol{\varepsilon}}^{\mathbf{p}}}{W_a}, \quad \alpha = (\sigma_a^{(2)} / a_u^{(2)})^{n_\alpha}, \quad a_u^{(2)} = \left(\frac{3}{2} \mathbf{a}^{(2)} : \mathbf{a}^{(2)}\right)^{\frac{1}{2}}$$
(1.13)

Здесь $\dot{\epsilon}, \dot{\epsilon}^{e}, \dot{\epsilon}^{p}$ – тензоры скоростей полной, упругой и пластической деформаций; σ, s, s^{*}, a – тензор напряжений, девиаторы напряжений, активных напряжений и микронапряжений; $\epsilon_{u^{*}}^{p}$ – накопленная пластическая деформация; ω – поврежденность; E, ν – модуль Юнга, коэффициент Пуассона; C – радиус (размер) поверхности нагружения; $a^{(1)}, a^{(2)}, a^{(m)}$ – микронапряжения (девиатор смещения центра поверхности нагружения) первого, второго и третьего типов; $q_{\epsilon}, g^{(m)}, g_{a}^{(m)}$ – определяющие функции, связь которых с материальными будет приведена ниже.

2. Эксперимент. В статье рассматриваются результаты экспериментальных исследований образцов нержавеющей стали 12Х18Н10Т. Химический состав и механические свойства стали представлены в табл. 1.

Испытания проведены на универсальной испытательной машине Zwick Z100. Геометрия и размеры испытанных образцов соответствуют требованиям стандарта ASTM Таблица 1

С	Si	Mn	Ni	S	Р	Cr	Cu	Ti	Fe
< 0.12	<0.8	<2	9-11	< 0.02	< 0.035	17-19	< 0.3	0.4-1	~67
Модуль Юнга (ГПа)		Коэффициент Пуассона		Предел текучести (МПа)		Предел прочно- сти (МПа)		Относительное удлинение при разрыве (%)	
198		0.28		196		510		40	

E606. Диаметр рабочей части образца 8 мм, длина 24 мм, радиусы перехода от рабочей к захватной части 32 мм (рис. 1). Деформация в процессе испытания измерялась и контролировалась по навесному экстензометру с измерительной базой 10 мм.

3. Монотонное и циклическое нагружения нержавеющей стали 12X18H10T. Рассматриваются результаты экспериментальных исследований нержавеющей стали 12X18H10T при одноосном жестком нагружении, включающем в себя этапы монотонных и циклических нагружений. Эксперимент состоит из 5-ти этапов нагружения:

- 1 этап включает в себя циклическое нагружение с частотой 0.2 Гц при $\varepsilon_m^{(1)} = 0$, $\Delta \varepsilon^{(1)} = 0.016$ и $N^{(1)} = 20$ циклов;

-2 этап включает в себя монотонное растяжение до $\epsilon^{(2)} = 0.05;$

- 3 этап включает в себя циклическое нагружение с частотой 0.4 Гц при $\varepsilon_m^{(3)} = 0.05$, $\Delta \varepsilon^{(3)} = 0.012$ и $N^{(3)} = 200$ циклов;

- 4 этап включает в себя монотонное растяжение до $\epsilon^{(4)} = 0.1;$

- 5 этап включает в себя циклическое нагружение с частотой 0.4 Гц при $\varepsilon_m^{(5)} = 0.1$, $\Delta \varepsilon^{(5)} = 0.012$ и $N^{(5)} = N_f$ циклов до разрушения.

Здесь $\varepsilon_m^{(i)}$ – средняя деформация цикла; $\Delta \varepsilon^{(i)}$ – размах деформации цикла; $\varepsilon^{(i)}$ – достигаемая деформация при монотонном нагружении; **N**⁽ⁱ⁾ – число циклов.

Рис. 1

На рис. 2 приведена экспериментальная диаграмма $\sigma(\epsilon)$ (σ [MПа]) деформирования стали 12Х18Н10Т, включающая все пять этапов нагружения. На циклических диаграммах первого, третьего и пятого этапов показаны петли для первого и последнего циклов. Далее анализируются полученные экспериментальные результаты.

Циклическое деформирование на первом этапе показывает, что сталь 12X18H10T на начальной стадии циклически упрочняется с последующим замедлением процесса циклического упрочнения до незначительного $(dC_p/d\epsilon_{u*}^p \approx 1 \text{ M}\Pi a)$ и сталь становится практически циклически стабильной.

На третьем и пятом этапах циклического деформирования имеет место посадка петли гистерезиса. Причем процессы посадки на этих этапах идентичны – как будто и не было предварительной истории деформирования. Таким образом модуль E_a , входящий в эволюционное уравнение для микронапряжений первого типа и обеспечивающий процесс посадки петли, должен иметь одинаковое начальное значение $E_a = E_{a0}$. Т.е. на этапах монотонного нагружения после циклических нагружений, на которых происходит падение E_a практически до нуля, должен происходить быстрый возврат модуля E_a к своему начальному значению E_{a0} .

На втором и четвертом этапах монотонных нагружений упрочнение является одинаковым и постоянным. Упрочнение здесь определяется модулем E_{a0} и в меньшей степени некоторым модулем монотонного изотропного упрочнения.

Таким образом поведение модуля E_a , характеризующего анизотропное упрочнение, и, соответственно, поведение параметров изотропного упрочнения существенно зависит от режима процесса деформирования — циклического или монотонного.

Для разделения процессов монотонного и циклического деформирования в пространстве тензора пластических деформаций ε^{p} вводится поверхность памяти, ограничивающая область циклического деформирования. Поверхность определяется положением ее центра ξ и ее радиусом (размером) C_{ε} . Для вычисления центра и размера поверхности вводится два тензора пластических деформаций $\varepsilon^{p(1)}$ и $\varepsilon^{p(2)}$, определяющие границы поверхности. В начале деформирования эти переменные равны нулю. Определение смещения и размера поверхности памяти происходит в момент смены направления пластического деформирования. В качестве критерия смены направления принимается следующее условие:

$$\dot{\epsilon}^{p}_{(t-0)} : \dot{\epsilon}^{p}_{(t)} < 0$$

где $\dot{\epsilon}^{p}_{(t)}$ – тензор скоростей пластической деформации в текущей момент времени; $\dot{\epsilon}^{p}_{(t-0)}$ – тензор скоростей пластической деформации в предшествующий момент вре-

В этот момент изменение границ, центра и размера поверхности нагружения описывается на основе следующих соотношений:

$$\boldsymbol{\varepsilon}^{\mathbf{p}(2)} = \boldsymbol{\varepsilon}^{\mathbf{p}(1)}, \quad \boldsymbol{\varepsilon}^{\mathbf{p}(1)} = \boldsymbol{\varepsilon}^{\mathbf{p}}, \quad \boldsymbol{\xi} = \frac{\boldsymbol{\varepsilon}^{\mathbf{p}(1)} + \boldsymbol{\varepsilon}^{\mathbf{p}(2)}}{2}, \quad C_{\varepsilon} = \left[\frac{2}{3}\left(\frac{\boldsymbol{\varepsilon}^{\mathbf{p}(1)} - \boldsymbol{\varepsilon}^{\mathbf{p}(2)}}{2}\right) : \left(\frac{\boldsymbol{\varepsilon}^{\mathbf{p}(1)} - \boldsymbol{\varepsilon}^{\mathbf{p}(2)}}{2}\right)\right]^{\frac{1}{2}}$$

Тогда условием циклического деформирования является деформирование в пределах поверхности памяти

$$\left[\frac{2}{3}(\boldsymbol{\varepsilon}^{\mathbf{p}}-\boldsymbol{\xi}):(\boldsymbol{\varepsilon}^{\mathbf{p}}-\boldsymbol{\xi})\right]^{\frac{1}{2}} \leq C_{\varepsilon}$$

Вне поверхности памяти деформирование является монотонным.

мени.

На основании, изложенных выше, особенностей монотонных и циклических нагружений для модуля *E_a* и определяющих функций для микронапряжений формулируются следующие уравнения:

$$g^{(1)} = E_a, \quad g^{(2)} = \beta^{(2)}\sigma_a^{(2)}, \quad g_a^{(2)} = -\beta^{(2)}$$

$$g^{(m)} = \begin{cases} \beta^{(m)}\sigma_a^{(m)} \\ 0, \text{ если } a_u^{(m)} \ge \sigma_a^{(m)} \cap \mathbf{a}^{(m)} : \mathbf{s}^* > 0, \end{cases} \qquad a_u^{(m)} = \left(\frac{3}{2}\mathbf{a}^{(m)}\mathbf{a}^{(m)}\right)^{\frac{1}{2}} \quad (m = 3, ..., M)$$

$$\dot{E}_a = \begin{cases} -K_E \left(\frac{E_a}{E_{a0}}\right)^{n_E} \dot{\varepsilon}_{u^*}^{\rho} & \text{при циклическом нагружении} \\ M_E \left(\frac{E_{a0} - E_a}{E_{a0}}\right) \dot{\varepsilon}_{u^*}^{\rho} & \text{при монотонном нагружении} \end{cases}$$

$$g_a^{(1)} = \begin{cases} \frac{1}{E_a} \frac{dE_a}{d\varepsilon_{u^*}^{\rho}} & \text{при циклическом нагружении} \\ 0 & \text{при монотонном нагружении} \end{cases}$$

Итак, для описания микронапряжений надо определить следующие материальные функции:

 $E_{a0}, \sigma_a^{(m)}, \beta^{(m)}$ – модули анизотропного упрочнения;

 K_E , n_E , M_E — параметры анизотропного упрочнения при циклическом и монотонном деформировании.

Для определения этих материальных функций используются результаты эксперимента на рис. 2.

Модуль анизотропного упрочнения E_{a0} определяется по формуле

$$E_{a0} = \frac{\sigma_m^{(3)}}{\varepsilon_m^{p(3)}}$$

1

где $\sigma_m^{(3)}$ – среднее напряжение на первом цикле третьего этапа; $\varepsilon_m^{p(3)}$ – средняя пластическая деформация на первом цикле третьего этапа.

Модули анизотропного упрочнения $\sigma_a^{(m)}$ и $\beta^{(m)}$ определяются из обработки циклической диаграммы последнего полуцикла первого этапа по методике описанной в работах [1, 9].

Параметры анизотропного упрочнения K_E и n_E определяются на основе результатов посадки петли гистерезиса на третьем и пятом этапах. Для этого строится зависимость в координатах

$$Y_{E} = \ln\left[\frac{\sigma_{m}\left(N-1\right) - \sigma_{m}\left(N\right)}{2\Delta\varepsilon^{p}\varepsilon_{m}^{p}}\right], \quad X_{E} = \ln\left[\frac{\sigma_{m}\left(N\right)}{\varepsilon_{m}^{p}E_{a0}}\right]$$

где N – номер цикла; $\sigma_m(N)$ – среднее напряжение N-го цикла; $\Delta \varepsilon^p$ – размах пластической деформации; ε_m^p – средняя пластическая деформация. Полученная зависимость аппроксимируется линейной функцией

$$Y_E = a_E X_E + b_E, \quad K_E = \exp(b_E), \quad n_E = a_E$$

Параметр анизотропного упрочнения M_E при монотонном нагружении определяется из соображения восстановления параметра E_a с 0 до значения E_{a0} при изменении

пластической деформации при монотонном нагружении за ε_{st}^p . Тогда параметр M_E будет определяться по формуле

$$M_E = \frac{E_{a0}}{\varepsilon_{st}^p}$$

Определив микронапряжения по всему процессу от первого до пятого этапа нагружения, можно определить поведение размера (радиуса) поверхности нагружения, т.е. изменение изотропного упрочнения в переходных процессах от циклического к монотонному и от монотонного к циклическому деформированию.

На рис. 3 приведено изменение размера поверхности нагружения (функционала *C* [МПа]) по всему процессу деформирования от первого до пятого этапа нагружения. Пунктиром на рис. 3 показана функция изотропного упрочнения $C = C_p(\varepsilon_{u^*}^p)$ при циклическом нагружении.

Анализ результатов, приведенных на рис. 3, показывает, что при переходе от циклического деформирования к монотонному (этапы два и четыре) происходит увеличение интенсивности изотропного упрочнения, а при переходе от монотонного к циклическому (этапы три и пять) происходит медленное уменьшение изотропного упроч-

нения и оно стремится к изотропному $C = C_p(\varepsilon_{\mu^*}^p)$ при циклическом деформировании.

На основании, изложенных выше, особенностей изменения изотропного упрочнения при циклических и монотонных нагружениях для определяющей функции изотропного упрочнения принимается следующая зависимость:

$$q_{\varepsilon} = \begin{cases} \left[\frac{dC_p}{d\varepsilon_{u^*}^p} - K_C \left(\frac{C - C_p}{C_p} \right)^{n_C} \right] & \text{при циклическом нагружении} \\ \left[\frac{dC_p}{d\varepsilon_{u^*}^p} + M_C \right] & \text{при монотонном нагружении} \end{cases}$$

Рис. 3

Итак, для описания изотропного упрочнения надо определить следующие материальные функции:

 $C_{p}(\varepsilon_{u^{*}}^{p}) - \phi$ ункция изотропного упрочнения при циклическом нагружении;

 K_C , n_C , M_C — модули изотропного упрочнения при циклическом и монотонном нагружении.

Для определения этих материальных функций используются результаты эксперимента на рис. 3.

Функция изотропного упрочнения при циклическом нагружении $C_p(\varepsilon_{u^*}^p)$ определяется на основе изменения размера поверхности на первом, третьем и пятом этапах – пунктирная кривая на рис. 3.

Параметры изотропного упрочнения K_C и n_C при циклическом нагружении определяются на основе результатов уменьшения размера поверхности нагружения на третьем и пятом этапах нагружения. Для этого строится зависимость в координатах

$$Y_C = \ln\left[\frac{d\left(C_p - C\right)}{d\varepsilon_{u^*}^p}\right], \quad X_C = \ln\left[\frac{\left(C - C_p\right)}{C_p}\right]$$

Полученная зависимость аппроксимируется линейной функцией

$$Y = a_C X_C + b_C, \quad K_C = \exp(b_C), \quad n_C = a_C$$

Параметр изотропного упрочнения *M_C* при монотонном нагружении определяется по наклону кривой деформирования на втором и четвертом этапах по формуле

$$M_C = \frac{d\sigma}{d\varepsilon^p} - E_{a0} - \frac{dC_p}{d\varepsilon^p}$$

4. Верификация модифицированной теории пластичности. С целью верификации модифицированной теории пластичности и проверки адекватности аппроксимаций материальных функций проводится расчет кинетики напряженно-деформированного состояния нержавеющей стали 12Х18Н10Т при жестком циклическом и монотонном нагружении по программе (пять этапов) изложенной во втором разделе. Для расчетов использовались материальные функции, полученные на основе экспериментальных

данных на рис. 2. Сравнения расчетных (сплошные кривые) и экспериментальных (светлые кружки) результатов приведены на рис. 4—7. Пунктирными кривыми приведены результаты расчетов на основе варианта [10]. На рис. 4 показана циклическая диаграмма 20-го цикла (последнего) первого этапа, монотонное нагружение на втором этапе и первый цикл третьего этапа. На рис. 5 показана циклическая диаграмма 200-го цикла (последнего) третьего этапа, монотонное нагружение на четвертом этапе и первый цикл пятого этапа. Изменения размаха напряжения и среднего напряжения циклов на первом, третьем и пятом этапах нагружения приведены на рис. 6, 7. Все напряжения и размах напряжений на рис. 4—7 измеряются в МПа.

Наблюдается значительное улучшение описания кинетики напряженно-деформированного состояния на основе предложенного здесь варианта по сравнению с предыдущим [10]. Что же касается изменений размаха и среднего напряжения циклов, то предложенный вариант достаточно адекватно описывает и эти довольно сложные процессы.

Заключение. На основе анализа результатов экспериментальных исследований нержавеющей стали установлено, что изотропное и анизотропное упрочнения существенно различны при монотонном и циклическом деформировании. Также имеют место переходные процессы упрочнения при смене процессов монотонного и циклического, циклического и монотонного деформирования.

С учетом выявленных особенностей монотонных и циклических нагружений, уточнены уравнения модифицированной теории пластичности. Определен базовый эксперимент, сформулирован метод идентификации материальных функций и получены материальные функции нержавеющей стали 12X18H10T при комнатной температуре.

Проведено сравнение результатов расчетных и экспериментальных исследований нержавеющей стали 12X18H10T при жестком нагружении, состоящем из последовательности монотонных и циклических режимов нагружения. Анализировалась кинетика напряженно-деформированного состояния, рассматривались изменения размаха и среднего напряжения цикла в процессе циклических нагружений. Получено надежное соответствие расчетных и экспериментальных результатов. Достаточно адекватное описание теорией процессов изменения кинетики, размаха и среднего напряжения цикла при жестком нагружении позволяет предположить возможность более адекватного описания и процессов мягкого нагружения особенно при нестационарных несимметричных режимах нагружения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bondar V.S. Inelasticity. Variants of the theory. New York: Begell House, 2013. 194 p.
- 2. Волков И.А., Коротких Ю.Г. Уравнения состояния вязкоупругопластических сред с повреждениями. М.: ФИЗМАТЛИТ, 2008. 424 с.
- 3. Митенков Ф.М., Волков И.А., Игумнов Л.А., Каплиенко А.В., Коротких Ю.Г., Панов В.А. Прикладная теория пластичности. М.: Физматлит, 2015. 282 с.
- 4. Волков И.А., Игумнов Л.А., Коротких Ю.Г. Прикладная теория вязкопластичности: Новгород: Изд-во Нижегород. гос. ун-та, 2015. 317 с.
- 5. *Капустин С.А., Чурилов Ю.А., Горохов В.А.* Моделирование нелинейного деформирования и разрушения конструкций в условиях многофакторных воздействий на основе МКЭ. Н. Новгород: Изд-во ННГУ, 2015. 347 с.
- 6. Бессон Ж. [и др]. Нелинейная механика материалов. Санкт-Петербург: Изд-во политехн. ун-та, 2010. 397 с.
- Chaboche J.-L. A review of some plasticity and viscoplasticity constitutive theories // Int. J. of Plasticity. 2008. V. 24. P. 1642–1692.
- 8. *Chaboche J.-L., Kanouté P., Azzouz F.* Cyclic inelastic constitutive equations and their impact on the fatigue life predictions // Int. J. of Plasticity. 2012. V. 35. P. 44–66.
- 9. Bondar V.S., Danshin V.V., Vu L.D., Duc N.D. Constitutive modeling of cyclic plasticity deformation and low-high-cycle fatigue of stainless steel 304 in uniaxial stress state // Mechanics of advanced materials and structures. 2018. V. 25. № 12. P. 1009–1017.
- 10. Бондарь В.С., Абашев Д.Р., Петров В.К. Сравнительный анализ вариантов теорий пластичности при циклических нагружениях // Вестник Пермского национального исследовательского политехнического университета. Механика. 2017. № 2. С. 23–44.
- Коротких Ю.Г. Описание процессов накопления повреждений материала при неизотермическом вязкопластическом деформировании // Проблемы прочности. 1985. № 1. С. 18–23.
- 12. Волков И.А., Игумнов Л.А., Тарасов И.С. и др. Моделирование усталостной долговечности поликристаллических конструкционных сплавов при блочном несимметричном малоцикловом нагружении // Проблемы прочности и пластичности. 2018. № 1. С. 15–30.