УДК 548.0.53

О НУКЛЕАЦИИ НА ЛИНИИ ТРЕХФАЗНОГО КОНТАКТА ПАР-ЖИДКОСТЬ-КРИСТАЛЛ В ПРОЦЕССЕ РОСТА НИТЕВИДНЫХ НАНОКРИСТАЛЛОВ

© 2020 г. А. Ю. Воробьев^а, В. А. Небольсин^{а,*}, Н. Свайкат^а, В. А. Юрьев^а

^а Воронежский государственный технический университет, Воронеж, Россия *e-mail: vcmsao13@mail.ru

> Поступила в редакцию 10.09.2019 г. После доработки 27.09.2019 г. Принята к публикации 18.10.2019 г.

Развиты представления о процессах нуклеации, протекающих вблизи тройной границы раздела фаз, в условиях плохой смачиваемости вершинной (торцевой) грани нитевидного нанокристалла жидкой каплей катализатора.

Ключевые слова: нитевидные нанокристаллы, полупроводники, нуклеация, рост, трехфазная линия, адгезия, катализатор, ступени роста **DOI:** 10.31857/S0572329920010237

1. Введение. Если площадь поверхности кристалла, доступная для роста, ограничена, а рост осуществляется из жидкофазного раствора ограниченного объема, причем образующийся кристалл плохо смачивается жидкостью, то все это может повлиять на процессы нуклеации, зарождение и развитие ступеней. Названные ограничения особенно актуальны для роста нитевидных нанокристаллов (ННК) полупроводников по методу пар \rightarrow жидкая капля \rightarrow кристалл (ПЖК) и приводят к эффекту генерации ступеней роста трехфазной линией (ТЛ) по периметру смачивания капли катализатора (КК). Впервые действие тройной границы как эффективного источника ступеней роста ННК было описано в работах [1–3] и недавно экспериментально подтверждено in situ в [4].

2. Цель работы. Цель настоящей работы — показать, что плохая адгезия КК к кристаллу, а, следовательно, и плохая смачиваемость ими кристаллической поверхности, является необходимым условием для нуклеации и формирования ступеней на линии трехфазного контакта пар—жидкость—кристалл в процессе роста ННК.

3. Метод и построение решения. ННК Si, Ge, Si_xGe_{1-x} выращивали методами молекулярно-лучевой и газофазной эпитаксии [1, 5–7] на установках ВАК-501 и Изоприн-М при температурах *T* в интервалах 900–1100 К и *T* = 1270–1370 К с участием частиц Au, Ni, Pt, Cu, Zn, Bi, Ga в качестве катализатора процесса. Диаметр частиц металла (М) – катализатора составлял от 30 до 200 нм. Подложками служили монокристаллические CZ-пластины Si 4"(111) *p*-типа проводимости с удельным сопротивлением 1– 20 Ом · см [8]. Изучение морфологических характеристик ННК проводилось методами атомно-силовой (C3M "Интегра-Прима"), растровой электронной (JEOL JSM– 6380LV) и просвечивающей (ЭМВ 100-БР) микроскопии.

4. Анализ результатов и примеры. На рис. 1 показаны РЭМ-изображения ННК Si, выращенных в устойчивом режиме (а), в условиях, приводящих к разрыву КК и ветвлению кристалла (b), и при дроблении капли на подложке (c), а также ННК Ge, выра-

щиваемого в условиях возникновения изгибов (d). Наблюдения за ростом ННК Si, Ge, Si_xGe_{1-x}, имеющих круглое поперечное сечение, показывают, что капля М-катализатора в процессе роста не опускается на боковую поверхность кристалла, а смачивает вершинную плоскую грань {111} (рис. 1). При этом капля ограничивает под собой размеры ростовой площадки периметром смачивания, а величина контактного угла, отсчитываемого между касательной, проведенной к поверхности капли в точке А на ТЛ, и плоскостью торцевой грани {111} HHK, всегда превышает 90°. Другой важной особенностью, общей для указанных наиболее плотноупакованных граней {111} ННК Si, Ge, Si_xGe_{1-x} является ярко выраженный послойный характер их роста [1, 5, 9]. Эксперименты свидетельствуют, что если поверхность фронта кристаллизации под КК атомно-гладкая и соответствует ориентации {111}, то ННК вырастают совершенными по структуре и морфологии (рис. 1а). Если же граница раздела фаз кристалл/жидкость полиэдрическая или диффузная, ННК развиваются в других направлениях (например, $\langle 110 \rangle$, $\langle 100 \rangle$ или $\langle 211 \rangle$). В этом случае рост ННК приобретает большую чувствительность к колебаниям температуры и пересыщения, температурным градиентам и т.п. (рис. 1b-1d).

При резких скачках *T* процесса или скорости газового потока возможен разрыв капли на вершине ННК, сопровождающийся дальнейшим ветвлением кристаллов (рис. 1b). Кристаллы-ветви, в большинстве случаев, имеют ту же ориентацию ($\langle 111 \rangle_A$, ($\langle 111 \rangle_B$ и др.), что и материнский ННК, и расходятся под углами ~19.5°, ~70.5°, ~109.5°. Быстрое понижение *T* или большой охлаждающий газовый поток в реакционной зоне может приводить к дроблению жидкого сплава и появлению множества тонких кристаллов, похожих на кустистые, "ежевидные" образования (рис. 1с).

Рис. 2

Рассмотрим критический зародыш N_1 в форме полного диска толщиной *h* и радиуса *r* (нм), образующийся на границе раздела фаз кристалл/жидкость под каплей катализатора в процессе роста ННК (рис. 2). Проанализируем простейший случай, когда образующийся кристалл и зародыш не отличаются друг от друга ни по структуре, ни по составу. Тогда изменение термодинамического потенциала системы при нуклеации под каплей катализатора на торцевой грани ННК имеет вид [9]

$$\Delta F = -\frac{\pi r^2 h}{\Omega} \Delta \mu + 2\pi r h \alpha_{\rm SL} \tag{4.1}$$

где Ω — объем, занимаемый одним атомом в ННК, $\Delta \mu$ — эффективная разность химических потенциалов в капле жидкости и в кристалле, α_{SL} — удельная свободная энергия границы кристалл/жидкость.

Сравним изменения свободной поверхностной энергии при возникновении зародыша N_1 на регулярной поверхности ННК под каплей катализатора и периферийного усеченного зародыша N_2 , примыкающего к ТЛ. Работа образования зародыша N_1 при нуклеации под каплей катализатора на торцевой грани ННК равна

$$\Delta F_S = 2\pi r h \alpha_{\rm SL} \tag{4.2}$$

Работа образования усеченного периферийного зародыша N₂, примыкающего к ТЛ, выразится как

$$\Delta F_S^{TL} = \frac{\pi}{180} h\xi r \alpha_{\rm SL} + 2hr(\alpha_{\rm SV} - \alpha_{\rm LV}) \sin\frac{\xi}{2}$$
(4.3)

где ξ — угол дуги окружности, примыкающей к ТЛ, α_{SV} и α_{LV} — удельная свободная энергия границ раздела кристалл/газ и жидкость/газ, соответственно.

Выражение (4.3) определяет увеличение свободной межфазной энергии системы из-за появления зародыша в области тройного стыка фаз. Учитывая работу адгезии ΔW_A (Дж/м²) между КК и ННК, т.е. работу, которую надо затратить для обратимого

изотермического отделения жидкости от кристалла (на единицу площади поверхности раздела фаз), определяемую известным уравнением Дюпре [10]

$$\Delta W_{\rm A} = \alpha_{\rm SV} + \alpha_{\rm LV} - \alpha_{\rm SL} \tag{4.4}$$

выразим удельную свободную энергию границы кристалл/жидкость как

$$\alpha_{\rm SL} = \alpha_{\rm SV} + \alpha_{\rm LV} - \Delta W_{\rm A} \tag{4.5}$$

Выражение (4.5) показывает, что при смачивании КК торцевой грани ННК в результате обратимого изотермического процесса между жидкостью и твердым телом выделяется свободная энергия, равная энергии адгезии. При высоком значении величины ΔW_A в случае хорошей адгезии величина α_{SL} мала и будет наблюдаться хорошее смачивание каплей жидкости поверхности кристалла.

Перепишем (4.3) в виде

$$\Delta F_{\rm S}^{\rm TL} = \frac{\pi}{180} h\xi r\alpha_{\rm SL} + 2hr(\alpha_{\rm SV} - \alpha_{\rm LV})\sin\frac{\xi}{2} - 2\pi rh\alpha_{\rm SL} + 2\pi rh\alpha_{\rm SL}$$
(4.6)

Учитывая (4.5) и обозначая $\Delta F_{\rm S}^{\rm TL}$ как $\Delta \alpha$, запишем выражение (4.6) для работы образования усеченного зародыша единичного радиуса и единичной толщины с углом $\xi = 180^{\circ}$, возникающего при нуклеации на ТЛ, как

$$\Delta \alpha \approx 2\alpha_{\rm SL} - \Delta W_A \tag{4.7}$$

где Δα – величина, обратная коэффициенту растекания жидкости.

Из (4.7) видно, что разница работ образования зародыша в форме полного диска на регулярной поверхности ННК под КК (4.2) и усеченного зародыша на ТЛ (4.3) равна $\sim \Delta W_A$. При $\Delta W_A > 0$ критическому зародышу кристаллической фазы выгоднее возникнуть на ТЛ, а капле катализатора легче оторваться от кристалла и сместиться вверх, образуя чистую границу кристалл/газ и наращивая боковую поверхность ННК. Образование же зародыша на регулярной поверхности раздела кристалл/жидкость под КК вдали от ТЛ, в этом случае, является более энергозатратным.

Таким образом, выражение (4.7) показывает, что $\Delta \alpha$ есть критерий энергетической выгодности процесса отрыва КК от ННК, с помощью которого можно дать оценку того, что выгоднее: возникнуть и разрастись множественным зародышам на регулярной поверхности под каплей, разделив каплю на объемные составляющие, или оголить чистую твердую поверхность кристалла за счет смещения ТЛ. При высоком значении ΔW_A в случае хорошей адгезии ($\Delta \alpha < 0$) будет наблюдаться хорошее смачивание каплей жидкости поверхности ННК, интенсивная нуклеация в центре растущей грани под каплей. Граница раздела фаз кристалл/жидкость при разрастании зародышей в условиях $\Delta \alpha < 0$ может стать полиэдрической, и при высокой величине $\Delta \mu$ может произойти разделение капли на отдельные составляющие.

Разделение (разбиение) КК на более мелкие капли приводит к формированию множественных центров роста и дальнейшему развитию ННК в разных направлениях, а также к ветвлению кристаллов (рис. lb, lc). Низкие величины α_{LV} М-катализаторов будут способствовать хорошему смачиванию и должны облегчать разбиение и дробление капель. Величину ΔW_A мы сравниваем с величиной $2\alpha_{SL}$ потому, что при разрыве капли образуются две поверхности кристалл/жидкость. При $\Delta \alpha > 0$, наоборот, будут наблюдаться плохая адгезия и плохое смачивание (работа сил когезии будет больше работы сил адгезии), приводящие к нуклеации на ТЛ и устойчивому росту ННК. При полном смачивании (например, при росте кристалла из собственного расплава), когда $\Delta W_A = 0$, ΔF_S^{TL} (4.3) и ΔF_S (4.2) будут одинаковы и минимальны.

Подставив (4.5) в (4.1), получим

$$\Delta F = -\frac{\pi r^2 h}{\Omega} \Delta \mu + 2\pi r h \left(\alpha_{\rm SV} + \alpha_{\rm LV} - \Delta W_{\rm A} \right) \tag{4.8}$$

Из условия максимизации полной энергии (4.8) $\partial (\Delta F) / \partial r |_{h=\text{const}} = 0$ при том, что ($\alpha_{\text{SV}} + \alpha_{\text{LV}} - \Delta W_{\text{A}}$) > 0 и при $\Delta \mu$ > 0, получим выражение для радиуса критического зародыша *r**, образующегося при нуклеации под KK

$$r^* = \frac{\Omega(\alpha_{\rm SV} + \alpha_{\rm LV} - \Delta W_{\rm A})}{\Delta \mu}$$
(4.9)

Из (4.9) следует, что при плохой адгезии в системе "КК–ННК", когда ΔW_A принимает невысокие значения, радиус критического зародыша на регулярной поверхности должен существенно превосходить r^* , образующегося при хорошем смачивании кристалла, и, следовательно, при больших значениях ΔW_A . Другими словами, плохая адгезия между КК и ННК ($2\alpha_{\rm NL} > \Delta W_A$ и $\Delta \alpha > 0$) приводит к тому, что объем образующегося критического зародыша будет больше объема зародыша, возникающего в условиях хорошей адгезии ($2\alpha_{\rm NL} < \Delta W_A$ и $\Delta \alpha < 0$). Это увеличивает число атомов для образования критического зародыша, т.е. уменьшает вероятность нуклеации при тех же $\Delta \mu > 0$, в результате чего повышается энергетический барьер зародышеобразования на регулярной поверхности. На рис. 3 приведена расчетная зависимость радиуса критического зародыша от величины работы адгезии ΔW_A .

Работа образования такого критического зародыша ΔF^* равна

$$\Delta F^* = \frac{\pi h \Omega \left(\alpha_{\rm SV} + \alpha_{\rm LV} - \Delta W_{\rm A} \right)^2}{\Delta \mu} \tag{4.10}$$

Максимум высоты потенциального барьера образования зародыша достигается при условии, что $\Delta \mu > 0$. Например, для роста ННК Si в системе Au–Si при температуре процесса T = 1273 K, угле смачивания KK Au–Si $\Omega_{Si} = 2 \times 10^{-29}$ м³ [11], при относительном пересыщении в капле раствора ~0.02 ($\Delta \mu \approx 1.8 \times 10^{-21}$ Дж), $\Delta W_A = 0.64$ Дж/м² [8] находим $r^* \approx 20$ нм и $\Delta F^* \approx 1.27 \times 10^{-17}$ Дж, что, примерно, на три порядка превышает энергию тепловых колебаний атомов kT ($\Delta F^*/(kT) \approx 0.7 \times 10^3$).

Видим, что образование зародышей на регулярной поверхности ННК Si под каплей Au–Si в указанных термодинамических условиях практически неосуществимо. Для преодоления барьера нуклеации под КК вдали от TЛ необходимо либо увеличить $\Delta\mu$ до чрезвычайно высоких, недостигаемых значений, либо поднять *T* до такой, которую нельзя получить в обычных условиях. При этом TЛ-нуклеация в рассматриваемых условиях легко осуществима, поскольку ΔF_S^{TL} критического зародыша, в зависимости от его формы и размеров будет заключаться в интервале от близкой к нулю до величины, определяемой выражением (4.10).

Используя соотношение $\Delta W_{\rm A} = \alpha_{\rm LV}(1 + \cos\theta)$ [10], преобразуем (4.9) к виду

$$r^* = \frac{\Omega(\alpha_{\rm SV} - \alpha_{\rm LV}\cos\theta)}{\Delta u} \tag{4.11}$$

Видим, что с ростом θ при прочих равных условиях растет и r^* (нм), т.е. чем хуже смачиваемость торцевой грани ННК каплей жидкости, тем труднее на этой грани вдали от ТЛ идет нуклеация. Поэтому для осуществления процесса зародышеобразования необходимо увеличивать пересыщение. График зависимости $r^* = f(\theta)$ для $\alpha_{LV} = 0.91 \text{ Дж/м}^2$, $\alpha_{SV} = 1.55 \text{ Дж/м}^2$ и $\Delta \mu \approx 1.8 \times 10^{-21}$ Дж показан на рис. 4.

Экстремум свободной энергии Гельмгольца ΔF — максимум потенциального барьера образования зародыша достигается, когда $\partial^2 \Delta \Delta F / \partial r^2 \Big|_{h=\text{const}} = 2\pi (\Omega (2\alpha_{\text{SL}} - \Delta W_A)/h - -\Delta \mu) < 0$. При $\Delta \alpha > 0$ и $\Delta \mu > 0$ это возможно при условии, если $\Delta \mu > \Omega (2\alpha_{\text{SL}} - \Delta W_A)/h$. При плохой адгезии ($2\alpha_{\text{SL}} > \Delta W_A$) последнее неравенство может выполняться лишь при высоком $\Delta \mu$. Но при обычных, характерных для роста ННК пересыщениях образование зародышей на регулярной поверхности под каплей катализатора будет затруднено. Так, для ННК Si, выращиваемых в системе Au–Si, при $\theta = 107^\circ$, $\alpha_L = 0.91 \text{ Дж/m}^2$, находим $\Delta W_A = 1.29 \text{ Дж/m}^2$ и значение выражения $\Omega (2\alpha_{\text{SL}} - \Delta W_A)/h$ равно $1.29 \times 10^{-19} \text{ Дж}$, что почти на два порядка больше, чем $\Delta \mu \sim 1.8 \times 10^{-21} \text{ Дж}$ [11], а, следовательно, нуклеация на регулярной поверхности кристалл/жидкость под каплей, как уже говорилось, практически неосуществима.

Необходимо отметить, что выражения (4.9), (4.10) и (4.11) применимы как для положительных значений r^* и $\Delta\mu$ процесса роста ННК, так и для отрицательных. Это означает, что поверхность раздела между твердой и жидкой фазами с отрицательной кривизной (центр кривизны находится в жидкости) должна быть устойчивой при недосыщении ($\Delta\mu < 0$) в капле. При $\Delta\alpha > 0$ и $\Delta\mu < 0$ рост ННК невозможен, так как при таком фазовом переходе свободная энергия системы только возрастает ($\Delta F > 0$). Но при $\Delta \mu < 0$ могут образовываться зародыши травления по механизму кристалл \rightarrow капля жидкости \rightarrow пар, формируя "отрицательные" ННК [12].

Таким образом, низкое значение ΔW_A KK, а, следовательно, несмачивание жидкостью поверхности ННК, является необходимым условием и всегда предпочтительно для генерации ступеней роста ТЛ. Для стабильного роста ННК, можно рекомендовать применение ряда специальных приемов: использование в качестве катализаторов роста ННК металлов с низкой ΔW_A ; выращивание ННК в направлениях с малыми индексами Миллера, не позволяющих образовывать шероховатые поверхности фронта кристаллизации; использование добавок к металлическому расплаву, уменьшающих смачиваемость.

5. Заключение. Показано, что энергетический барьер для нуклеации на регулярных местах поверхности ННК под КК не снижен, как считалось ранее, а, наоборот, повышен вследствие плохой адгезии между каталитической жидкостью и кристаллом. Малое значение величины работы адгезии между КК и кристаллом ($\Delta W_A < 1 \text{ Дж/м}^2$), а, следовательно, несмачиваемость кристаллической поверхности каталитической жидкостью, является необходимым условием и всегда предпочтительно для ТЛ-нуклеации.

Благодарности. Работа выполнена при финансовой поддержке гранта РФФИ № 19-33-90219 с использованием оборудования ЦКП "НЭНТП", ВГТУ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Небольсин В.А., Щетинин А.А. Рост нитевидных кристаллов. Воронеж: ВГУ, 2003. 620 с.
- 2. *Небольсин В.А.* Активируемый капельной жидкостью рост НК из газовой фазы. Автореф. дис. ... докт. техн. наук (01.04.07). Воронеж: ВГТУ, 2004. 35 с.
- 3. *Glas F., Harmand J.C., Patriarche G.* Why does wurtzite form in nanowires of III–V zinc blende semiconductors? // Phys. Rev. Lett. 2007. № 14. P. 146101–146106.
- 4. *Harmand J.-C., Patriarche G., Glas F., Panciera F., Florea I., Maurice J.-L., Travers L., Ollivier Y.* Atomic Step Flow on a Nanofacet // Phys. Rev. Lett. 2018. № 16. P. 166101–166109.
- 5. *Dubrovskii V.G.* Nucleation Theory and Growth of Nanostructures. Berlin Heidelberg, Springer Verlag, 2014. 601 p.
- 6. Schmidt V., Senz S., Gosele U. Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires // Nano Lett. 2005. № 5. P. 931–935.
- 7. *Hannon J.B., Kodambaka S., Ross F.M., Tromp R.M.* The influence of the surface migration of gold on the growth of silicon nanowires // Nature. 2006. № 440. P. 69–71.
- Nebol'sin V.A., Dunaev A.I., Samofalova A.S., Korneeva V.V. Contact Interaction in an M–SiO₂ (M = Metal Catalyst for Nanowhisker Growth) System // Inorg. Mater. 2018. № 6. P. 587–592.
- 9. Гиваргизов Е.И. Рост нитевидных и пластинчатых кристаллов из пара. М.: Наука, 1977. 304 с.
- 10. Dupre A. Theorie mechanique de la chaleur. Paris: Gauthier-Villas, 1989. 369 p.
- 11. Nebol'sin V.A., Shchetinin A.A. A mechanism of quasi-one-dimensional vapor phase growth of Si and GaP whiskers // Inorg. Mater. 2008. № 10. P. 1033–1040.
- 12. Nebol'sin V.A., Dunaev A.I., Vorob'ev A.Yu., Samofalova A.S., Zenin V.V. Formation of "negative" silicon whiskers // Inorg. Mater. 2017. № 8. P. 758–780.