УЛК 552.57:553.3.072

НОВЫЕ ДАННЫЕ О МЕТАЛЛОНОСНОСТИ УГЛЕЙ САХАЛИНА

© 2022 г. В. И. Вялов^{1,2,*}, А. В. Наставкин^{2,**}, Е. П. Шишов^{1,***}

 1 ФГБУ Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского, 199106 Санкт-Петербург, Россия

² ФГАОУ ВО "Южный федеральный университет", 344006 Ростов-на-Дону, Россия

*e-mail: vladimir_vyalov@vsegei.ru

**e-mail: nastavkin@sfedu.ru

***e-mail: evgeny_shishov@vsegei.ru

Поступила в редакцию 07.06.2022 г.

После доработки 26.07.2022 г.

Принята к публикации 03.08.2022 г.

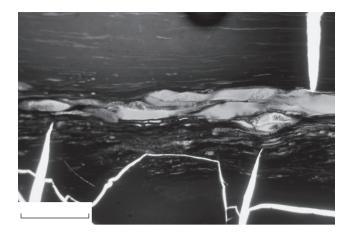
Проведено изучение уровней концентраций ценных элементов-примесей в углях ряда месторождений Сахалина. Установлено, что все изученные месторождения являются потенциально промышленно металлоносными в отношении Sc, REE, Cs, Rb, Sr. Для Новиковского германий-угольного месторождения (участки Восточный 1, Резервный) выявлен широкий спектр ценных металлов с минимальными промышленными концентрациями: Ge, Sc, Mo, Y, W, Cs, Rb, Sr, Sb. Выполнена оценка прогнозных ресурсов ценных металлов этого месторождения, сделан вывод о крупном ресурсном потенциале ценных металлов в углях Сахалина.

Ключевые слова: уголь, металлоносность, промышленно, потенциально ценные микроэлементы, элементы-примеси, концентрация

DOI: 10.31857/S0023117722060123

ВВЕДЕНИЕ

Сахалинская область - крупный угледобывающий регион России с добычей около 10 млн т бурых и каменных углей (в соотношении примерно 2:1), запасами углей около 2.6 млрд т (примерно в равном соотношении бурых и каменных). Однако только одно Новиковское месторождение разрабатывалось на германий. Отсюда понятие "металлоносные угли" должно связываться с потенциальной возможностью их промышленного использования для рентабельного извлечения металлов, содержащихся в них на достаточных для этого уровнях концентраций. Рационально провести исследование металлоносности углей Сахалина и на другие ценные элементы, используя следующий подход: если эти элементы имеют в углях концентрации, достигающие или превышающие так называемые минимальные промышленные содержания тех или иных элементов в специальных типах промышленных руд [1], тогда они должны подлежать количественной оценке и, соответственно, их ресурсы должны быть обязательно оценены и учтены.


Ранее [2] для Новиковского месторождения уже были установлены в угольной золе промышленные содержания REE (в пересчете на оксиды), Rb_2O , Cs_2O , SrO. С.И. Арбузовым и соавт. [3] изу-

чалась геохимия семи редкоземельных элементов (La, Ce, Sm, Eu, Tb, Yb, Lu) в сахалинских углях. В.П. Нечаевым и соавт. [4] такие работы проводились по Горнозаводскому месторождению, но лишь по одной пробе.

МЕТОДИКА ИССЛЕДОВАНИЙ

Авторами статьи проведено опробование углей Новиковского (82 пробы), а также других месторождений (Углегорское, Лопатинское, Макаровское, Горнозаводское, Вахрушевское, Первомайское, Солнцевское, Тихоновичское, Най-Найское, по которым было отобрано еще 117 проб).

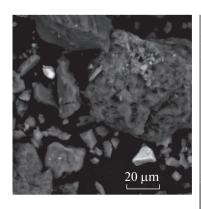
Микроэлементный состав образцов определен и изучен в основном с использованием: 1) масс-спектрометрии, атомно-эмиссионного метода с индуктивно-связанной плазмой (*ICP AES*, сплавление), в том числе по углям — по специальной методике, позволяющей избежать потерь элементов-примесей традиционным (путем озоления) способом пробоподготовки для анализа методом *ICP MS* (полное кислотное выщелачивание); анализы производились в ЦЛ ФГБУ "ВСЕГЕИ" под руководством Г.А. Олейниковой; 2) углепетрографии (в Углепетрографической лаборатории ФГБУ "ВСЕГЕИ", аналитик Г.М. Волкова);

Рис. 1. Новиковское месторождение. Пласт II. Коллинит, в центре — скопление резинита (светло-серый). Проходящий свет. Увеличение 70.

Рис. 2. Новиковское месторождение. Пласт II. Коллинит (основная масса) со споринитом, обрывками кутинита и резинитом (темно-серые). Отраженный свет. Увеличение 70.

3) электронной микроскопии (в ЦКП "ЦИМС" ЮФУ, аналитик Ю.В. Попов).

Исходными аналитическими данными стали результаты анализов углей Новиковского месторождения, а также проб углей других указанных месторождений Сахалина.


Методика оценки состояла в сравнении и оценке полученных аналитических результатов с минимальными промышленными содержаниями ценных элементов [1].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Согласно вещественно-петрографической классификацией углей ВСЕГЕИ [5], изученные угли месторождений Сахалина относятся к классу гелитолитов с повышенным содержанием мацералов группы витринита (от 81 до 99%) и принадлежат к различным типам гелитов (ультрагелиты,

гелиты и липоидо-гелиты, липоидо-фюзинитогелиты), что благоприятно для концентрирования германия и сопутствующих ему ценных металлов [6]. Содержание мацералов группы инертинита не превышает 12%, обычно 2—3%, липоидные компоненты содержатся в количестве 3— 13%, редко выше, водоросли в незначительном количестве. На рис. 1 и 2 показан петрографический состав углей Новиковского месторождения.

Среди минеральных компонентов преобладает тонкодисперсно-глинистое вещество, пирит, кварц, халцедон, сидерит, эпигенетический кальцит, а также пирокластический материал [7]. Результаты электронной микроскопии пробы тяжелой (1.6 и более г/см³) фракции угля Новиковского месторождения, энергетический спектр образующих ее элементов, полученный на ЭДС-микроанализаторе, показаны на рис. 3.

Рис. 3. Электронная микроскопия пробы тяжелой (1.6 и более r/cm^3) фракции угля Новиковского месторождения и энергетический спектр образующих ее элементов, полученный на ЭДС-микроанализаторе.

Таблица 1. Средние содержания металлов в углях месторождений Сахалина, по данным масс-спектрометрии

Мастороулацие количество проб	Среднее содержание металлов в золе/угле, г/т					
Месторождение, количество проб	REE	Cs	Rb	Sc	Sr	
Новиковское, участок Восточный 1 (11 проб)	383.0/84.3	20.9/4.6	131.6/29.0	26.8/5.9	523.9/115.3	
Новиковское, участок Резервный (71 проба)	192.7/28.9	12.8/1.9	90.2/13.5	18.6/2.8	1417.9/212.7	
Углегорское (5 проб)	236.1/ 44.7	12.2/2.5	113.0/23.9	29.7/5.7	583.2/108.8	
Лопатинское (4 пробы)	228.3/ 57.6	9.2/2.7	129.4/37.0	29.1/7.7	747.3/136.1	
Побединская угленосная площадь, Леонидовский участок (5 проб)	222.6/ 64.5	4.3/1.3	57.4/16.9	43.0/12.7	233.4/63.3	
Вахрушевское, Лермонтовский разрез-2 (5 проб)	215.1/ 78.1	2.7/1.0	32.5/11.1	36.4/14.7	145.2/47.0	
Горнозаводское, поле шахты Горнозаводская (28 проб)	268.9/ 49.3	5.4/1.3	60.1/14.4	27.2/5.4	401.8/61.2	
Макаровское (10 проб)	383.8/43.2	2.6 /0.3	18.1/2.6	47.3/5.8	1564.6/122.2	
Первомайское, участок Лесной (7 проб)	418.8/77.4	6.6/1.6	71.2 /18.5	46.3/8.6	5185.4/896.0	
Солнцевское, участок Южный (20 проб)	310.4/62.7	6.3/1.8	43.0/11.5	51.0/10.7	692.1/104.3	
Тихоновичское (8 проб)	410.6/129.1	8.9/3.4	73.0/30.2	48.9/15.6	1227.3/342.2	
Най-Найское (25 проб)	312.2/69.5	8.5/2.2	55.1/ 14.6	32.1/7.7	441.6/96.0	

Примечание. Полужирным шрифтом выделены минимальные промышленные концентрации в сравнении с [1].

В соответствии с результатами измерений показателя отражения витринита (ГОСТ 12113-94 и ГОСТ 21489-76) изученные угли относятся к 0, I, I–II, II и II–III стадиям метаморфизма (бурые, длиннопламенные, газовые и газово-жирные), классам 04, 05, 06, 08, 09. В соответствии с ГОСТ 25543-2013 угли наиболее детально изученного объекта исследований — участков Новиковского месторождения — бурые (марка Б), группа ЗБ, подгруппа ЗБВ (третий бурый витринитовый), кодовый номер углей 0402010.

Средние содержания ценных металлов в углях месторождений и их участков Сахалина, концентрации которых достигают высоких значений, по данным масс-спектрометрии, представлены в табл. 1 (минимальные промышленные концентрации, в сравнении с [1], выделены жирным шрифтом).

Таким образом, практически все изученные на содержание элементов-примесей угольные месторождения Сахалина являются металлоносны-

ми. Их основная специализация — на потенциально промышленные ценные элементы. Это преимущественно Sc, REE, Cs, Rb, Sr.

Результаты анализа целого ряда элементовпримесей как в угле, так и в золе углей по участкам Новиковского месторождения представлены в табл. 2. Что касается германия на указанных участках, то при содержании 10 г/т и более в буром угле он уже должен рассматриваться в качестве промышленного [1].

Таким образом, угли участков Новиковского месторождения характеризуются потенциально промышленными концентрациями целого ряда ценных элементов-примесей.

Однако потенциально промышленная специализация углей на ценные металлы разных участков месторождения несколько различается: для участка Восточного 1 - Ge, REE (Y), Sc, Cs, Rb, Sr, W, Mo, V, Sb, Cr, а для участка Резервного — Ge, Cs, Rb, Sr, W, V, Sb.

Таблица 2. Содержание в угле или в золе углей ценных элементов-примесей на участках Новиковского месторождения, г/т

Элемент	Участок месторождения (количество проб)			
	Восточный 1 (11)	Резервный (71)		
Ge (в угле)	0.3-11.6 (2.6)	0.20-14.0 (2.01)		
<i>REE</i> (в золе)	172.5 –483.2	63.1–245.8 (153.5)		
	(309.8) (без Ү)			
Ү (в золе)	37.6 –166.0 (74.9)	10.8-54.8 (29.2)		
Sc (в угле)	2.4-14.9 (6.3)	0.54 -8.1 (2.8)		
Ga (в золе)	25.9–38.8 (30.7)	7.2–32.4 (22.8)		
Сs (в золе)	5.3-45.4 (16.8)	1.3 -30.7 (12.8)		
Rb (в золе)	57.0-165.0 (120.7)	10.6 -182.0 (90.2)		
Sr (в золе)	309 –2660 (911)	251 -12900 (1418)		
Zr (в золе)	158-275 (200.8)	51.3-292 (159.2)		
Hf (в золе)	5.07-7.9 (5.9)	1.3-7.2 (4.2)		
Li (в угле)	2.1-44.2 (12.1)	1.0-23.2 (6.5)		
Ве (в золе)	3.1-28.7 (10.5)	1.5-13.4 (4.2)		
W (в золе)	1.5 -551 (58.6)	1.97 –174 (28.6)		
Мо (в золе)	3.8 -715.0 (99.4)	1.5-55.1 (7.4)		
Nb (в золе)	8.9-32.5 (19.3)	3.1-20.0 (13.1)		
Та (в золе)	0.7-2 (1.3)	0.2-1.4 (0.9)		
V (в золе)	148 –220 (181)	38.9 - 302 (152)		
Sb (в угле)	0.1 -18.6 (2.7)	0.1 -17.1 (1.0)		
Си (в угле)	3.7-68.7 (31.1)	<1.0-39.1 (9.5)		
Zn (в угле)	6.8-43.6 (23)	4.3-43.1 (13.4)		
Ст (в угле)	92.4 –7604 (804)	18.1-169 (92.2)		
Со (в угле)	1.8-10.1 (3.6)	<0.5-16.1 (3.2)		
Ni (в угле)	5.5-222 (56)	2.9-38.8 (10.1)		
Рb (в угле)	1.6-11 (6.1)	1.4-80.4 (6.1)		
Ag (в угле)	<0.01-0.07 (0.03)	<0.01-0.074 (0.02)		

Примечание. В скобках — среднее значение. Полужирным шрифтом выделены минимальные промышленные концентрации в сравнении с [1].

Рационален вопрос об оценке прогнозных ресурсов ценных металлов в углях Сахалина. Пример оценки редкометалльного ресурсного потенциала углей для участков Новиковского месторождения приведен в табл. 3. Оценка выполнена по известным методикам оценки прогнозных ресурсов и критериям выбора их определенной категории.

Соответственно, возможна оценка ресурсного потенциала ценных элементов- примесей в углях и других месторождений Сахалина (с учетом данных табл. 1 и запасов углей).

ЗАКЛЮЧЕНИЕ

Все изученные месторождения угля Сахалина являются потенциально промышленно металлоносными в отношении Sc, *REE*, Cs, Rb, Sr (табл. 1). Наибольшая металлоносность, большее разнообразие ценных элементов-примесей с минимальными промышленными концентрациями характерны для участков германиеносного Новиковского месторождения (табл. 2). Спектр ценных металлов здесь наиболее широкий: Ge, REE (Y), Sc, Cs, Rb, Sr, W, Mo, V, Sb, Cr. Германиеносный потенциал Новиковского месторождения не исчерпан, оценка его прогнозных ресурсов по Ge по участкам (Резервному, Восточному 1 и Южному) составляет 182 т. Кроме того, на месторождении оценены прогнозные ресурсы Sc, REE (в пересчете на оксиды) и некоторых других ценных металлов (табл. 3).

Оценка прогнозных ресурсов ценных металлов возможна и по другим изученным месторождениям углей с использованием усредненных данных по концентрациям элементов (табл. 1). Очевидно, что прогнозный ресурсный потенциал ценных элементов-примесей в углях Сахалина будет весьма крупным из-за наличия значительных запасов углей на месторождениях. Его конкретная количественная и геолого-экономическая оценка — задача дальнейшего изучения.

Таблица 3. Прогнозные ресурсы ценных металлов в углях участков Новиковского месторождения, т

Участок	Запасы угля по категориям $A + B + C_1$, млн т	Прогнозные ресурсы металлов по категории P_2 , т					
		Sc	Ge	Rb ₂ O	SrO	Cs ₂ O	<i>REE</i> (в оксидах)
Резервный	4.307	10.1	130.9	54.3	741.9	7.4	_
Восточный 1	0.49	2.4	14.9	12.9	_	1.6	40.7
Южный	0.249	_	36.4	_	_	_	_
Всего		12.5	182.2	67.2	741.9	9.0	40.7

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет гранта Российского научного фонда № 18-17-00004, https://rscf.ru/project/18-17-00004/.

СПИСОК ЛИТЕРАТУРЫ

- 1. Вялов В.И., Наставкин А.В. // XTT. 2019. № 5. С. 63. [Solid Fuel Chemistry, 2019, vol. 53, no. 5, p. 314. https://doi.org/10.3103/S0361521919050112] https://doi.org/10.1134/S0023117719050116
- 2. Вялов В.И., Богомолов А.Х., Шишов Е.П., Чернышев А.А. // Георесурсы. 2017. Спецвыпуск. Ч. 2. С. 256. https://doi.org/10.18599/grs.19.25
- 3. Arbuzov S.I., Chekryzhov I. Yu., Finkelman R.B., Sun Y.Z., Zhao C.L., Il'enok S.S., Blokhin M.G., Zarubina N.V. // Intern. J. Coal Geology. 2019. V. 206. P. 106. https://doi.org/10.1016/j.coal.2018.10.013

- 4. Nechaev V.P., Bechtel A., Dai S., Chekryzhov I.Yu., Pavlyutkin B.I., Vysotskiy S.V., Ignatiev A.V., Velivetskaya T.A., Guo W., Tarasenko I.A., Nechaeva E.V., French D., Hower J.C. // Appl. Geochem. 2020. V. 117. 104602. https://doi.org/10.1016/j.apgeochem.2020.104602
- 5. Петрография углей СССР. Вещественно-петрографический состав угольных пластов и качество углей основных бассейнов СССР. Л.: Недра, 1986. С. 222.
- 6. Вялов В.И., Олейникова Г.А., Наставкин А.В. // XTT. 2020. № 3. С. 42. [Solid Fuel Chemistry, 2020, vol. 54, no. 3, p. 163. https://doi.org/10.3103/S0361521920030118] https://doi.org/10.31857/S0023117720030111
- Петрологический атлас ископаемого органического вещества России // Гл. редактор О.В. Петров. СПб.: Изд-во ВСЕГЕИ, 2006. С. 205.