УДК 530.145.61,544.032.53

ТВЕРДЫЙ ГЕЛИЙ КАК НЕТРАДИЦИОННЫЙ ИСТОЧНИК ЭНЕРГИИ

© 2020 г. Е. А. Смоленский^{1,*}, А. Н. Рыжов^{1,**}, И. В. Чуваева^{1,***}, Л. К. Маслова^{1,****}, А. Л. Лапидус^{1,*****}

¹ ФГБУН Институт органической химии имени Н.Д. Зелинского РАН (ИОХ РАН), 119991 Москва, Россия

*e-mail: smolensk@ioc.ac.ru **e-mail: antryzh@yandex.ru ***e-mail: irachuva@gmail.com ****e-mail: lkm2003@yandex.ru ****e-mail: albert@ioc.ac.ru Поступила в редакцию 29.10.2019 г. После доработки 28.01.2020 г. Принята к публикации 10.02.2020 г.

Описаны результаты квантовохимических расчетов атомов гелия в сильных и сверхсильных магнитных полях. Расчеты показали возможность перевода атомов гелия в суперстабильные состояния с выделением огромного количества энергии при условии предварительного перевода гелия в твердое состояние при достаточно высоком давлении и низкой температуре. Помимо получения энергии показана возможность использовать гелий как источник когерентного излучения, т.е. в качестве лазера с заранее определенной частотой.

Ключевые слова: квантовохимические расчеты, когерентное излучение, магнитное поле, твердый гелий, суперстабильное состояние

DOI: 10.31857/S002311772003010X

введение

Известно, что запасы традиционных источников энергии (уголь, газ, нефть и пр.) довольно ограничены. Помимо этих источников, которые являются невозобновляемыми, используются и возобновляемые источники (солнечные батареи, ветряные и гидроэлектростанции, органическое неископаемое топливо). Однако они не могут удовлетворить современные потребности, поэтому не вызывает сомнения актуальность и исключительная важность подходов к поиску нетрадиционных способов получения энергии. В настоящей работе представлены исследования по генерации энергии из атомов гелия, который является вторым по распространенности (после водорода) элементом, при этом постоянно образующимся из водорода в ядрах солнцеподобных звезд, поэтому есть вероятность того, что он станет в будущем самым распространенным элементом. Возможность такой генерации показана в расчетах на основе разработанного принципиально нового прямого вариационного метода квантовой химии, основанного на использовании априорного определения узлов волновой функции (узлы – точки конфигурационного пространства, в которых волновая функция обращается в нуль), позволяющего рассчитывать состояния атомов гелия в сильных и сверхсильных электрических и магнитных полях в отличие от традиционных методов решения уравнения Шредингера [1, 2]. Обычные расчетные методы квантовой химии не позволяют в принципе оценить возможности и условия получения энергии из атомов гелия, что связано не только с тем, что используемая в них теория возмущений не позволяет моделировать процессы с энергиями, бо́льшими энергии основного (невозмущенного, т.е. в отсутствие поля) состояния атомов, но и с тем, что они не сопоставимы по точности расчетов с теорией, приведенной в работе [2].

Следует отметить, что упомянутые ограничения современных методов квантовой химии связаны с трудностями решения уравнения Шредингера для многоэлектронных систем, когда для его решения используется приближение Хартри– Фока.

В работах [2–6] это приближение не используется, в его основе лежит альтернативная методология, позволяющая осуществить математически строгое разделение переменных [7] при решении уравнения Шредингера. Это снимает ограничения существующих квантово-химических методов, повышает точность расчетов, что позволяет оценить условия получения энергии из атомов гелия, — решение этих круга проблем и явилось целью настоящего исследования.

ОСНОВНАЯ ЧАСТЬ

Как известно [8], принцип запрета Паули (ПЗП) сформулирован как запрет двум электронам в атоме иметь одновременно четыре совпадающих квантовых числа. Автор [9] трактовал ПЗП как требование антисимметричности волновых функций, и все известные методы квантовой химии используют в качестве обязательного условия решения уравнения Шредингера именно это требование. Фактически это ведет к тому, что, хотя гамильтониан и не зависит от спина, спиновые и координатные переменные не разделяются. Именно это положение и определяет одну из главных трудностей в нахождении волновых функций системы тождественных частиц, если не исходить заранее из одночастичного приближения [10].

В [11, 12] было показано, что антисимметрия для *N*-электронной системы математически эквивалентна существованию узловой поверхности размерности 3N-1 в 3N-мерном конфигурационном пространстве, в которой волновая функция системы обращается в нуль. Преимущество перед известными в квантовой химии расчетными методами в данном случае состоит в том, что требования антисимметрии (т.е. принцип Паули) заменяется системой узловых поверхностей, разделяющих N! областей конфигурационного пространства. При этом все эти области можно полагать эквивалентными в том смысле, что они дают одинаковые вклады в расчет наблюдаемых величин (например, в величину энергии), что обеспечивает возможность разделения спиновых и пространственных переменных, так как каждая из этих областей определяется распределением спинов. Для четных N число областей будет

равным $\frac{N!}{\left(\frac{N}{2}\right)!\left(\frac{N}{2}\right)!}$, а для нечетных N –

 $\frac{N!}{\left(\frac{N}{2}+\frac{1}{2}\right)!\left(\frac{N}{2}-\frac{1}{2}\right)!}$, каждая из которых, в свою оче-

редь, делится на $\left[\left(\frac{N}{2}\right)!\right]^2$ или $\left[\left(\frac{N}{2}+\frac{1}{2}\right)!\left(\frac{N}{2}-\frac{1}{2}\right)!\right]$ подобластей, причем все они эквивалентны в вышеозначенном смысле.

Таким образом, в нашем подходе требование формальной антисимметричности (т.е. принцип Паули [8] в формулировке Гейзенберга [9]) заменяется системой узловых поверхностей, разделяющих *N*! областей конфигурационного пространства. Это означает, что базисные функции в прямых вариационных методах содержат необходимые граничные условия, а сами функции,

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 3 2020

определяемые для одной области, могут быть, как указывалось выше, произвольной симметрии или даже не обладать симметрией вовсе. Это существенно расширяет класс пробных функций в прямых вариационных расчетах. Новый подход позволяет в *N*! раз сократить расчетную процедуру и дает возможность повысить точность и эффективность расчетов.

Вначале эта методология была использована для расчетов энергетических состояний атомов гелия [1]. Проведенные расчеты $1s({}^{1}S)$ - и $1s2s({}^{3}S)$ состояний практически повторяют результаты работ [13, 14] для атома гелия (${}^{1}S$). Однако различия в а.е. имеются в 7-м знаке после запятой (следует напомнить, что 1 а.е. = 627.5095 ккал/моль) и авторами достигнута бо́льшая точность, что позволило получить лучшее из всех известных значений для энергии основного состояния Не (-2.90372445 а.е.) при использовании всего 47 базисных функций, в то время как наиболее точное из представленных в литературе [15] значений (-2.90372438 а.е.) было получено при использовании 1078 функций.

Повышение эффективности квантово-химических расчетов и соответствующее повышение точности связано со следующим обстоятельством. Для расчетов основного состояния атома Не обычно используется пробная волновая функция (ВФ) вида [4]

$$\Psi(r_1, r_2, r_{12}) = \{a_o + a_1(r_1 + r_2) + a_2r_{12} + a_3(r_1^2 + r_2^2) + a_4r_1r_2 + a_5r_{12}^2 + a_6(r_1^3 + r_2^3) + a_7(r_1r_2^2 + r_1^2r_2) + \dots\}e^{-\alpha(r_1 + r_2)}.$$

Разделение пространства на $r_1 \le r_2$ и $r_1 \ge r_2$ дает возможность использовать в качестве пробной следующую волновую функцию:

$$\Psi(r_{1}, r_{2}, r_{12}) = \{a_{o} + a_{1}r_{1} + a_{2}r_{2} + a_{3}r_{12} + a_{4}r_{1}^{2} + a_{5}r_{2}^{2} + a_{6}r_{1}r_{2} + a_{7}r_{1}^{3} + a_{8}r_{2}^{3} + a_{9}r_{1}^{2}r_{2} + a_{10}r_{1}r_{2}^{2} + \ldots\}e^{-\alpha(r_{1}+r_{2})},$$

т.е. освободиться от жесткого ограничения на коэффициенты при ВФ и, таким образом, значительно расширить класс пробных функций [2]. Очевидно, что класс симметричных многочленов — лишь малая часть всех многочленов и это расширение очень существенно.

Следует также отметить, что расчеты триплетного атома Не, приведенные в статье, принципиально отличаются от общепринятых. Поясним, с чем это связано. У волновой функции $\Psi(r_1, r_2, r_{12})$ двух электронов с координатами r_1 и r_2 и совпадающими спинами координатная часть функции должна быть антисимметричной по перестановке переменных r_1 и r_2 . Это означает, что при $r_1 = r_2$ волновая функция обращается в нуль. На плоскости это равенство определяет прямую, которая разделяет плоскость на две области: Ω_1 при $r_1 \ge r_2$ и Ω_{II} при $r_2 \ge r_1$ (рис. 1). Поэтому волновую функцию следует определять не для всей плоскости $(r_1 r_2)$, а лишь для одной из ее полуплоскостей (например, $\Psi^{I}(r_1, r_2)$ для полуплоскости Ω_1) и далее отразить найденную функцию антисимметричным образом в другую полуплоскость:

$$\Psi^{II}(r_1, r_2) = -\Psi^{I}(r_2, r_1).$$

Для того, чтобы при таком отражении полная волновая функция и плотность потока сохраняли непрерывность [16], достаточно задать граничные условия:

$$\Psi^{I}(r_{1}, r_{2})|_{r_{1}=r_{2}} = \Psi^{II}(r_{1}, r_{2})|_{r_{1}=r_{2}} = 0.$$
(1)

Этот же прием при расчетах для синглетного состояния не требует наложения соответствующих граничных условий, а пробные функции продолжаются симметричным отражением в смежную область. Следует отметить, что отражение функции Ψ^{II} или Ψ^{II} в другую область не является обязательным для нахождения наблюдаемых величин, если функцию в одной из этих областей нормировать на единицу.

При расчетах триплетного, т.е. ³*S*-состояния атома Не использовались граничные условия (1), а не заранее антисимметризованная функция. Конфигурационное пространство в данном случае есть $\{r_1 r_2 r_{12}\}$, и в этом пространстве замена частиц означает замену r_1 и r_2 , в то время как $r_{12} = r_{21}$. Поэтому двумерная плоскость $r_1 = r_2$ разделяет пространство на две части и решение можно искать только для $r_1 \ge r_2$ (или же для $r_2 \ge r_1$), а для волновой функции использовать граничное условие (1). Основное практическое преимущество этого подхода состоит в том, что класс функций, которыми можно приближать истинное решение, существенно расширяется, так как множество сим-

метричных полиномов $\{\Psi_n^s\}$ является подмноже-

ством произвольных полиномов $\{\Psi_n^p\}$, что естественно приводит к более быстрой сходимости и подтверждается проведенными расчетами. Расчеты энергии ³*S*-состояния атома Не с 47 варыруемыми коэффициентами дали величину энергии –2.1752288 а.е., а при экспериментальном значении –2.175230 а.е. [15], что также превышает по точности вычислений и минимуму числа базисного набора функций все известные расчеты.

Кроме того, разработки [1], как указывалось выше, позволяют оценить условия и возможности получения принципиально нового способа получения энергии [2, 17], поскольку описывают состояния атомов в сильных и сверхсильных электрических и магнитных полях. Действительно,

Рис. 1. Узловая поверхность (плоскость) для триплетного состояния атома гелия.

для промежуточных состояний напряженности поля, когда эти величины оказываются соизмеримы с внутриатомными полями, гипотетически возможны узловые поверхности, соответствующие уровням состояний выше основного, и тогда эти состояния метастабильны, или же эти состояния оказываются ниже основного и являются суперстабильными [2], т.е. переход, связанный с ними, происходит с выделением энергии. В первом случае атомы накапливают энергию соответствующего поля, которая затем может выделиться при его "выключении", а во втором случае поле служит подобием катализатора процесса и атомы самопроизвольно не возвращаются в исходные состояния после выделения энергии. Именно переход в это состояние и можно рассматривать как принципиально новый источник энергии.

Гамильтониан атома гелия во внешнем магнитном поле можно записать в виде

$$\hat{H} = \hat{H}_0 + \mu_{\text{He}}(\hat{\mathbf{L}} + 2\hat{\mathbf{S}})\mathbf{H} + \frac{e^2}{8mc^2}\sum_{\alpha=1,2}\left[\mathbf{H}\cdot\hat{\mathbf{r}}_{\alpha}\right]^2,$$

а гамильтониан невозмущенного атома гелия:

$$\hat{H}_{0} = \frac{1}{2m} \sum_{\alpha=1,2} \left(\hat{\mathbf{p}}_{\alpha} \right)^{2} + \sum_{\substack{\alpha,\beta=1,2\\ \alpha\neq\beta}} U[\hat{\mathbf{r}}_{\alpha\beta}, \hat{\mathbf{r}}_{\alpha}'],$$

где $\hat{\mathbf{L}}$ – оператор орбитального момента, $\hat{\mathbf{S}}$ – оператор спина электрона, μ – гиромагнитное отношение, *m* и *e* – масса и заряд электрона, *c* – скорость света, **H** – напряженность внешнего магнитного поля, α – номер электрона (в атоме гелия

Рис. 2. Зависимость энергии атома Не в сверхсильных магнитных полях (ΔE_1 – энергия магнитного поля, ΔE_0 – энергия атома гелия).

их два), $\hat{\mathbf{r}}_{\alpha}$, $\hat{\mathbf{p}}_{\alpha}$ — операторы радиус-вектора и импульса электрона α , $\hat{\mathbf{r}}'_{\alpha}$ — оператор расстояния между ядром и электроном α , $\hat{\mathbf{r}}_{\alpha\beta}$ — оператор расстояния между электронами, $U[\hat{\mathbf{r}}_{\alpha\beta}, \hat{\mathbf{r}}'_{\alpha}]$ — энергия взаимодействия электронов друг с другом и ядром.

Как видно из рис. 2, в магнитном поле энергия основного синглетного уровня ($H_0 = -2.903$ а.е.) повышается вместе с повышением энергии магнитного поля. Триплетные уровни при этом понижаются и при энергии ≈ 1.3 а.е. [2] уровни пересекаются. Если, например, при энергии поля, равной 1.8 а.е., вызвать переход из состояния *A* в состояние *B*, то выделится энергия, равная сумме ΔE_1 (энергия поля) и ΔE_0 (разность энергий основного и суперстабильного состояний). Собственно, ΔE_0 и есть выигрыш в энергии по сравнению с затраченной работой магнитных сил $A = \Delta E_1$.

В принципе, переход "синглет—триплет" запрещен, однако для отдельного атома (в основном, синглетном состоянии) можно превысить напряженность магнитного поля 1.3 а.е. (при этом происходит инверсия уровней), а затем (для "выбранной" напряженности поля) подействовать на атом поляризованным по спину (с нужной ориентацией, зависящей от напряженности поля) пучком электронов и тем самым индуцировать переход "синглет—триплет" с заданной частотой, определяемой выбором величины магнитного поля. При этом получится выигрыш в энергии (по сравнению с энергией поля), а сам атом будет переведен в суперстабильное состояние [2]. Так, при 1.8 а.е. происходит выделение энергии, равное 102.4 ккал/г. из которой 27.6 ккал/г приходится, собственно, на "выигрыш", т.е. на разность энергий основного и суперстабильного состояния атома гелия. При 2.0 а.е. уже получается, соответственно, 150 и 40 ккал/г, а при 3.0 а.е. – 400 и 100 ккал/г, а при напряженности магнитного поля в 2-3 а.е. выход энергии на 1 г вещества в тысячи раз выше, чем в самых мощных химических процессах (например, при горении металлов). Для таких процессов максимальная энергия (5.79 ккал/г) выделяется при горении бериллия в атмосфере фтора [18].

Следует отметить, что представленные выше теоретические разработки относятся к отдельным атомам Не. Очевидно, что осуществить этот процесс для вещества (т.е. для очень большого количества атомов Не) возможно лишь для твердого состояния. В газообразном или даже в жидком состоянии электроны будут "обмениваться" спинами при "столкновениях" и ожидаемого эффекта не произойдет. Известно, что гелий – это единственное вешество, которое не переходит в обычных условиях в твердое состояние вплоть до абсолютного нуля, превращаясь в жидкость только при 4.2 К, поэтому обнаружить атомы гелия в суперстабильном состоянии в природе не представляется возможным. Однако твердый гелий получается при достаточно высоких давлениях [19].

ЗАКЛЮЧЕНИЕ

Таким образом, разработанный метод квантовой химии и выполненные на его основе расчеты позволяют заключить, что возможен принципиально новый способ получения энергии из атомов гелия, а также оценить условия генерации этой энергии. В настоящее время не представляется возможным ответить на вопрос о возможности существования суперстабильных состояний других атомов, поскольку для этого требуется проведение достаточно сложных вычислений, выполнение которых возможно лишь на основе представленного выше метода МВФ.

Конечно, получать энергию таким способом в настоящее время нерационально, но описанный процесс позволяет создать некий аналог лазера, т.е. источник когерентного излучения, мощность которого в тысячи (и даже в миллионы) раз превосходит все известные источники лазерного излучения, причем заранее выбранной экспериментатором частоты.

СПИСОК ЛИТЕРАТУРЫ

- 1. Смоленский Е.А. // Изв. АН. Сер. хим. 1995. № 9. С. 1666 [Russ. Chem. Bull, 1995, vol. 44, no. 9, p. 1598]
- Смоленский Е.А., Пивина Т.С., Рыжов А.Н., Маслова Л.К., Зефиров Н.С. // Изв. АН. Сер. хим. 2016. № 6. С. 1395 [Russ. Chem. Bull, 2017, vol. 65, no. 6, р. 1395,
 - https://doi.org/10.1007/s11172-016-1468-y]
- Maximoff S.N., Shpilkin S.A., Smolenskii E.A. // Phys. Rev. A: Atomic, Molecular, and Optical Physics. 2000. T. 61. № 2. C. 225011.
- Смоленский Е.А. // Докл. АН СССР. 1982. Т. 266. С. 160 [Russian web]
- Смоленский Е.А. // Журн. физ. химии. 1988. Т. 62. С. 3273 [Russian web]
- 6. Станкевич И.В., Смоленский Е.А., Зефиров Н.С. // Докл. АН СССР. 1990. Т. 314. С. 213 [Russian web]
- Смоленский Е.А., Зефиров Н.С. // Докл. АН СССР. 1993. Т. 329. С. 40 [Russian web]
- 8. Pauli W. // Z. Phys. 1925. T. 31. C. 765.
- 9. Heisenberg W. // Z. Phys. 1926. T. 38. C. 411.

- 10. *Мак-Вини Р., Сатклиф Б.* Квантовая механика молекул. М.: Мир, 1972. 381 с.
- 11. Чувылкин Н.Д., Смоленский Е.А., Зефиров Н.С. // Докл. АН. 2010. Т. 434. № 3. С. 339 [Doklady Physics, 2010, vol. 55, no. 9, p. 443]
- Chuvylkin N.D., Smolenskii E.A., Molchanova M.S., Zefirov N.S. // Int. J. Quantum Chem. 2010. T. 110. C. 1809.
- 13. Radi H.M.A. // Phys. Rev. 1975. T. 12. C. 1137.
- 14. Thakkar A.G. // Phys. Rev. 1977. T. 16. C. 1740.
- 15. Pekeris C.L. // Phys. Rev. 1959. T. 115. C. 1216.
- Паули В. Общие принципы волновой механики. М.-Л.: ОГИЗ Гос. изд-во техн. и теор. лит-ры, 1947. 332 с.
- 17. Smolenskii E.A., Pivina T.S., Shpilkin S.A., Maslova L.K., Chuvilkin N.D. // In the Proceedings of "Euro-Pyro 95". Tours, France. June 5–9, 1995. C. 03.
- Киреев В.А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1970. 520 с.
- Кикоин А.К., Кикоин И.К. Общий курс физики. Молекулярная физика. М.: Наука, 1976. 480 с.