УЛК 662.73

ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕАКЦИЙ ОБРАЗОВАНИЯ ГУМАТОВ ЖЕЛЕЗА И МАГНИЯ В ВОДНОМ РАСТВОРЕ

© 2023 г. Т. А. Яркова^{1,*}, А. М. Гюльмалиев^{2,**}

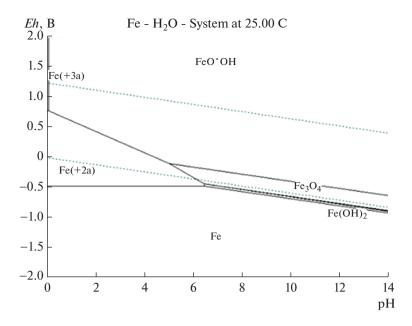
 1 ФГБОУ ВО МИРЭА — Российский технологический университет, 119571 Москва, Россия 2 ФГБУН Институт нефтехимического синтеза им. А.В. Топчиева РАН, 119071 Москва, Россия

*e-mail: tat772003@list.ru
**e-mail: gyulmaliev@ips.ac.ru
Поступила в редакцию 18.09.2022 г.
После доработки 29.09.2022 г.
Принята к публикации 05.10.2022 г.

С применением методов химической термодинамики и диаграмм Пурбе определена термодинамическая устойчивость ионов железа и магния при различной кислотности водной среды. Проведен расчет температурной зависимости термодинамических функций соответствующих реакций. Установлена термодинамическая разрешенность протекания реакций замены ионов калия и натрия в водных растворах солей гуминовых кислот, содержащих карбоксильные и гидроксильные функциональные группы на ионы железа и магния. Образующиеся водорастворимые гуматы железа и магния могут иметь высокий потенциал практического использования.

Ключевые слова: гуминовые кислоты, водорастворимые гуматы железа и магния, термодинамическая устойчивость катионов, диаграмма Пурбе, электродный потенциал

DOI: 10.31857/S0023117723010103, EDN: VVJPFE


Гуминовые вещества (ГВ) – соединения природного происхождения, являющиеся основным компонентом органического вещества почв, торфов, углей, обладают уникальными биохимическими свойствами. По мнению Д.С. Орлова [1, 2], ГВ – это сложные смеси устойчивых к биодеструкции высокомолекулярных темноокрашенных органических соединений природного происхождения, образующихся при разложении растительных и животных остатков под действием микроорганизмов и абиотических факторов среды. Вопросы строения ГВ все больше привлекают внимание исследователей, поскольку присутствие в их составе функциональных групп различного характера позволяет целенаправленно менять биохимические свойства этих соединений с помощью окислительно-восстановительных реакций [3].

В настоящее время ГВ находят широкое применение в различных областях: сельском хозяйстве в качестве активных удобрений, ингредиента комбикормов для животных, адсорбентов — для очистки вод от ионов тяжелых металлов; гуматы калия и аммония имеют ростостимулирующий эффект и являются аналогами фитогормона гетероауксина. Использование модифицированных гидроперитом и полиэтиленгликолем гуматов натрия приводит к увеличению их комплексообра-

зующей способности по отношению к солям двухвалентных металлов [4]. При использовании ГВ в качестве удобрений наилучший эффект достигается при применении водорастворимых солей гуминовых кислот (гуматов), увеличение урожайности при этом достигает 30% [5].

Хорошо зарекомендовавшим себя и простым в применении методом получения гуматов является выделение ГВ из ископаемого сырья в присутствии щелочи [6]. Наибольшее количество активного (способного к химическим взаимодействиям) кислорода гуминовых кислот приходится на фенольные (до 38%), карбоксильные (18—28%) и спиртовые (10—15%) группы, порядка 5—8%— на карбонильные [7]. Благодаря наличию перечисленных реакционноспособных групп и ароматическим фрагментам, ГК вступают в ионные, донорно-акцепторные и гидрофобные взаимодействия [8].

Как известно, для нормальной жизнедеятельности живых организмов необходимы минеральные вещества, присутствующие в макро- (сотые доли процента) и микро- (менее 0.01%) количествах. Для живых организмов железо является важным микроэлементом, который катализирует процессы обмена кислорода, его недостаток вызывает патологические состояния живых организмов: анемию у животных и хлороз у растений.

Рис. 1. Зависимость электродного потенциала от кислотности среды при температуре 25°C для системы железо—вода.

Причиной хлороза может стать и недостаток магния, который, помимо того, входит в состав хлорофилла, участвует в процессе аккумуляции и выработки энергии, усвоения глюкозы и образоваполисахаридов. синтезе растительных белков, способствует накоплению аскорбиновой кислоты в растениях, усиливает мобильность фосфатов почвы, стабилизирует коллоидные системы растений [9]. Атомы металлов могут вступать в химические взаимодействия с функциональными группами гуминовых кислот, образуя сложные комплексы, подобные гемоглобину и хлорофиллу. В этой связи представляет интерес изучение возможности внедрения катионов железа и магния в структуру нативных гуминовых кислот для получения модифицированных гуминовых препаратов, обогащенных этими элементами. Экспериментальные работы по получению гуматов железа и магния проводились, но многие теоретические вопросы, связанные с модификацией структуры и свойствами полученных гуминовых препаратов, остаются не исследованными.

В данной работе рассмотрен теоретический аспект условий получения гуматов железа и магния. Для этого определяли области термодинамической устойчивости соединений железа и магния в водной среде с использованием диаграммы Пурбе, отображающей устойчивые с термодинамической точки зрения формы существования ионов металлов в водном растворе при различных значениях водородного показателя рН и окислительно-восстановительного потенциала *Eh*. На рис. 1 и 2 приведены результаты расчета зависимости электродного потенциала от кислотности среды для водных растворов металлов Fe, Mg, Na, K с

использованием компьютерной программы [10]. Диаграммы состоят из трех типов линий:

- горизонтальные линии, которые представляют реакции, не связаны с электронами, протонами H^+ и гидроксил-анионами OH^- ;
- диагональные линии с положительной или отрицательной крутизной, которые представляют реакции, связаны с электронами, протонами H^+ гидроксил-анионами OH;
- вертикальные линии, которые представляют реакции, проходящие с участием протонов H^+ или гидроксил-анионов OH^- , но не зависящие от электродного потенциала. Другими словами, в этих реакциях не участвуют электроны.

Пунктирными линиями на диаграммах показана область химической стабильности воды. Верхний предел стабильности воды основан на электродном потенциале при генерации кислорода на аноде:

$$2H_2O = 4H^+ + O_2 + 4\overline{e}$$
.

Нижний предел устойчивости основан на формировании водорода на катоде:

$$2H^+ + 2\overline{e} = H_2$$

Значения свободной энергии Гиббса ΔG^0 вычисляются из стандартных потенциалов по уравнению:

$$\Delta G^0 = -nFE^0.$$

где n — число электронов, участвующих в окислительно-восстановительных процессах, F —постоянная Фарадея (1 Фарадей = $N_{\rm A}e$ = 96500 Кл/моль)

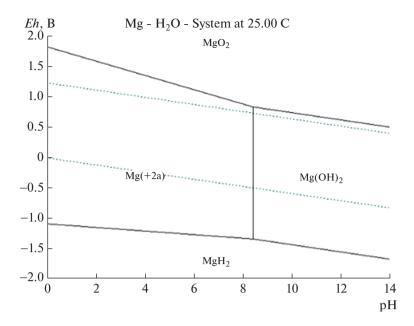


Рис. 2. Зависимость электродного потенциала от кислотности среды при температуре 25°C для системы магний—вода.

и E^0 — стандартный электродный потенциал, вольт (B) при 25°C.

Значения стандартных электродных потенциалов ионов Fe^{+2} , Fe^{+3} и Mg^{+2} в водных растворах приведены в табл. 1.

Области термодинамической устойчивости ионов железа и магния определяются по диаграммам Пурбе, приведенным на рис. 1 и 2. Области стабильности ионов находятся внутри сплошных линий. Согласно рис. 1, в области при рН < 7 и E=-0.5-0.7 В ион $\mathrm{Fe^{+2}}$ термодинамически стабилен, а ион $\mathrm{Fe^{+3}}$ стабилен при E>0.7 В в кислой среде. При E<-0.5 В ион железа восстанавливается до $\mathrm{Fe^{0}}$. При высоких значениях рН ионы железа взаимодействуют с водой с образованием гидроксида железа (II):

$$Fe^{2+} + 2H_2O = Fe(OH)_2 + 2H^+,$$

 $Fe^{3+} + 3H_2O = Fe(OH)_3 + 3H^+.$

Гидроксид железа (III) с брутто-формулой Fe(OH)₃ представляет собой неустойчивое соеди-

нение из-за наличия неспаренного электрона и является радикалом с дублетной мультиплетностью. Ион магния $\mathrm{Mg^{+2}}$ (рис. 2) термодинамически устойчив в широкой области: при $E=-1-1/9~\mathrm{B}$ и рH = 0–8.2. При рH > 8.2 ионы $\mathrm{Mg^{+2}}$ взаимодействуют с водой, образуя гидроксид магния.

На рис. 3 и 4 приведены диаграммы зависимости электродного потенциала от кислотности среды при температуре 25°С для систем натрий—вода (рис. 3) и калий—вода (рис. 4). Как видно из рисунков, области термодинамической устойчивости ионов натрия совпадают с областью термодинамической устойчивости воды. Ионы калия при рН > 9.5 образуют гидроксид калия. Из приведенных данных по диаграммам зависимости электродных потенциалов от кислотности среды металлов Fe, Mg, K, Na следует, что ионы железа (III) и магния устойчивы при любых значениях кислотности среды, а ионы железа (II) устойчивы в кислой среде.

Температура является важным фактором, влияющим на термодинамическую устойчивость ионов в водном растворе. В табл. 2 и 3 приведены

Таблица 1. Стандартные электродные потенциалы ионов Fe^{+2} , Fe^{+3} и Mg^{+2} в водных растворах [8]

Катионы	Процесс восстановления на катоде	E^0 , B	ΔH^0 , ккал/моль	ΔG^0 , ккал/моль
Fe ⁺³ /Fe	$Fe^{+3} + 3\overline{e} = Fe$	-0.036	-4.28	-2.49
Fe ⁺² /Fe	$Fe^{+2} + 2\overline{e} = Fe$	-0.440	-21.00	-20.30
Mg^{+2}/Mg	$Mg^{+2} + 2\overline{e} = Mg$	-2.370	-110.36	-109.32

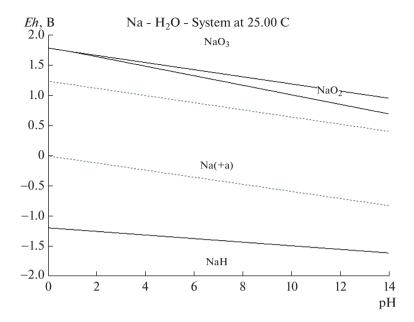


Рис. 3. Зависимость электродного потенциала от кислотности среды при температуре 25°C для системы натрий—вода.

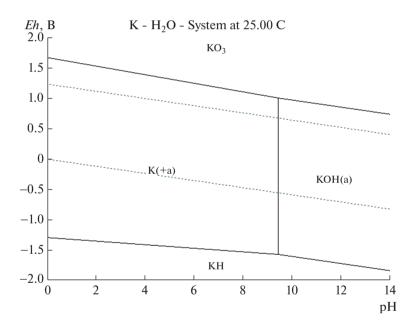


Рис. 4. Зависимость электродного потенциала от кислотности среды при температуре 25°C для системы калий-вода.

температурные зависимости термодинамических функций: энтальпии ΔH , энтропии ΔS , свободной энергии Гиббса ΔG , а также логарифмы констант равновесия $\lg(K)$ для следующих реакций:

$$Fe(OH)_2 + 2H^+ = Fe^{+2} + 2H_2O(I),$$
 $Mg(OH)_2 + 2H^+ = Mg^{+2} + 2H_2O(II),$
 $KOH = K^+ + OH^- (III),$

$$NaOH = Na^{+} + OH^{-}$$
 (IV).

Как видно из данных табл. 3 и 4, в кислой среде с ростом температуры свободная энергия Гиббса ΔG обеих реакций растет:

$$\Delta G = \Delta H - T \Delta S$$
.

Судя по величине lg(K) до температуры 200°C и первая, и вторая реакция направлены в сторону образования ионизированных форм железа и магния. Аналогичная картина наблюдается при

Таблица 2. Температурная зависимость термодинамических функций реакций образования ионов Fe^{+2} и Mg^{+2} в кислой среде

$Fe(OH)_2 + 2H^+ = Fe^{+2} + 2H_2O$				$Mg(OH)_2 + 2H^+ = Mg^{+2} + 2H_2O$				
<i>T</i> , °C	$\Delta H,$ ккал/моль	Δ <i>S</i> , кал/моль (273+T)	ΔG , ккал/моль	lg(K)	ΔH , ккал	ΔS , кал/моль (273+ T)	$\Delta \emph{G},$ ккал/моль	lg(K)
0	24.360	23.367	-17.977	14.385	-30.274	-25.448	-23.323	18.662
20	-21.513	-12.947	-17.718	13.210	-27.304	-14.595	-23.026	17.168
40	-21.399	-12.573	-17.462	12.188	-27.042	-13.729	-22.742	15.873
60	-21.264	-12.155	-17.215	11.294	-26.754	-12.840	-22.477	14.746
80	-21.141	-11.794	-16.976	10.506	-26.482	-12.045	-22.228	13.757
100	-21.054	-11.555	-16.742	9.807	-26.252	-11.411	-21.994	12.883
120	-21.024	-11.475	-16.512	9.180	-26.085	-10.976	-21.770	12.103
140	-21.072	-11.594	-16.282	8.614	-26.007	-10.780	-21.553	11.402
160	-21.225	-11.953	-16.047	8.097	-26.043	-10.865	-21.337	10.767
180	-21.508	-12.593	-15.802	7.622	-26.223	-11.270	-21.116	10.185
200	-21.953	-13.551	-15.541	7.179	-26.578	-12.034	-20.884	9.647

Таблица 3. Температурная зависимость термодинамических функций реакций образования ионов K^+ и Na^+ в водном растворе

$KOH = K^+ + OH^-$			$NaOH = Na^{+} + OH^{-}$					
T, °C	$\Delta H,$ ккал/моль	ΔS , кал/моль (273+ T)	ΔG , ккал/моль	lg(<i>K</i>)	$\Delta H,$ ккал/моль	ΔS , кал/моль (273+ T)	ΔG , ккал/моль	lg(K)
20	-13.526	7.508	-14.303	11.445	-10.444	-3.332	-9.467	7.059
40	-14.421	2.995	-14.404	10.740	-11.147	-5.655	-9.376	6.544
60	-15.206	0.040	-14.433	10.074	-11.731	-7.464	-9.244	6.065
80	-15.963	-2.392	-14.409	9.453	-12.281	-9.068	-9.079	5.619
100	-16.745	-4.597	-14.339	8.875	-12.855	-10.649	-8.882	5.202
120	-17.589	-6.751	-14.226	8.332	-13.493	-12.313	-8.652	4.810
140	-18.534	-8.954	-14.069	7.821	-15.529	-17.386	-8.346	4.415
160	-19.622	-11.298	-13.867	7.336	-16.425	-19.504	-7.977	4.025
180	-20.895	-13.868	-13.615	6.870	-17.522	-21.977	-7.563	3.648
200	-22.395	-16.738	-13.310	6.420	-18.869	-24.883	-7.095	3.278

образовании ионов K^+ и Na^+ в водной среде, термодинамические данные которых приведены в табл. 3. Следовательно, можно утверждать, что если в указанном температурном интервале гуматы щелочных металлов будут находиться в растворе в ионизированной форме, то замена иона

щелочного металла на ионы железа (II) и магния является термодинамически разрешенной.

Интересно отметить, что свободная энергия Гиббса ΔG реакций образования ионов $\mathrm{Fe^{+2}}$ и $\mathrm{Mg^{+2}}$, а также реакций образования ионов $\mathrm{K^+}$ и $\mathrm{Na^+}$ в

Таблица 4. Зависимость термодинамических функций равновесной системы, состоящей из водного раствора гумата калия и ионов железа (II) от температуры

$$K(CH_3COO)_2(-a) + 2Fe(+2a) =$$

= 2Fe(CH₃COO)(+a) + K(+a)

T, °C	$\Delta H,$ ккал/моль	ΔS , кал/моль (273+ T)	$\Delta \emph{G},$ ккал/моль	lg(<i>K</i>)
0	-2.685	6.495	-4.460	3.568
20	-1.603	10.331	-4.631	3.453
40	-0.809	12.951	-4.865	3.396
60	-0.085	15.195	-5.147	3.377
80	0.636	17.296	-5.472	3.387
100	1.402	19.404	-5.839	3.420
120	2.248	21.611	-6.249	3.474
140	3.215	24.009	-6.704	3.547
160	4.349	26.688	-7.211	3.639
180	5.697	29.728	-7.774	3.750
200	7.310	33.209	-8.403	3.882

Таблица 5. Зависимость термодинамических функций равновесной системы, состоящей из водного раствора гумата калия и ионов магния от температуры

$$K(CH_3COO)_2(-a) + 2Mg(+2a) =$$

= $2Mg(CH_3COO)(+a) + K(+a)$

<i>T</i> , °C	$\Delta H,$ ккал/моль	ΔS , кал/моль (273 + T)	ΔG , ккал/моль	lg(K)
0	-4.749	-3.070	-3.910	2.910
20	-3.356	1.867	-3.903	2.773
40	-2.424	4.946	-3.973	2.688
60	-1.633	7.397	-4.097	2.641
80	-0.888	9.569	-4.267	2.624
100	-0.126	11.668	-4.479	2.632
120	0.696	13.811	-4.734	2.663
140	1.620	16.103	-5.033	2.715
160	2.693	18.637	-5.380	2.788
180	3.960	21.496	-5.781	2.884
200	5.471	24.756	-6.242	3.129

высокой степени линейно коррелируют ($R^2 = 1$). Можно предположить, что обе реакции идут по химически активным карбоксильным и гидроксильным группам гуминовых кислот.

На примере этановой кислоты, моделирующей фрагмент гумата как карбоксильной функции, связанной с углеводородным фрагментом, рассмотрим вопрос приемлемого температурного режима реакций замены ионов калия и натрия в карбоксильных группах на ионы Fe^{+2} и Mg^{+2} . В табл. 4 и 5 приведены зависимости термодинамических функций следующих реакций от температуры:

$$K(CH_3COO)_2(-a) + 2Fe(+2a) =$$

= 2Fe(CH₃COO)(+a) + K(+a) (V),
 $K(CH_3COO)^2(-a) + 2Mg(+2a) =$
= 2Mg(CH₃COO)(+a) + K(+a) (VI).

Положительные значения логарифма константы равновесия $\lg(K)$ показывают, что с ростом температуры направление процессов смещается вправо, т.е. в сторону образования гуматов железа и магния. Эта тенденция обеспечивает возможность при выборе температуры получения гуматов железа и магния руководствоваться только термостабильностью гуминовых кислот. Для общих выводов в случае железа необходимо оценить температурную зависимость термодинамических функций реакции восстановления ионов Fe^{+3} до Fe^{+2} :

$$Fe^{+3} + e^{-} = Fe^{+2}$$
 (VII).

Результаты расчетов, приведенные в табл. 6, показывают, что в рассмотренном температурном интервале по знаку энергии Гиббса ΔG можно сделать вывод о направлении течения процесса в сторону образования восстановленной ионной формы железа.

В заключение рассмотрим реакцию осаждения модельной структуры гуминовой кислоты в кислой среде:

$$(CH_3COO)_2K^- + 2H^+ = K^+ + 2CH_3COOH (VII).$$

В табл. 7 приведена зависимость термодинамических функций реакции (VII) от температуры. Анализ данных показывает, что с ростом температуры энергия Гиббса реакции уменьшается, другими словами, при повышении температуры гуминовые кислоты в кислой среде будут в молекулярной форме, что является экспериментально подтвержденным фактом [11]. Следует особо отметить, что результаты фундаментальных исследований ионообменных процессов в зависимости от рН среды [12], где обсуждаются и свойства гу0.983

-22.645

Таблица 6. Температурная зависимость термодинамических функций реакции образования ионов $Fe^{+3} + e^- = Fe^{+2}$

$Fe^{+3} + e^{-} = Fe^{+2}$						
T, °C	$\Delta H,$ ккал/моль	ΔS , кал/моль (273 + T)	$\Delta G,$ ккал/моль	lg(<i>K</i>)		
0	-10.440	24.538	-17.143	0.744		
20	-10.237	25.258	-17.641	0.766		
40	-10.098	25.716	-18.151	0.788		
60	-9.961	26.140	-18.670	0.810		
80	-9.807	26.590	-19.197	0.833		
100	-9.619	27.107	-19.734	0.856		
120	-9.383	27.723	-20.282	0.880		
140	-9.080	28.473	-20.844	0.904		
160	-8.690	29.395	-21.422	0.930		
180	-8.188	30.527	-22.021	0.956		

Таблица 7. Температурная зависимость термодинамических функций реакции осаждения модельной структуры гуминовой кислоты в кислой среде

31.906

-7.549

200

$$(CH_3COO)_2K^- + 2H^+ = K^+ + 2CH_3COOH$$

T, °C	<i>H</i> , ккал/моль	ΔS , кал/моль (273 + T)	$\Delta G,$ ккал/моль
0	25.322	100.409	-4.113
20	23.335	93.842	-6.052
40	21.750	88.930	-7.877
60	20.413	85.030	-9.616
80	19.240	81.797	-11.283
100	18.196	79.072	-12.891
120	17.263	76.755	-14.449
140	16.431	74.787	-15.963
160	15.701	73.139	-17.442
180	15.080	71.797	-18.891

миновых кислот, не могут быть учтены в квантовохимическом расчете ввиду отсутствия данных по термодинамическим функциям гуминовых кислот в программном модуле [10]. Это обстоятельство ограничивает расчеты алкилпроизводными функциональных групп, присутствующих в ГВ.

Таким образом, проведенные термодинамические исследования реакций образования ионов калия, натрия, железа (III) и магния показывают, что ионы этих металлов в водной среде устойчивы при определенных значениях рН среды. Железо (II) может образовываться путем восстановления железа (III). Результаты термодинамических расчетов показывают, что замена ионов калия и натрия на ионы железа и магния является термодинамически возможной и может быть осуществлена при добавлении в раствор, содержащий ионы Fe^{+2} , Fe^{+3} , Mg^{+2} , эквивалентного количества гумата щелочного металла. Отрицательные значения энергии Гиббса такого ионообменного процесса, имеющие слабую зависимость от температуры, позволяют считать такую замену термодинамически возможной. Образующиеся гуматы железа и магния оказываются термодинамически более устойчивыми, чем гуматы щелочных металлов. Следовательно, для практического использования гуматов железа и магния их получение необходимо вести в условиях, определяемых свойствами ГК: при температуре, позволяющей избежать их деструкции и кислотности среды, обеспечивающей их существование в ионной форме. Вероятно, что растворимость образовавшихся гуматов железа и магния будет несколько ниже растворимости исходных гуматов щелочных металлов.

Отметим, что в реакциях типа $Fe^{+3} + e^- = Fe^{+2}$ могут использоваться электроны, образующиеся в результате химических процессов, протекающих в органической массе ГВ. Примером такого процесса может служить восстановление хинона в гидрохинон:

$$O = \underbrace{\begin{array}{c} +2\bar{\mathbf{e}},+2H^{\oplus} \\ \hline -2\bar{\mathbf{e}},-2H^{\oplus} \end{array}} \ HO - \underbrace{\begin{array}{c} -OH \\ \hline \end{array}}$$

СПИСОК ЛИТЕРАТУРЫ

- 1. *Попов А.И.* Гуминовые вещества: свойства, строение, образование. СПб.: Изд-во СПбУ. 2004. 248 с.
- 2. *Орлов Д.С.* Химия почв. М.: Изд-во МГУ. 1992. 259 с.
- 3. *Орлов Д.С.* Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ. 1990. 325 с.
- 4. *Stevenson F.J.* Humus Chemistry: Genesis, Composition, Reactions. New York: John Wiley&Sons, 1982. p. 443.

- 5. *Хилько С.Л., Таперко Г.В., Рогатко М.И.* // Вестн. НовГУ. Сер.: Технические науки. 2021. № 4 (125). С. 68.
 - https://doi.org/10.34680/2076-8052.2021.4(125).68-71
- 6. *Мишустин А.О., Щукин В.Б., Павлова О.Г., Ильясова Н.В.* // Изв. Оренбургского гос. аграрн. ун-та. 2022. № 1 (93). С. 9. https://doi.org/10.37670/2073-0853-2021-93-1-9-14
- Perdue E.M. // Geochim. Cosmochim. Acta. 1984.
 V. 48. № 7. P. 1435.
- 8. Яркова Т.А., Гюльмалиев А.М. // XTT. 2018. № 2. C. 17. [Solid Fuel Chemistry. 2018. V. 52. № 2. P. 73. https://doi.org/10.3103/S036152191802012X] https://doi.org/10.7868/S0023117718020044

- 9. *Перминова И.В.* Анализ, классификация и прогноз свойств гумусовых кислот. Дис. ... д-ра хим. наук. М.: МГУ, 2000. 359 с.
- 10. Биохимия. / Под ред. Северина Е.С. 2004. 784 с.
- 11. HSC Chemistry 6. http://www.hsclchemistry.net/
- 12. *Лиштван И.И., Круглицкий Н.Н., Третинник В.Ю.* Физико-химическая механика гуминовых веществ. Мн.: Наука и техника, 1976. 264 с.
- 13. Гамаюнов Н.И., Косов В.И., Масленников Б.И. Ионообменные процессы и электрокинетические явления в набухающих природных и синтетических ионитах. Тверь: Изд-во ТГТУ, 1999. 155 с.