УЛК 547.56

ВЫСОКОТЕМПЕРАТУРНОЕ ГИДРИРОВАНИЕ ФЕНОЛЬНОЙ ФРАКЦИИ КАМЕННОУГОЛЬНОЙ СМОЛЫ АО "ШУБАРКОЛЬ КОМИР" СВОБОДНЫМ И СВЯЗАННЫМ ВОДОРОДОМ В ПРИСУТСТВИИ МоО₃

© 2021 г. М. Г. Мейрамов*

ТОО "Институт органического синтеза и углехимии РК", 100008 Караганда, Казахстан *e- mail: majit_m@mail.ru
Поступила в редакцию 16.04.2020 г.
После доработки 24.04.2020 г.
Принята к публикации 03.06.2020 г.

Приведены результаты высокотемпературного гидрирования фенола и фенольной фракции каменноугольной смолы коксохимического производства AO "Шубарколь комир" в присутствии MoO_3 с использованием компонентов коксового газа в качестве гидрирующего и алкилирующего агентов. При гидрировании фракции в системе $CO-H_2O$, наряду с восстановлением фенолов до ароматических углеводородов, происходит алкилирование фенола метанолом, образующимся в результате реакции водяного газа. Взаимодействие фенола с системами $CO-H_2O$ и $CO-H_2$ в аналогичных условиях приводит к образованию продуктов восстановления (бензол, толуол, ксилолы) и алкилирования (крезолы и ксиленолы) фенола.

Ключевые слова: фенольная фракция, фенол, гидрирование, алкилирование, катализатор

DOI: 10.31857/S0023117721010072

Первичная каменноугольная смола – побочный продукт Коксохимического цеха при АО "Шубарколь комир" (ШК). Выход смолы достигает 20-30 тыс. т/г. Содержание фенолов в продукте превышает 20%, что не позволяет использовать его в обычных для тяжелых нефтяных остатков направлениях, таких как производство битума, связующего для углебрикетов, компонента дорожного покрытия. Кроме того, фенолы концентрируются в оборотной воде, где содержание их также выходит за рамки 20%. Обесфеноливанию промышленных и сточных вод уделяется достаточно серьезное внимание [1]. На ШК производится частичная утилизация насыщенной фенолами оборотной воды под воздействием высоких температур. В качестве горючего используется коксовый газ. Утилизация сопровождается выделением большого количества углекислого газа, нерациональным использованием энергоносителей (H_2 , CO, CH_4), входящих в состав коксового газа.

Сообщалось, что восстановление фенолов, когда нужно заместить группу ОН атомом водорода и получить ароматические углеводороды для обесфеноливания смол, образующихся при пирогенетической переработке твердых топлив, необходимо проводить в жестких условиях [2]. В работах [3, 4] приведены результаты гидрогенизационной переработки смолы ШК в присутствии Мо- и Ni-со-

держащих псевдогомогенных каталитических систем для получения компонентов моторных топлив и химических вешеств.

Альтернативным вариантом нейтрализации фенолов может стать получение ароматических углеводородов из фракции смолы ШК и насыщенной фенолами оборотной воды.

В статье приведены результаты высокотемпературного гидрирования фенола и фенольной фракции смолы ШК в присутствии MoO_3 с использованием компонентов коксового газа в качестве гидрирующего и алкилирующего агентов.

В качестве исследуемого объекта гидрирования использована фенольная фракция смолы ШК с температурой выкипания до 270° С, хроматограмма и состав которой приведены на рис. 1 и в табл. 1. В качестве катализатора выбран оксид молибдена (MoO_3), который позволяет проводить восстановление фенолов как при повышенном, так и при низком давлении водорода [5].

Установлено, что оптимальными условиями проведения эксперимента, при которых достигается высокий выход ароматических углеводородов, являются начальное давление водорода $6.0~\mathrm{M\Pi a}$, температура реактора $420^{\circ}\mathrm{C}$, время контакта $120~\mathrm{минут}$, катализатор $\mathrm{MoO_3}$. Уменьшение величины одного из параметров значительно снижает выход целевых продуктов.

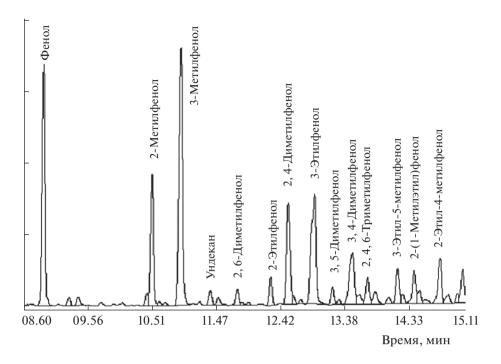


Рис. 1. Хроматограмма фракции смолы САС (фрагмент).

Процесс проводили в реакторе *CJF-0.05* (*Zhengzhou Keda Machineryand Instrument*, Китай), емкостью 0.05 л., с внутренним перемешиванием, датчиками температуры и давления и устройством аварийного сброса давления.

В реактор загрузили 1.0 г фракции смолы ШК, 0.01 г МоО₃ закрыли, продули водородом и закачали водород до отметки 6 МПа. Автоклав нагревали при температуре 420°C в течение 2 ч, охладили, в приготовленную емкость собрали газ для анализа, остаток растворили в 30 мл изопропанола. Состав продуктов реакции определяли методом ГЖХ анализа на хроматографе Кристаллюкс 4000 М (НПФ Мета-хром, Россия) с детекторным модулем ПИД/ПИД на колонках ZB-5 30 м \times $imes 0.53 \,\mathrm{mm} imes 1.50 \,\mathrm{mkm}$ и ZB-5 $30 \,\mathrm{m} imes 0.32 \,\mathrm{mm} imes 0.25 \,\mathrm{mkm}$ с программированием температуры термостата 60-250°C при скорости подъема температуры 6°С/мин. База данных компонентов для данного метода составлялась с использованием реагентов Sigma-Aldrich (США), а также результатов ХМСанализа фракции смолы ШК, выполненного на приборе HP 5890/ 5972 MSD Agilent (США), на капиллярной колонке *DB*-5ms 30 м imes 0.250 мм imes $\times 0.50$ мкм, в интервале температур 60-300°C. Идентификация веществ проводилась по массспектральной базе данных NIST98. ГЖХ анализ газообразных продуктов проводился на хроматографе Кристаллюкс 4000 М с детекторным модулем 2ДТП/ПИД, на колонке NaX 3 м, d-3 мм для

постоянных газов и колонке $Porapak\ R\ 3\ \mathrm{M},\ d\ -3\ \mathrm{MM}$ для углеводородных газов.

Результаты, представленные на рис. 2 и в табл. 1, показывают, что гидрирование фракции ШК в водороде приводит к образованию 20.04% бензола, при содержании фенола в исходном образце 9.65%.

Это связано, по-видимому, с процессом дезалкилирования высших фенолов до фенола и его дальнейшем восстановлении в бензол [6, 7]. Толуол и метилциклогексан происходят от о- и мкрезолов, входящих в состав фракции, ксилолы от соответствующих ксиленолов.

Суммарный выход бензола, толуола, ксилолов и метилциклогексана составляет 58.70%. Содержание идентифицированных фенолов снизилось с 48.15 до 4.23%.

Оксид углерода и водород на этом предприятии в избытке (14—20 и 16—31% соответственно) вырабатываются при производстве кокса и, после очистки от азота и кислорода, могут быть вовлечены в процесс. Реакция водяного газа является альтернативным источником водорода:

$$CO + H2O \rightarrow H2 + CO2.$$
 (1)

Ранее этот метод использовался при гидрогенизации полиароматических углеводородов [8].

Гидрирование фенольной фракции связанным водородом проводили аналогично описанному методу с заменой водорода на оксид углеро-

да и добавлением в реактор 0.5 мл дистиллированной воды. Хроматограмма и состав продуктов реакции представлены на рис. 3 и в табл. 1.

Сопоставление содержания и соотношения компонентов (фенол: бензол и крезолы: толуол) в исходном и конечных продуктах реакции показывают на вероятность алкилирования фенола в системе $CO-H_2O$. Это подтверждается реакциями фенола в аналогичных условиях в среде водорода, системах $CO-H_2O$ и $CO-H_2$.

Установлено, что результатом гидрирования фенола (марка "ч" ГОСТ 6417-72) при начальном давлении водорода 6.0 МПа, температуре 420°С, катализатор MoO_3 и времени контакта 120 мин является бензол с выходом 82.56%:

$$C_6H_5OH + H_2 \rightarrow C_6H_6 + H_2O.$$
 (2)

В системе $CO-H_2O$ образуется многокомпонентная смесь, состоящая из фенолов и их гидрированных производных (рис. 4, табл. 2).

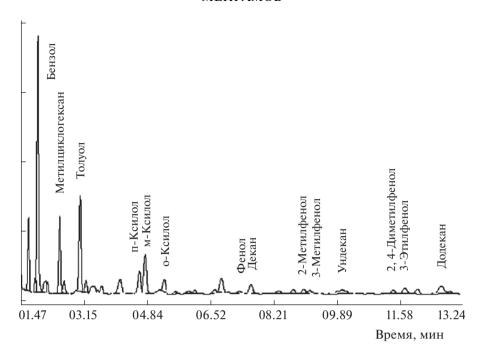
В системе $CO-H_2O$ фенол восстанавливается водородом, продуктом реакции (1), до бензола и циклогексана. Метанол, необходимый для алкилирования, образуется из синтез-газа:

$$CO + 2H_2 \rightarrow CH_3OH.$$
 (3)

Продукты алкилирования фенола — крезолы и ксиленолы, восстанавливаются водородом до толуола и соответствующих ксилолов. На рис. 5 показана схема превращения фенола в системе $CO-H_2O$.

В составе газообразных компонентов присутствуют CO_2 — продукт реакции (1) и метан — побочный продукт синтеза Фишера—Тропша (рис. 5, табл. 3).

$$CO + 3H_2 \rightarrow CH_4 + H_2O. \tag{4}$$


Подтверждением происходящего процесса служит реакция алкилирования фенола метанолом в атмосфере аргона (фенол 0.5 г, метанол 0.5 мл, катализатор MoO_3 , аргон 6 МПа, 120 мин при 420° С), приводящая к образованию крезолов и ксиленолов (рис. 7, табл. 2). Алкилирование идет, главным образом, в *орто*-положение для крезолов и 2.6 — для ксиленолов.

Следует отметить, что впервые алкилирование фенола метанолом проведено Ипатьевым в присутствии глинозема при 440° С и давлении 20 МПа в течение 24 ч. Главным продуктом реакции являлся o-крезол [9, 10].

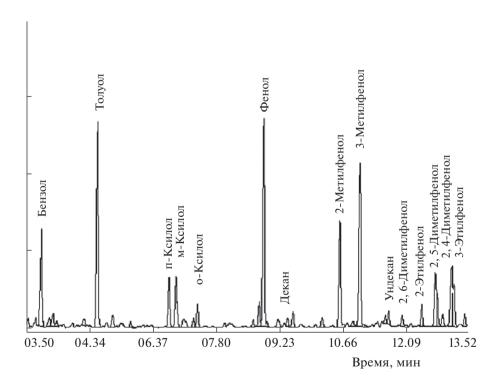

Смесь оксида углерода и водорода — синтезгаз — также может использоваться в процессе восстановления фенолов в ароматические углеводороды. Для проведения реакций в среде синтез-газа в стальном баллоне была приготовлена модель-

Таблица 1. Компонентный состав фракции смолы САС и продуктов гидрирования в водороде и системе $CO-H_2O$ в присутствии MoO_3

Компонент	Содержание, мас. %			
	фракция САС	водород	система СО-H ₂ О	
Бензол	_	20.04	4.84	
Метилциклогексан	_	8.34	_	
Толуол	_	10.53	10.25	
п-Ксилол	_	3.42	2.36	
м-Ксилол	_	6.12	3.10	
о-Ксилол	_	1.91	1.13	
Фенол	9.65	0.47	10.97	
Декан	0.36	1.74	0.41	
2-Метилфенол	5.31	0.72	5.81	
3-Метилфенол	13.01	0.70	9.03	
Ундекан	0.64	2.38	0.47	
2,6-Диметилфенол	0.68	_	0.73	
2-Этилфенол	1.00	_	1.11	
2,5-Диметилфенол	_	_	3.10	
2,4-Диметилфенол	5.28	0.77	1.54	
3-Этилфенол	7.76	1.57	4.37	
3,5-Диметилфенол	0.74	2.69	0.80	
3,4-Диметилфенол	3.86	_	_	
Додекан	1.37	_	_	
2,4,6-Триметилфенол	1.32	_	_	
3-Этил-5-метилфенол	1.63	_	_	
2-(1-Метилэтил)фенол	1.66	_	_	
2-Этил-4-метилфенол	2.23	_	_	
Тридекан	1.35	1.38	1.13	
Тетрадекан	2.50	1.13	0.94	
Пентадекан	1.64	1.27	0.94	
Гексадекан	1.11	1.08	1.23	
Гептадекан	1.20	0.91	0.61	
Октадекан	1.38	0.96	0.69	
Нонадекан	1.17	0.81	0.54	
Эйкозан	1.06	0.61	0.41	
Генэйкозан	0.94	0.51	0.378	
Докозан	0.71	0.33	0.32	
Трикозан	0.66	0.22	_	
Неидентифицирован- ные	28.61	29.42	32.80	

Рис. 2. Хроматограмма продуктов гидрирования фракции смолы CAC (катализатор MoO $_3$, водород, 6 МПа).

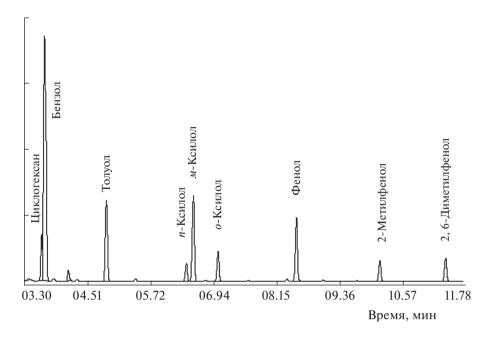


Рис. 3. Хроматограмма продуктов взаимодействия $CO-H_2O$ с фракцией смолы CAC на MoO_3 -катализаторе.

ная смесь, состоящая, по данным ГЖХ, из 43.36% водорода и 56.55% оксида углерода.

Установлено, что взаимодействие фенола с синтез-газом в присутствии MoO_3 , начальном давлении 6 $M\Pi a$, температуре $420^{\circ}C$ в течение

120 мин дает смесь, включающую продукты восстановления (бензол, толуол, ксилолы) и алкилирования (крезолы и ксиленолы) фенола. Метанол, необходимый для алкилирования, образуется из синтез-газа по реакции (3). Более высокое

Рис. 4. Хроматограмма продуктов взаимодействия системы CO-H₂O с фенолом (катализатор MoO₃).

содержание метана (табл. 3) в составе газообразных компонентов связано, по-видимому, с увеличением соотношения H_2 : CO, способствующего

Таблица 2. Состав продуктов взаимодействия фенола с системами $CO-H_2O$, $CO-H_2$ и метанолом в присутствии MoO_3 в атмосфере аргона

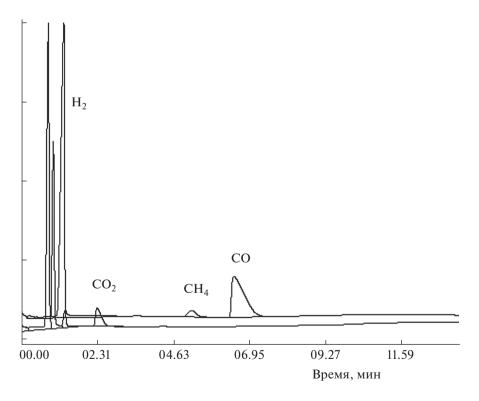
Компонент	Содержание компонента, мас. %		
	CO-H ₂ O	СО-Н2	CH ₃ OH*
Циклогексан	4.09	_	_
Бензол	45.43	30.46	_
Толуол	12.90	21.32	_
п-Ксилол	2.57	3.04	_
м-Ксилол	13.35	3.65	_
о-Ксилол	4.26	0.61	_
Фенол	9.22	18.58	63.97
2-Метилфенол	3.14	13.72	26.35
3-Метилфенол	_	2.54	1.50
2,6-Диметилфенол	3.83	3.79	7.04
2,4-Диметилфенол	_	2.51	1.14
Неидентифицированные	3.82	1.73	_

^{*}Аргон, давление 6 МПа.

усилению метанирования оксида углерода [11]. Водород пополняется за счет паровой конверсии СО (1), которая кроме водорода дает диоксид углерода, наличие которого подтверждают результаты ГЖХ-анализа (табл. 2). Вода, необходимая для этой реакции, образуется в результате восстановления фенолов (2), метанирования СО (4) и алкилирования фенола метанолом:

$$C_6H_6OH + CH_3OH \rightarrow (CH_3)C_6H_4OH + H_2O.$$

Таблица 3. Состав газообразных продуктов взаимодействия фенола с системами $CO-H_2O$, $CO-H_2$ и метанолом в присутствии MoO_3 в атмосфере аргона


Компонент	Содержание компонента, об. %			
Компонент	CO-H ₂ O	СО-Н2	CH₃OH*	
H ₂	13.48	22.08	1.80	
CO_2	19.92	12.74	1.07	
CH_4	2.29	16.93	2.77	
CO	64.79	43.31	_	
C_2H_6	_	0.32	_	
C_3H_8	_	0.50	_	

^{*}Аргон, давление 6 МПа.

56 МЕЙРАМОВ

$$\begin{array}{c} OH \\ H_2 \\ \end{array} \begin{array}{c} OH \\ CH_3OH \\ \end{array} \begin{array}{c} CH_3 \\ \end{array} \begin{array}{c$$

Рис. 5. Схема гидрирования и алкилирования фенола в системе CO-H₂O.

Рис. 6. Хроматограмма газообразных продуктов взаимодействия фенола с системой ${\rm CO-H_2O.}$

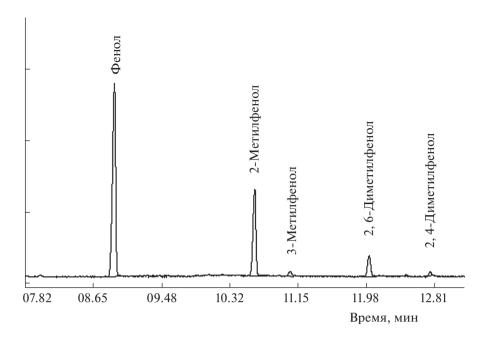


Рис. 7. Хроматограмма продуктов взаимодействия фенола с метанолом в атмосфере аргона на МоО₃-катализаторе.

ЗАКЛЮЧЕНИЕ

Результаты исследований показывают, что при гидрировании фенольной фракции смолы САС свободным водородом происходят процессы: дезалкилирования высших фенолов до фенола; гидрирования низших фенолов с образованием бензола, метилциклогексана, толуола и ксилолов.

Гидрирование фенольной фракции связанным водородом (в системе $CO-H_2O$) сопровождают процессы: дезалкилирования высших фенолов до фенола; гидрирования низших фенолов с образованием бензола, толуола и ксилолов; алкилирования фенола метанолом с образованием крезолов и ксиленолов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гринберг А.М.* Обесфеноливание сточных вод коксохимических заводов. М.: Металлургия, 1968. 212 с.
- 2. *Эфрос Л.С.* Химия и технология промежуточных продуктов. Л.: Химия, 1979. 544 с.
- 3. Каирбеков Ж.К., Малолетнев А.С., Гюльмалиев А.М., Смагулова Н.Т., Мылтыкбаева Ж.К. // XTT. 2014.

- № 4. C. 22. [Solid Fuel Chemistry, 2014, vol. 48, no. 4, p. 234. https://doi.org/10.3103/S0361521914040065]. https://doi.org/10.7868/S0023117714040069
- 4. *Каирбеков Ж.К., Малолетнев А.С., Смаеулова Н.Т., Сабитова А.Н.* // XTT. 2018. № 5. С. 46. [Solid Fuel Chemistry, 2018, vol. 52, no. 5, p. 320. https://doi.org/10.3103/S0361521918030047]. https://doi.org/10.1134/S002311771804014X
- 5. *Шуйкин Н.И.*, *Эриванская Л.А.* // Успехи химии. 1960. Т. XXIX. Вып. 5. С. 648.
- 6. Дирихс А., Кубичка Р. Фенолы и основания из углей. М.: Гостоптехиздат, 1958. 468 с.
- 7. *Ершов В.В., Никифоров Г.А., Володькин А.А.* Пространственно-затрудненные фенолы. М.: Химия, 1972. 352 с.
- Мейрамов М.Г., Байкенов М.И., Ермагамбетов Б.Т. // Изв. АН РК. Сер. хим. 1991. № 2. С. 89.
- 9. *Ipatieff V., Orloff N., Rasuvaeff G. //* Bull. Soc. Chim. 1925. V. 37. P. 1576.
- 10. *Ipatieff V., Orloff N., Petroff A.* // Ber. 1927. V. 60. P. 1006.
- 11. Лапидус А.Л., Елисеев О.Л., Крючков М.В. // ХТТ. 2011. № 5. С. 26. [Solid Fuel Chemistry, 2011, vol. 45, no. 5, p. 313. https://doi.org/10.3103/S0361521911050041].