УДК 662.73:547.992:533.582

СИНТЕЗ И СВОЙСТВА НАНОКОМПОЗИТНОГО МАТЕРИАЛА НА ОСНОВЕ ПРОДУКТА ПЕРЕРАБОТКИ УГЛЕОТХОДОВ

© 2020 г. А. Х. Жакина^{1,*}, Е. П. Василец^{1,**}, О. В. Арнт^{1,***}, Е. В. Кудрявцева^{1,****}, Т. С. Животова^{1,*****}, А. М. Газалиев^{1,*****}, З. М. Мулдахметов^{1,******}

¹ ТОО "Институт органического синтеза и углехимии Республики Казахстан", 100008 Караганда, Казахстан

*e-mail: alzhakina@mail.ru
**e-mail: vassilets88@mail.ru
***e-mail: oxana230590@mail.ru
****e-mail: kudryavcevaev99@gmail.com
*****e-mail: zhts2004@mail.ru
*****e-mail: iosu.rk@mail.ru
******e-mail: iosu.rk@mail.ru
Поступила в редакцию 12.03.2020 г.
После доработки 14.04.2020 г.
Принята к публикации 03.06.2020 г.

Получен нанокомпозитный материал на основе гуминовой кислоты и функционализированных многостенных углеродных нанотрубок с использованием ультразвукового воздействия. Исследованы состав и свойства нанокомпозита. Показана возможность использования нанокомпозитного материала в качестве сорбента для очистки сточных вод.

Ключевые слова: нанокомпозиты, гуминовые кислоты, многостенные углеродные нанотрубки, функционализация, ультразвук, сорбция

DOI: 10.31857/S0023117720050102

ВВЕДЕНИЕ

В настоящее время вопросы изучения композиционных наноматериалов, так называемых нанокомпозитов, привлекают внимание исследователей различного профиля. Большими перспективами для их получения обладают природные полимеры — гуминовые кислоты, ценные продукты химической переработки углеотходов.

Гуминовые кислоты (ГК) представляют собой широкий класс гомологов, состоящих из соединений, отличающихся структурой, составом, содержанием молекулярных фрагментов. В зависимости от метаморфизма, генезиса и степени окисленности в составе ГК могут преобладать как низкомолекулярные, так и высокомолекулярные соединения с различным содержанием ароматических и алифатических фрагментов и функциональных групп [1–8].

Структура нанокомпозита характеризуется наличием второй фазы (наполнителя), размеры частиц которой составляют от 1 до 100 нм [9–17]. Относительно небольшие добавки наноразмерных наполнителей приводят к значительному улучшению свойств нанокомпозита по сравнению с микроразмерными наполнителями.

Исследования последних лет позволяют выделить многостенные углеродные нанотрубки (МУНТ) как наиболее перспективные объекты, позволяющие создавать нанокомпозитные материалы с принципиально новыми свойствами, такими как: высокая прочность, упругость, электропроводность, теплопроводность. При сочетании природного полимера и МУНТ возможно получение уникальных нанокомпозитных материалов [18—25].

Отличием МУНТ от однослойных углеродных нанотрубок является разнообразие форм и конфигураций. Поверхностный слой МУНТ представляет собой структуру с неупорядоченным расположением атомов углерода и по мере увеличения числа слоев все в большей степени проявляются отклонения от идеальной цилиндрической формы, образуя дефекты во внешнем слое. Подобные дефекты ведут к появлению изогнутых и спиралевидных нанотрубок, которые в процессе роста извиваются, скручиваются между собой, образуя петли и другие сложные по форме протяженные структуры, которые, взаимодействуя между собой, склонны образовывать беспорядочные агрегаты. В связи с этим появляется сложность их использования.

Одна из наиболее важных проблем, возникающих при создании нанокомпозитов, связана с необходимостью однородного распределения наночастиц в полимерной матрице и обеспечения стабильной адгезионной связи с ней. МУНТ, обладая большой поверхностной энергией, проявляют повышенную склонность к агломерированию. Размер агломератов может достигать сотен микрометров. В этом случае не достигается эффект армирования матричного материала, который характерен для однородно распределенных наночастиц, что негативно отражается как на механических, так и на физических свойствах нанокомпозита.

Несовместимость компонентов композита и степень диспергирования частиц наполнителя представляют собой основную задачу, которую приходится решать при создании нанокомпозитных материалов.

Цель работы — получение нанокомпозитных материалов на основе гуминовой кислоты с внедрением в ее структуру функционализированных многостенных углеродных нанотрубок и изучение их эффективности в качестве сорбента при извлечении ионов тяжелых металлов из промышленных сточных вод.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходным полимерным сырьем для получения ГК служили окисленные угли Шубаркольского месторождения Центрального Казахстана. ГК получены нейтрализацией кислотой щелочных экстрактов по разработанной ранее методике [26]. Выход ГК составил 72%, элементный состав, %: С 67.81, Н 3.80, О 26.84. Содержание серы и азота составляло 0.5 и 1% соответственно.

В качестве наполнителя использованы многостенные углеродные нанотрубки марки "Таунит" (производство – ООО "Нанотехцентр", Тамбов).

Функционализация МУНТ проведена добавлением к ним смеси концентрированных азотной и серной кислот, при соотношении МУНТ: $(HNO_3+H_2SO_4)=1:50$. Затем смесь нагревали до 90° С и выдерживали при данной температуре в течение 90 мин. После охлаждения реакционную смесь разбавляли водой, отфильтровывали осадок и промывали дистиллированной водой до нейтральной среды. Выход функционализированных многостенных углеродных нанотрубок (ФМУНТ) составил 60%.

Модификацию ГК наноразмерным наполнителем ФМУНТ проводили в условиях ультразвукового облучения (УЗО) с использованием ультразвукового диспергатора марки ИЛ-100-6/2 с рабочей частотой 22 кГц. Готовили 25%-ную водную суспензию, содержащую ГК и ФМУНТ при массовом соотношении 10:1, 25:1, 50:1 и подвергали ее УЗО в пределах 5—15 мин. По истечении

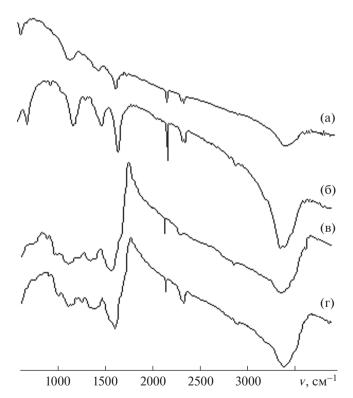
времени облучения полученную суспензию центрифугировали при скорости 4000 об. мин⁻¹. Полученный осадок высушили до постоянной массы. В ходе обработки водной суспензии, содержащей ГК и ФМУНТ, ультразвуком на поверхности и ГК, и ФМУНТ образуются дополнительные кислородсодержащие функциональные группы. диссоциация которых влияет на электропроводность. Измерение содержания кислородсодержащих функциональных групп в каждом образце определяли методом обратного кондуктометрического титрования с использованием лабораторного кондуктометра Анион-4100. Строили графики зависимости электропроводности от объема добавленной кислоты и по точкам эквивалентности и соответствующим им объемам рассчитывали количество кислородсодержащих функциональных групп.

Состав полученного нанокомпозита определяли с помощью ИК-спектроскопии и рентгенофазового анализа с использованием дифрактометра $Bruker\,D8$ (Германия), излучение CuK_{α} ($\lambda=1.5418\,\mbox{Å}$) в угловом диапазоне по 20 от 5° до 70° с шагом 0.0195. ИК-спектры полученных образцов записывали на спектрометре $Specord\,IR-75\,$ в таблетках KBr.

Морфология поверхности полученных образцов изучена с использованием растрового электронного микроскопа фирмы *TESCAN*, а элементный состав подтвержден рентгеновским энергодисперсионным микроанализом и картированием.

Процессы сорбционной очистки сточной воды проведены в статическом режиме при 22° C, в жидкостном модуле, при соотношении сорбент: сорбат = =1:25 и перемешивании в течение 24 ч. После достижения сорбционного равновесия разделяли фазы и в фильтрате определяли остаточную концентрацию ионов металла на атомно-эмиссионном спектрометре $ICAP6500\ DUOLA$ с индуктивно-связанной плазмой. Исследование сорбционных свойств проводили методом изотерм. Сорбционную способность оценивали по величине статической обменной емкости COE, мг · г $^{-1}$ и величине сорбции R, %.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

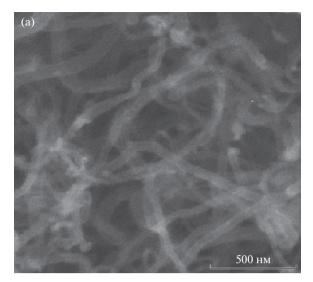

Несмотря на то что МУНТ имеют большую удельную поверхность, они химически инертны и склонны образовывать конгломераты, препятствующие их равномерному распределению в матрице полимера и тем самым не позволяют достичь желаемой эффективности при модификации полимера. Для придания необходимых технологических свойств и совместимости с матрицей полимера, МУНТ активизировали смесью азотной и серной кислот. Синтезированные ФМУНТ использованы для дальнейшего получе-

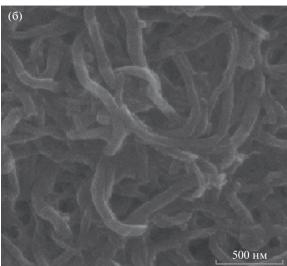
Композит	Соотношение компонентов	Время УЗО, мин	Выход, %	Σ (СООН+ОН), мг-экв · г $^{-1}$
ГК+ФМУНТ		5	68.63	3.94
	10 : 1	10	60.16	4.26
		15	67.52	4.17
	25:1	5	81.06	3.78
		10	83.26	4.20
		15	84.11	3.77
		5	96.96	3.15
	50:1	10	90.70	3.77
		15	94.46	2.90

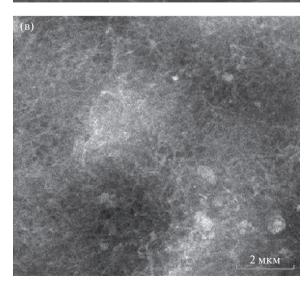
Таблица 1. Влияние различных факторов на выход нанокомпозитов

ния нанокомпозитов на основе продукта переработки углеотхода — ΓK .

ГК представляют собой сложную смесь высокомолекулярных соединений с конденсированными ароматическими ядрами, которые имеют боковые цепи различной степени разветвления. В состав макромолекул ГК входит огромное количество различных функциональных групп, прежде всего карбоксильные, карбонильные, гидроксильные, хинонные и др. При прохождении уль-




Рис. 1. ИК-спектры многостенных углеродных нанотрубок (а), функционализированных многостенных углеродных нанотрубок (б), нанокомпозита состава Γ K+ Φ MУНТ (10:1, УЗО = 10 мин) (в), гуминовой кислоты (ϵ).


тразвуковой волны алифатические фрагменты молекулы ГК начинают колебаться с ней в резонансе, при этом возникают зоны напряженности, где и происходит разрыв химической связи. Данный процесс приводит к увеличению количества свободных функциональных групп, в том числе гидроксильных и карбоксильных, что способствует повышению химической активности ГК. Диспергирование ультразвуком позволяет добиться гомогенного распределения ФМУНТ на поверхности ГК, обеспечения стабильной адгезионной связи между ними и образования стабильной дисперсной системы.

В табл. 1 приведены результаты модификации ГК наноразмерным наполнителем. Содержание кислородсодержащих функциональных групп в каждом образце определяли методом обратного кондуктометрического титрования. Выход продукта определялся по изменению массы полученного композита и исходной смеси. Увеличение содержания ГК приводит к увеличению выхода нанокомпозита, а УЗО благоприятно влияет на процесс получения. Оптимальное время УЗО -10 мин, за меньшее время процесс проходит не полностью, а избыточное время обработки приводит к образованию дополнительных реакционных центров и конкурирующих реакций. Наибольшее содержание кислородсодержащих функциональных групп наблюдается у композита состава $\Gamma K + \Phi M Y H T = 10:1$ (УЗО = 10 мин), что позволяет сделать вывод о его наивысшей сорбционной активности в ряду синтезированных нанокомпозитов.

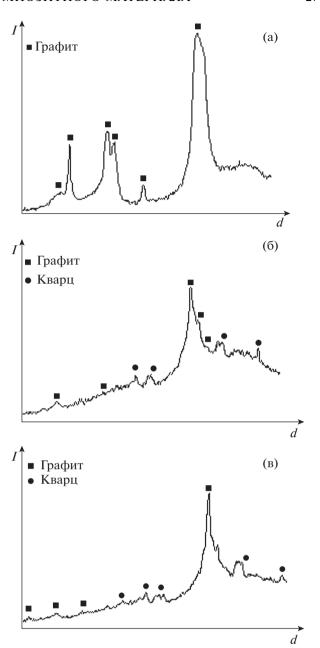

Степень функционализации МУНТ, структуру ГК и нанокомпозита ГК+ФМУНТ = 10:1 оценивали качественно с помощью ИК-спектроскопии методом сравнения спектров (рис. 1). Из ИК-спектров полученных образцов видно, что результатом функционализации стало появление новых колебаний в ИК-спектре за счет кислородсодержащих групп (рис. 1, б): сдвиг и рост асимметричных и симметричных СОО $^-$ валентных колебаний в областях 1354 и 1620 см $^{-1}$, растяжение

Рис. 2. Электронно-микроскопические снимки многостенных углеродных нанотрубок (а), функционализированных многостенных углеродных нанотрубок (б), нанокомпозита состава Γ K+ Φ MУНТ (10:1, УЗО = 10 мин) (в).

Рис. 3. Дифрактограммы многостенных углеродных нанотрубок (а), наногуминового композита состава $\Gamma K + \Phi M Y H T$ (10:1, Y 3 O = 10 мин) (б) и гуминовой кислоты (в).

валентных связей С-О в области 1122 см $^{-1}$, заметный сдвиг групп полос валентных колебаний (О-H, -OH) в области 3421 см $^{-1}$, карбоксильных групп (-COOH) в области 1720 см $^{-1}$, а также слабые колебания с участием связи (С-O) в области 1123 см $^{-1}$.

В спектре также наблюдаются малоинтенсивные полосы поглощения при 2924 и 2850 см $^{-1}$ для симметричных и несимметричных СН $_2$ -групп. Проявления колебаний в области 1620 и 1587 см $^{-1}$ характерны для связи ароматических колец —

Металл	Содержание металлов в хвостовом растворе до очистки, мг \cdot л $^{-1}$	Степень очистки						
		ГК		ФМУНТ		Γ K+ Φ МУНТ (10 : 1), УЗО = 10 мин		
		COE, $M\Gamma \cdot \Gamma^{-1}$	R, %	COE, $M\Gamma \cdot \Gamma^{-1}$	R, %	COE, $\text{M}\Gamma \cdot \Gamma^{-1}$	R, %	
Алюминий	15.74	0.38	96.76	0.38	96.28	0.39	99.92	
Железо	5.66	0.13	93.93	0.13	93.84	0.14	96.99	
Медь	0.10	< 0.01	74.98	< 0.01	78.73	< 0.01	84.79	
Никель	0.01	< 0.01	40.30	< 0.01	44.03	< 0.01	69.40	
Свинец	0.99	0.02	95.84	0.02	95.72	0.02	96.72	
Стронций	2.03	0.01	16.83	0.01	23.30	0.03	54.89	
Титан	0.18	< 0.01	97.21	< 0.01	98.32	< 0.01	99.33	
Цинк	1.48	0.02	65.31	0.02	60.61	0.04	97.16	

Таблица 2. Содержание ионов металлов в исходной сточной воде до и после сорбции

С=С— и —С—С—, слабые полости в области 1354 см⁻¹ можно отнести к ароматическим нитрогруппам. Существенное отличие ИК-спектра ФМУНТ от исходного МУНТ (рис. 1, а), свидетельствует, что окисление способствует более высокой функционализации поверхности МУНТ.

Анализ ИК-спектров исходной ГК (рис. 1, г) свидетельствует о том, что для них характерны типичные полосы поглощения: широкая полоса с максимумом при 3500-3300 см $^{-1}$ обусловлена наличием водородно-связанных гидроксильных групп; 2920 и 2850 см $^{-1}$ — валентные колебания CH_2 - и CH_3 -групп; 1720 см⁻¹ — валентные колебания связи C=O кислот; плечо на 1770 см $^{-1}$ обусловлено колебаниями карбонильной группы сложных эфиров и кетонов: $1610 \text{ см}^{-1} - \text{связи C=O}$ первичных амидов и сопряженных углеродных двойных связей C=C; $1280-1240 \text{ см}^{-1} - C-O \text{ кар-}$ боновых кислот, сложных эфиров: $1100-1030 \text{ cm}^{-1}$ валентные колебания связи С-О спиртов и алифатических эфиров. В ИК-спектре нанокомпозита (рис. 1, в) наблюдаются маловыраженные пики, характерные как для ФМУНТ, так и для ГК.

Морфология поверхности образцов МУНТ, ФМУНТ и нанокомпозита состава ГК+ФМУНТ (10:1, УЗО = 10 мин) изучена методами сканирующей электронной микроскопии. Результаты исследования их микроструктуры представлены на рис. 2. Из рис. 2, а видно, что образцы МУНТ состоят из длинных нитевидных образований. Наружный диаметр составляет порядка 50 нм. Длина на несколько порядков превышает диаметр и составляет 3—10 мкм. На микроснимке ФМУНТ (рис. 2, б) видны те же нитевидные образования, с внешним диаметром трубок 60—90 нм. На микроснимках нанокомпозита (рис. 2, в) можно разглядеть множество наноразмерных нитевидных структур, равномерно распределенных на поверхности ГК. Рав-

номерное распределение ФМУНТ по поверхности ГК достигается благодаря ультразвуковой обработке.

На рис. 3 приведены дифрактограммы полученных образцов. Как показали результаты исследования, на дифракционной картине исследуемых ФМУНТ (рис. 3. а) выделяются основные выраженные пики, проиндексированные в области межплоскостного расстояния d = 3.43 Å, d == 3.47 Å, d = 3.66 Å и менее выраженные пики в области d = 4.40 Å, d = 2.21 Å и d = 1.72 Å, характеризующие графит с гексагональной решеткой. Дифракционные картины, наблюдаемые для ГК (рис. 3, в) и нанокомпозита (рис. 3, б), становятся все более размытыми и характеризуются плохо различимыми, аморфными рефлексами. Уменьшаются пики, соответствующие графитовым слоям. Невысокий пик (рис. 3, в), проиндексированный в области $24^{\circ}-25^{\circ}$ угла 2θ , соответствующий графиту, также был отнесен и к кварцу, содержащемуся в составе ГК. Искажение дифракционной картины, снижение интенсивности пиков и распределение интенсивностей дифракционных полос ГК и нанокомпозита подтверждают наличие незначительного количество муллита. Графит и муллит очень похожи по структурным характеристикам, они отличаются лишь плотностью упаковки (упаковка графита более плотная, чем у муллита). Разницу между ними можно обнаружить на дифрактограмме лишь в области 25°-26° угла 20. У муллита межплоскостное расстояние соответствует значению 25° , а у графита — 26° . На дифрактограмме ФМУНТ данных пиков нет.

Одно из важных свойств нанокомпозитов, определяющее возможность их использования, связано с их высокой удельной поверхностью, что, в свою очередь, определяет их сорбционные характеристики.

Сорбционные свойства ГК, Φ МУНТ и нанокомпозита состава ГК+ Φ МУНТ = 10 : 1 изучены на промышленной сточной воде. В качестве сточной воды использованы хвостовые растворы после

флотации оборотных вод обогащения свинцовоцинковых руд. Полученные образцы оценивали в качестве сорбентов путем определения концентрации ионов тяжелых металлов до и после проведения процесса сорбции на атомно-эмиссионном спектрометре с индуктивно-связанной плазмой.

Количественное содержание ионов тяжелых металлов в исходном растворе до и после сорбции приведено в табл. 2, из которой следует, что сточные воды содержат большое количество ионов алюминия (15.74 мг · π^{-1}), железа (5.66 мг · π^{-1}), значительное количество стронция (2.03 мг · π^{-1}), цинка (1.48 мг · π^{-1}) и свинца (0.99 мг · π^{-1}).

Значения степени извлечения ионов металлов, характеризующие сорбционные свойства полученных образцов, составляют от 55 до 100%. ГК хорошо очищает сточные воды от ионов алюминия, железа, свинца и цинка. ФМУНТ немного уступают ГК по степени очистки от ионов этих металлов. Высокая концентрация различных кислотных групп на поверхности нанокомпозита создает благоприятные условия для сорбции и проявляет повышенное сродство ко всем рассматриваемым ионам. Наилучший результат достигается при извлечении ионов алюминия, свинца, железа, меди, титана и цинка. Кроме того, нанокомпозит эффективно удаляет из сточного раствора никель и стронций, которые токсичны в больших дозах.

Способность нанокомпозита связывать одновременно несколько металлов объясняется образованием комплекса с ионами металлов за счет различных кислородсодержащих и других активных функциональных групп ГК и ФМУНТ. Нанокомпозит после сорбции удаляется центрифугированием, а очищенный раствор можно использовать как оборотную технологическую воду. Полученный нанокомпозит может быть рекомендован в качестве сорбента для очистки промышленных сточных растворов от тяжелых металлов и расширить ряд имеющихся на рынке сорбентов.

ЗАКЛЮЧЕНИЕ

Показано, что функционализация МУНТ и активация ультразвуком процесса модификации ГК с ФМУНТ обеспечивают увеличение выхода и улучшение качественных характеристик получаемого нанокомпозита. Установлено, что сорбционные свойства нанокомпозита напрямую зависят от соотношения ГК и ФМУНТ в его составе. Наибольшее содержание карбоксильных групп наблюдается у нанокомпозита состава ГК + ФМУНТ = 10:1 (УЗО = 10 мин), что позволило сделать предположение о его наивысшей сорбционной активности в ряду синтезированных нанокомпозитов. Установлена высокая сорбционная емкость полученного нанокомпозита в процессе очистки промышленных сточных вод от ионов тяжелых металлов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено за счет средств МОН РК (проект ПЦФ № BR05236438 "Разработка научных основ наукоемких и ресурсосберегающих технологий получения материалов многофункционального назначения на основе природного, синтетического сырья и отходов углепереработки").

СПИСОК ЛИТЕРАТУРЫ

- 1. *Аввакумова Н.П., Глубокова М.Н., Катунина Е.Е.* // Изв. Самарского научного центра РАН. 2013. № 3 (3). С. 1160.
- Van Rensburg C.E.J. // Phytother. Res. 2015. V. 29.
 № 6. P. 791.
 https://doi.org/10.1002/ptr.5319
- 3. *Vaskova J., Velika B., Pilatova M., Kron I., Vasko L.* // In Vitro Cell. Dev. Biol. Anim. 2011. V. 47. № 5–6. P. 376. https://doi.org/10.1007/s11626-011-9405-8
- Holland A., Duivenvoorden L., Kinnear S. // Ecotoxicology. 2014. V. 23 (5). P. 939. https://doi.org/10.1007/s10646-014-1237-3
- 5. *Klucakova M., Veznikova K.* // J. Molecular Structure. 2017. V. 1144. P. 33. https://doi.org/j.molstruc.2017.05.012
- 6. *Кондратенко Е.П., Сухих А.С., Вербицкая Н.В., Со-болева О.М.* // Химия растительного сырья. 2016. № 3. С. 109. https://doi.org/10.14258/jcprm.2016031185
- 7. *Raposo J.C., Villanueva U., Olivares M., Madariga J.M.* // Microchem. J. 2016. V. 128. P. 26. https://doi.org/10.1016/j.microc.2016.04.004
- 8. *Платонов В.В., Горохова М.Н.* // Вестн. новых медицинских технологий. 2016. № 2. С. 21. https://doi.org/10.12737/19645
- Bell N.G.A., Michalchuk A.A.L., Blackburn J.W.T., Graham M.C., Uhrin D. // Angew. Chem. 2015. V. 127 (29). P. 8502. https://doi.org/10.1002/ange.201503321
- 10. Савченко И.А., Корнеева И.Н., Лукша Е.А., Пасечник К.К. // Журнал Медиаль. 2019. № 1. С. 54. https://doi.org/10.21145/2225-0026-2019-1-54-60
- 11. Зарецкий А.Д., Иванова Т.Е. Промышленные технологии и инновации: учебник для вузов стандарт третьего поколения. С-Пб.: Питер, 2014. 480 с.
- 12. Тялина Л.Н., Минаев А.М., Пручкин В.А. Новые композитные материалы: учебное пособие. Тамбов: ГОУ ВПО ТГТУ, 2011. 80 с.
- 13. Гражулене С.С., Золотарева Н.И., Редькин А.Н., Шилкина Н.Н., Митина А.А., Колесникова А.М. // Журн. прикл. хим. 2018. Т. 91. № 11. С. 1642. [Russian Journal of Applied Chemistry, 2018, V. 91. № 11. Р. 1849. https://doi.org/10.1134/S1070427218110162] https://doi.org/10.1134/S0044461818110154
- 14. *Редькин А.Н., Кипин В.А.* // Неорган. материалы. 2009. Т. 45. № 9. С. 1057.
- 15. *Гражулене С.С., Редькин А.Н., Телегин Г.Ф.* // Журн. аналит. химии. 2012. Т. 67. № 5. С. 479. [Journal of

- Analytical Chemistry, 2012, V. 67. № 5. P. 423. https://doi.org/0.1134/S1061934812050061]
- 16. *Гражулене С.С., Золотарева Н.И., Редькин А.Н.* // Лаборатория и производство. 2019. № 3 (7). С. 108. https://doi.org/10.32757/2619-0923.2019.3.7.108.112
- 17. *Лыу Ш.Т., Нгуен Х.В., Раков Э.Г.* // Неорган. материалы. 2014. Т. 50. № 10. С. 1074. https://doi.org/10.7868/S0002337X14100169
- 18. *Лыу Ш.Т.*, *Раков Э.Г.* // Журн. физ. химии. 2016. T. 90. № 11. C. 1724. [Russian Journal of Physical Chemistry. 2016. V. 90. № 11. P. 2275. https://doi.org/0.1134/S0036024416110169] https://doi.org/10.7868/S0044453716110169
- Beigmoradi R., Samini A., Mohebbi-Kalhori D. // J. Nanotechnol. 2018. V. 9. P. 415. https://doi.org/10.3762/bjnano.9.41
- Melchionna M., Fornasiero P. // Chem. Cat. Chem. 2017. V. 9. P. 3274. https://doi.org/10.1002/cctc.201700489

- Wu Y., Wang L., Guo B., Ma P.X. // ACS Nano. 2017.
 V. 11. P. 5646. https://doi.org/10.1021/acsnano.7b01062
- Gangele A., Sharma C.S., Pandey A.K. // J. Nanosci. Nanotechnol. 2017. V. 17. P. 2256. https://doi.org/10.1166/jnn.2017.13818
- 23. *Panthi G., Park M., Kim H.Y., Park S.J.* // J. Ind. Eng. Chem. 2015. V. 24. P. 1. https://doi.org/j.jiec.2014.09.011
- 24. *Dai Y., Yao J., Song Y., Wang S., Yuan Y. //* Environ. Sci.: Nano. 2016. V. 3. P. 857. https://doi.org/10.1039/C6EN00148C
- Sun X., Chen T., Yang Z., Peng H. // Accounts Chem. Res. 2012. V. 46. P. 539. https://doi.org/10.1021/ar300221r
- 26. Жакина А.Х., Василец Е.П., Амирханова А.К., Арнт О.В., Рапиков А.Р., Мулдахметов З.М. Гуминоминеральные сорбенты на основе отходов угледобычи. Караганда: Гласир, 2017. 104 с.