УДК 552.574:66.094.76:661.183

ФОРМИРОВАНИЕ ПОРИСТОЙ СТРУКТУРЫ ИСКОПАЕМЫХ УГЛЕЙ ПРИ ЩЕЛОЧНОЙ АКТИВАЦИИ С ТЕПЛОВЫМ УДАРОМ

© 2020 г. В. А. Кучеренко^{1,*}, Ю. В. Тамаркина^{1,**}, В. А. Саберова^{1,***}

¹ Институт физико-органической химии и углехимии имени Л.М. Литвиненко НАН Украины, 02160 Киев, Украина *e-mail: V.O. Kucherenko@nas.gov.ua

e-mail: Tamarkina@nas.gov.ua *e-mail: Saberova@nas.gov.ua Поступила в редакцию 26.09.2019 г. После доработки 07.10.2019 г. Принята к публикации 25.11.2019 г.

Исследована пористая структура активированных углей (АУ), образованных ископаемыми углями разной степени метаморфизма (СМ) при шелочной активации с тепловым ударом (КОН, 800°С). Установлено, что с ростом C^{daf} от 70.4 до 95.6% исследованных образцов удельная поверхность АУ снижается с 2012 до 818 м²/г, объем пор – с 1.088 до 0.269 см³/г, доля микропор линейно возрастает от 0.64 до 0.92. Показано, что увеличение СМ обуславливает переход от микромезопористого материала к нанопористому АУ.

Ключевые слова: ископаемый уголь, щелочная активация, активированный уголь, пористая структура **DOI:** 10.31857/S0023117720020061

введение

Щелочная активация – термолиз (700-900°С) ископаемых углей с гидроксидом калия в инертной атмосфере (N₂, Ar) представляет собой один из методов получения активированных углей (АУ) [1]. Характеристики пористой структуры АУ существенно зависят от массового соотношения щелочь/уголь (R_{KOH}) и при $R_{KOH} \ge 4$ г/г ископаемый уголь любой стадии метаморфизма (от бурого угля до антрацита) превращается в высокопористый материал с большой удельной поверхностью ($S = 2000 - 3000 \text{ м}^2/\Gamma$) [2-6]. В таких условиях шелочная активируемость углей разных марок как их способность трансформироваться в АУ является максимальной и почти одинаковой. Основной недостаток метода – необходимость использования значительных количеств щелочи (8-15 кг/кг конечного АУ), что мало приемлемо по технологическим и экономическим причинам. Кроме того, в этих условиях трудно выявить влияние структуры угля на свойства образующихся АУ, поскольку различия в исходных материалах нивелируются при больших соотношениях КОН/уголь.

В силу этого представляется важным исследование образования нанопористых АУ при использовании относительно небольших соотношений КОН/уголь ($R_{\text{КОН}} \le 1$ г/г), в перспективе – каталитических количеств КОН или близких к каталитическим ($R_{\text{КОН}} \le 0.1$ г/г). Ранее обнаружено [7], что щелочная активация с тепловым ударом (сокращенно АТУ-процесс), включающая быстрое введение обработанного щелочью бурого угля ($R_{\text{KOH}} = 1$ г/г) в предварительно нагретую зону реактора (800°С), ведет к образованию АУ с увеличенной (в 1.3-2.0 раз) удельной поверхностью. Полученные в АТУ-процессе буроугольные АУ характеризуются общим объемом адсорбирующих пор ≤1.042 см³/г и объемом микропор ≤ 0.789 см³/г, в котором основная доля ($\leq 66\%$) представлена порами с шириной $W \le 1.0$ нм, названных субнанопорами [8]. Тепловой удар также испытан применительно к активации ископаемых углей разной степени метаморфизма (СМ) в смеси с твердой щелочью [9]. Смешение как вариант щелочной обработки в АТУ-процессе оказался менее эффективным в сравнении с щелочным импрегнированием: при активации бурого угля в смеси с КОН образуются АУ с $S \le 1300 \text{ м}^2/\text{г}$ [10]; при активации импрегнированного угля -АУ с $S \le 2000 \text{ м}^2/\text{г}$ [11]. Постулировано, что активация каменных углей и антрацитов также будет более эффективна при переработке импрегнированных углей.

Цель данной работы – исследование влияния степени метаморфизма угля на характеристики пористой структуры АУ, образующихся в АТУ-процессе.

	Технический анализ, %			Элементный анализ, % на daf				
Марка упля	W^{a}	A^d	V^{daf}	С	Н	S	Ν	0
БУ	12.4	11.7	57.6	70.4	6.0	3.8	2.0	17.8
Д	11.1	1.8	43.8	80.0	5.3	1.0	1.9	11.8
Γ_1	2.7	6.0	41.6	81.0	5.6	3.1	1.7	8.6
Γ_2	2.9	0.7	35.6	83.5	5.2	0.9	1.7	8.7
Ж	2.0	2.2	30.6	85.0	5.2	1.0	1.6	7.2
K ₁	2.4	0.9	26.9	86.4	4.6	0.9	1.5	6.6
K ₂	0.6	4.8	20.7	88.6	4.8	1.6	1.4	3.6
OC_1	1.5	2.9	19.2	89.4	4.9	1.3	1.4	3.0
OC_2	1.6	1.1	17.2	90.0	4.4	0.9	1.6	3.1
OC_3	0.6	0.9	15.6	90.8	4.1	0.9	1.4	2.8
Т	1.2	4.8	5.1	91.2	3.3	2.8	1.2	1.5
А	4.2	6.6	3.6	93.3	2.5	1.8	1.1	1.3
A ₅	3.9	3.5	3.1	95.6	1.6	1.2	0.5	1.1

Таблица 1. Характеристики угольных образцов

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования выполнены на образцах ископаемых углей разной степени метаморфизма (СМ) с характеристиками, приведенными в табл. 1. Бурый уголь (БУ) отобран из Александрийского месторождения; каменные угли и антрациты – из различных шахт Донбасса (пласт l_4). Критерием СМ выбрано содержание углерода C^{daf} , значения которого охватывают диапазон $C^{daf} = 70.4-95.6\%$.

Обработку угля гидроксидом калия выполняли импрегнированием, включающим: 1) смешивание высушенного угля (10 г) и 30%-ного водного раствора КОН (33.3 г) для обеспечения массового соотношения КОН/уголь – $R_{\rm KOH} = 1.0$ г/г; 2) выдержку 24 ч при комнатной температуре; 3) удаление водной фазы при 90–100°С и сушка при 120 ± 10°С.

АТУ-процесс проводили в продуваемом сухим аргоном (~2 дм³/ч) реакторе из нержавеющей стали (диаметр 40 мм, высота рабочей зоны 150 мм) с сеткой в нижней части. Реактор нагревали до заданной температуры теплового удара (800°С), затем импрегнированный уголь быстро вводили в нагретую зону, выдерживали в течение 1 ч и быстро охлаждали в токе аргона. Образовавшийся активированный уголь (АУ) последовательно отмывали от щелочи водой, 0.1 М раствором HCl и снова водой до отрицательной реакции на ионы Cl⁻ (по AgNO₃). Синтезированные из разных углей образцы обозначены АУ (индекс угля), например, АУ(Γ_2) – образец, полученный из газового угля с индексом Γ_2 (табл. 1).

Характеристики пористой структуры АУ определены на основании изотерм низкотемпературной (77 К) адсорбции–десорбции азота (прибор *Micromeritics ASAP* 2020). Перед измерениями образцы АУ дегазировали 20 ч при 200°С. Общий объем пор V_t (см³/г) определяли по количеству N₂, адсорбированного при относительном давлении $P/P_0 \sim 1.0$. Объемы микропор (V_{mi}) и субнанопор (V_{1nm}) определяли из интегральных зависимостей объема пор от средней ширины пор (W, нм), полученных методом 2*D*-*NLDFT* [12].

Суммарный объем мезо- и макропор ($V_{me} + V_{ma}$) оценивали по разности $V_t - V_{mi}$. Величину удельной поверхности АУ (S, M^2/r) и поверхности субнано- (S_{1nm}) и микропор (S_{mi}) определяли из интегральных зависимостей S от W. Также рассчитывали доли субнанопор (V_{1nm}/V_t), микропор (V_{mi}/V_t) и сумму долей макро- и мезопор ($V_{me} + V_{ma}/V_t$).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

С увеличением СМ исходного угля (ростом значений С^{*daf*}) выход АУ возрастает (рис. 1, линия 1) от 22.7% (БУ) до 77.2% (антрацит A₅) и описывается линейной корреляционной зависимостью $Y = 2.026C^{daf} - 121.83$ ($R^2 = 0.962$). Аналогичная зависимость получена ранее [9] для тех же углей, но при использовании другого способа щелочной обработки – смешения угля с твердой КОН при комнатной температуре. В этом случае выходы АУ из тех же углей немного выше, изменяются от 24.6 до 81.8%, но также линейно возрастают с ростом СМ: $Y = 2.17C^{daf} - 126.8$ ($R^2 = 0.975$) [9].

В том же ряду образцов АУ удельная поверхность монотонно уменьшается (рис. 1, линия 2).

Для АУ из углей БУ, Д и Г₁ величина *S* изменяется мало (в пределах $\sim 60 \text{ м}^2/\Gamma$), а при переходе к антрацитовым АУ снижается существенно (в 2.4 раза). Исслелованный в работе бурый уголь генетически отличается от остальных каменных углей и антрацитов, поскольку сформирован из другого палеорастительного вещества. Если АУ(БУ) исключить из рассмотрения, то зависимость удельной поверхности АУ от C^{daf} будет линейной: S = $= 7948 - 74.07 C^{daf}$ ($R^2 = 0.982$). Экстраполяция этой зависимости на АУ из графита (материала с содержанием $C^{daf} \approx 100\%$) показывает расчетную величину $S = 541 \text{ м}^2/\text{г}$, что намного выше экспериментально найденной удельной поверхности графитовых АУ ($S = 3.77 - 6.17 \text{ м}^2/\Gamma$), полученных в работе [13] при щелочной активации высокочистого графита (99.99%) в условиях (800°С, $R_{KOH} =$ = 1-3 г/г), идентичных нашим. Это говорит о том, что содержание углерода угля - не единственный фактор, влияющий на величину удельной поверхности.

Типичные изотермы адсорбции-десорбции азота образцами АУ приведены на рис. 2. При низких значениях относительных давлений p/p_0 наблюдается резкое увеличение количества адсорбированного азота V_{N_2} , что уже само по себе указывает на доминирование микропористости. По классификации IUPAC [14], все изотермы относятся к типу II с гистерезисом типа H4, проявление которого зависит от исходного угля и ослабляется в ряду метаморфизма рис. 2 (линии 2–4). Его причина – наличие в АУ узких щелевидных пор и

Рис. 1. Зависимости выходов (1) и удельной поверхности АУ (2) от содержания углерода исходного угля.

капиллярная конденсация в мезопорах. Для антрацитовых АУ наблюдается гистерезис низкого давления — превышение десорбционной ветви над адсорбционной в области малых значений p/p_0 (рис. 2, линия 4). Это обусловлено присутствием диффузионных ловушек — субнаноразмерных полостей в пространственном каркасе АУ, из которых скорость десорбции N₂ суще-

Рис. 2. Изотермы адсорбции-десорбции азота образцами АУ из антрацита А₅ (1) и углей Д (2), К₁ (3) и Т (4).

Рис. 3. Зависимости общего объема пор V_t от их ширины Wдля образцов АУ из углей БУ (\hat{I}), \hat{I} (2), Γ_2 (3), К₁ (4), ОС₁ (5), Т (6) и А₅ (7).

ственно ниже скорости адсорбции, что вызывает появление гистерезиса.

Рассчитанные методом 2D-NLDFT зависимости общего объема пор V_t от их ширины W показывают слелующее (рис. 3). Во всех образнах АУ основная доля V_t приходится на поры с $W \le 5$ нм. Поры с шириной 5-20 нм развиваются мало и только при получении АУ из низкометаморфизованных углей. Формирование пор с $W \ge 20$ нм наиболее заметно у буроугольного АУ (рис. 3, линия 1), но с ростом СМ исходного угля их вклад в общую пористость АУ снижается практически до

нуля. Для АУ из всех изученных углей характерным является сильное развитие микропористой структуры ($W \le 2$ нм), что видно по начальным участкам линий 1-7 (рис. 3). Рассчитанные из зависимостей V, от W объемы разных видов пор и соответствующие им величины удельной поверхности свелены в табл. 2. Полученные ланные показывают, что СМ предшественника влияет на параметры его пористой структуры АУ. С ростом С^{*daf*} общий объем адсорбирующих пор *V*, уменьшается примерно в 4 раза (рис. 4, линия *1*). В том же ряду образцов объем микропор также снижается (рис. 4, линия 2), но лишь в 2.8 раза и зависимость V_{mi} от C^{daf} отличается от зависимости V_t от С^{daf}. Объем субнанопор практически одинаков у АУ(БУ) и АУ(Д) (табл. 2) и при переходе к антрацитовому АУ уменьшается в 2.38 раза (рис. 4, линия 2).

Наибольшим суммарным объемом мезо- и макропор V_{me + ma} обладает буроугольный АУ (табл. 2). С ростом С^{daf} в ряду образцов от АУ(БУ) до антрацитового АУ(A₅) параметр V_{me+ma} снижается сильно – с 0.394 до 0.020 см³/г, то есть в 19.7 раза. Зависимости объемов разных пор от С^{daf} лучше всего аппроксимируются полиномами второй степени (рис. 4, сплошные линии) с коэффициентами корреляции 0.992 (V_t), 0.993 (V_{mi}), 0.990 (V_{1nm}) и 0.966 (V_{me+ma}). Очевидно, что фор-мирование пористости АУ зависит не только от С^{daf}, но и других свойств исходного угля, таких как состав кислородных функциональных групп и конформационная подвижность угольного пространственного каркаса, которые также изменяются с ростом СМ. В этой связи можно предполагать сильное влияние способности угольного каркаса стерически перестраиваться при интер-

Таблица 2. Объем и удельная поверхность разных видов пор образцов АУ, полученных в условиях щелочной активации с тепловым ударом (800°С, $R_{\rm KOH} = 1.0$ г/г)

Марка угля	Y, %	V_t , cm ³ / Γ	$V_{1nm}, \mathrm{cm}^3/\mathrm{r}$	V_{mi} , см ³ /г	$V_{me+ma}, \mathrm{cm}^3/\Gamma$	<i>S</i> , м ² /г	S_{1nm} , м ² /г	S_{mi} , м ² /г	$S_{me+ma}, \mathrm{M}^2/\Gamma$
БУ	22.7	1.088	0.541	0.694	0.394	2012	1688	1807	205
Д	43.4	0.772	0.538	0.610	0.162	1950	1807	1903	47
Γ_1	41.5	0.779	0.520	0.625	0.154	1955	1705	1873	82
Γ_2	44.5	0.717	0.502	0.583	0.134	1728	1557	1683	45
Ж	46.0	0.696	0.461	0.537	0.159	1749	1563	1685	64
K ₁	54.2	0.600	0.451	0.524	0.076	1548	1412	1525	23
K ₂	55.7	0.542	0.431	0.485	0.057	1422	1221	1361	42
OC_1	60.6	0.524	0.385	0.449	0.075	1304	1187	1286	18
OC ₃	63.2	0.467	0.352	0.409	0.058	1255	1102	1209	33
Т	61.5	0.454	0.360	0.407	0.047	1237	1156	1222	15
А	65.1	0.355	0.281	0.325	0.030	990	899	954	36
A ₅	77.2	0.269	0.227	0.249	0.020	818	781	808	10

Рис. 4. Зависимости общего объема пор $V_t(1)$, объемов микропор $V_{mi}(2)$, субнанопор $V_{1nm}(3)$ и суммарного объема мезо- и макропор $V_{me + ma}(4)$ от содержания углерода исходного угля.

калировании в него щелочи, что увеличивает доступность внутрикаркасных структурных фрагментов молекулам КОН и, как следствие, увеличивает реакционную способность угля в АТУпроцессе.

В ряду образцов от АУ(БУ) до АУ(А₅) доля микропор увеличивается почти линейно с 0.64 до 0.92 (рис. 5). Аналогично возрастает и доля субнанопор, которые представляют собой доминирующую часть общей микропористости: $(V_{1nm}/V_{mi}) =$ = 78-91%. Доля мезо- и макропор снижается от 0.36 у АУ(БУ) до 0.08 у антрацитовых АУ. Эти данные аппроксимируются линейными зависимостями с $R^2 = 0.887 - 0.898$ (сплошные линии на рис. 5). Аппроксимация полиномами второй степени повышает коэффициенты корреляции, но не сильно – до $R^2 = 0.900 - 0.912$, так что можно допустить линейность зависимостей долей пор от содержания углерода. В целом, с увеличением СМ исходного угля явно прослеживается тенденция качественного изменения свойств пористой структуры АУ, обуславливающий переход от микромезопористого материала к микропористому. Интегральные зависимости объема V, от ширины пор W (рис. 3) показывают, что в АТУ-процессе наиболее динамично образуются поры с $W \le 5$ нм. В этой области распределение пор по размерам характеризуется тремя максимумами величин dV/dW (рис. 6), которые отвечают субнанопорам (dV_1) , порам с W = 1.0 - 2.5 нм (dV_2) и порам с W == 2.5 - 5.0 нм (dV_3). В интервале мезопор W = 15 - 15

Рис. 5. Доли микропор V_{mi} (1), субнанопор V_{1nm} (2) и суммарного объема мезо- и макропор V_{me+ma} (3) в общем объеме пор АУ из углей разной СМ.

-30 нм проявляется четвертый максимум $- dV_4$, который на рис. 6 не показан.

В этих же интервалах проявляются максимумы распределения удельной поверхности микропор по их размерам. Зависимости V_t от W, передающиеся линиями 1 и 2 (рис. 6), отвечают образцам АУ(БУ) и АУ(Д), которые обладают максимальной удельной поверхностью (табл. 2). Другие АУ имеют качественно аналогичные распределения пор по размерам. Главное отличие состоит в численных значениях максимумов величин dV_1 , dV_2 , dV₃ и dV₄ (табл. 3). АУ из углей высокой СМ (С^{*daf* ≥ 90%) также отличаются распределением} пор по размерам в интервале W = 1.0 - 2.5 нм (рис. 6, линии 3 и 4), которое выглядит как суперпозиция двух максимумов — основного dV_2 и дополнительного, который проявляется как плечо. Для каждого АУ значения максимумов уменьшаются в ряду $dV_1 > dV_2 > dV_3 > dV_4$ и зависят от СМ исходного угля. По сравнению с dV_1 это уменьшение составляет 8–21 раз для dV_2 , 15–490 раз для dV_3 и 50-860 раз для dV_4 . Для каждого максимума наблюдается тенденция снижения его величины с ростом СМ угля (табл. 3) и только при переходе от АУ(БУ) к АУ(Д) зафиксировано увеличение dV_1 в 1.24 раза (с 1.413 до 1.745 см³/г нм).

По сравнению с монотонным снижением величины *S* образцов АУ с ростом C^{daf} исходного угля (рис. 1, линия 2), удельная поверхность разных видов пор меняется более сложным образом (рис. 7). Поверхность микропор S_{mi} и субнанопор

Рис. 6. Распределение пор по размерам у образцов АУ(Д) (1), АУ(БУ) (2), АУ(Т) (3) и АУ(A_5) (4); для АУ(Т) и АУ(A_5) область микропор с $W \le 1$ нм не показана.

 S_{1nm} буроугольного АУ ниже по сравнению с этими характеристиками АУ(Д), хотя общая удельная поверхность АУ(БУ) выше (рис. 1, линия 2) и является максимальной ($S = 2012 \text{ m}^2/\text{г}$) в полученной серии АУ. В этой связи необходимо отметить следующее. Исследуемый в данной работе бурый уголь отличается от остальных углей генетически, поскольку сформирован из иного палеорасти-

Таблица 3. Максимумы распределения пор по размерам образцов АУ

Инлекс угля	Параметр dV_x , см ³ /г · нм							
Tindene Jibbi	dV_1	dV_2	dV_3	dV_4				
БУ	1.413	0.173	0.0925	0.0294				
Д	1.745	0.133	0.0752	0.0112				
Γ_1	1.701	0.129	0.0706	0.0100				
Γ_2	1.297	0.084	0.0565	0.0045				
Ж	1.286	0.067	0.0529	0.0044				
\mathbf{K}_1	1.194	0.065	0.0318	0.0024				
K ₂	1.036	0.056	0.0289	0.0037				
OC_1	0.979	0.046	0.0224	0.0049				
OC ₃	0.991	0.050	0.0143	0.0033				
Т	1.025	0.054	0.0135	0.0017				
А	0.857	0.046	0.0077	0.0010				
A ₅	0.799	0.042	0.0016	0.0009				

тельного материала. Это может приводить к характеристикам АУ(БУ), выпадающим из общих закономерностей от СМ угля, хотя прогнозировать такие отклонения трудно. Если образец АУ(БУ) исключить из рассмотрения, то для АУ из каменных углей и антрацитов проявляется общая закономерность — линейное снижение величин S_{mi} и S_{1nm} в соответствии с корреляционными уравнениями $S_{mi} = 7645 - 71.09C^{daf}$ ($R^2 = 0.984$) и $S_{1nm} = 7017 - 65.09C^{daf}$ ($R^2 = 0.983$).

Поверхность мезо- и макропор заметно развивается только у АУ(БУ) ($S_{me+ma} = 205 \text{ м}^2/\Gamma$); у остальных АУ она существенно меньше ($\leq 82 \text{ м}^2/\Gamma$) и проявляют тенденцию к снижению с ростом СМ исходного угля (рис. 7, линия 3).

Таким образом, удельная поверхность АУ, полученных в АТУ-процессе, представлена поверхностью микропор, доля которой (S_{mi}/S) варьируется в пределах 0.898–0.988. Доля поверхности субнанопор составляет (S_{1nm}/S) = 0.839–0.955, то есть полученные в работе АУ являются микропористыми материалами с доминированием субнанопористости.

Для АУ из каменных углей и антрацитов зависимость удельной поверхности *S* от общего объема пор V_t линейна (рис. 8, линия *I*) и подчиняется уравнению *S* = 2270.8 V_t + 220.4 ($R^2 = 0.995$). Буроугольный АУ сильно выпадает из этой зависимости: для АУ(БУ) экспериментальное значение *S* = = 2012 м²/г (табл. 2) существенно ниже расчетно500

450

1800 400 350 1600 300 1400 250 1200 200 3 150 1000 100 800 50 600 0 75 90 95 70 80 85 C^{daf}. %

Рис. 7. Удельная поверхность микропор (1), субнанопор (2) и суммы мезо- и макропор АУ как функция содержания углерода исходного угля.

го (2691 м²/г). Это является следствием большой доли объема мезо- и макропор ($V_{me + ma}/V_t$) = 0.362, вклад которых в величину *S* существенно меньше и составляет $(S_{me + ma}/S) = 0.102$.

Зависимости удельной поверхности микропор S_{mi} и субнанопор S_{1nm} от их объемов V_{mi} и V_{1nm} аппроксимируются линейными корреляционными уравнениями для всех АУ: $S_{mi} = 2684.2V_{mi} + 123.79$ ($R^2 = 0.944$) и $S_{1nm} = 3186.9V_{1nm} + 0.724$ ($R^2 = 0.957$) (рис. 8, линия 2).

Отношения величин V_{1nm} (выраженных в нм³/г) к *S*_{1*nm*} (нм²/г) для разных АУ достаточно близки и находятся в интервале (V_{1nm}/S_{1nm}) = 0.29–0.35 нм (среднее – 0.31 нм). Для сферических пор это соответствует диаметрам 1.74-2.10 нм, что не подходит для диапазона субнанопор с размерами $W \leq$ ≤ 1 нм. Это противоречие устраняется, если принять эллипсоидную форму пор, которая наиболее близка к щелевидным порам. Если для трех осей эллипсоида (a, b, c) принять a = 0.5 нм (что соответствует ширине W = 1 нм) и условие b = c, то среднее значение (V_{1nm}/S_{1nm}) = 0.31 нм будет соответствовать порам с длиной 6.4 нм и глубиной 3.2 нм. В АТУ-процессе образование таких пор происходит при совместном действии КОН и теплового удара, вызывающего импульсное образование летучих продуктов, которые изнутри разрывают угольный каркас на отдельные структурные фрагменты. Процесс аналогичен вспучиванию соединений интеркалирования графита, инициируемому тепловым ударом и приводяшему к образованию термографенита — материала с более развитой пористостью [15]. При щелоч-

Рис. 8. Зависимости " $S-V_l^{*}$ " (1) и " $S_{1nm}-V_{1nm}^{*}$ " (2) для АУ из каменных углей и антрацитов (диапазон $C^{daf} = 80.0-95.6\%$).

ной активации это является дополнительным фактором формирования пористости АУ.

В целом, совокупность параметров пористой структуры АУ и их сопоставление в ряду метаморфизма достаточно полно характеризуют активируемость ископаемых углей разной СМ как их способность образовывать нанопористые углеродные материалы в процессе щелочной активации с тепловым ударом.

выводы

1. В условиях щелочной активации с тепловым ударом (КОН, 1 г/г угля, 800°С) ископаемые угли $(C^{daf} = 70.4 - 95.6\%)$ образуют микропористые материалы – активированные угли (АУ), выход которых линейно возрастает от 22.7 до 77.2% в соответствии с корреляционной зависимостью Y = $= 2.026 C^{daf} - 121.83 (R^2 = 0.962).$

2. Удельная поверхность (S) образцов АУ зависит от СМ исходного угля (критерием которого выбран С^{daf}) и монотонно снижается от 2012 м²/г (АУ из бурого угля) до 818 м²/г у антрацитового АУ при уменьшении общего объема пор (V_i) с 1.088 до 0.269 см³/г.

3. Судя по полученным методом 2D-NLDFT зависимостям объема V_t от ширины пор W, в АУ преимущественно образуются микропоры (*W*≤ ≤ 2 нм), доля которых линейно возрастает в ряду метаморфизма от 0.64 до 0.92. Доминирующей частью микропористости являются субнанопоры $(W \le 1 \text{ нм})$, вклад которых увеличивается от 78 до 91%.

S, м²/г

2000

29

4. В ряду АУ из каменных углей и антрацитов ($C^{daf} = 80.0-95.6\%$) удельная поверхность микропор S_{mi} и субнанопор S_{1nm} линейно снижаются согласно корреляционным уравнениям $S_{mi} = 7645 - 71.09C^{daf}$ ($R^2 = 0.984$) и $S_{1nm} = 7017 - 65.09C^{daf}$ ($R^2 = 0.983$). Доля поверхности микропор (S_{mi}/S) варьируется в пределах 0.898–0.988. Доля мезо- и макропор существенна только у буроугольного АУ (0.102); у остальных АУ она существенно меньше и не превышает 4.2%.

5. С ростом СМ исходного угля качественно изменяется пористость АУ, обуславливающая переход от микро-мезопористого материала к микропористому с доминированием субнанопористости. Параметры пористой структуры АУ и их сопоставление в ряду метаморфизма характеризуют активируемость ископаемых углей как их способность образовывать пористые углеродные материалы в процессе щелочной активации с тепловым ударом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Novel Carbon Adsorbents / Ed. J.M.D. Tascon. Amsterdam: Elsevier. 2012. 686 p.
- Yoshizawa N., Maruyama K., Yamada Y., Ishikawa E., Kobayashi M., Toda Y., Shiraishi M. // Fuel. 2002. V. 81. № 13. P. 1717. https://doi.org/10.1016/S0016-2361(02)00101-1
- Mikova N.M., Chesnokov N.V., Kuznetsov B.N. // Sib-FU J. Chem. 2009. V. 2. № 1. P. 3. DOI: http://elib.sfukras.ru/handle/2311/1303
- 4. Zhao X.-Y., Huang S.-S., Cao J.-P., Xi S.-C., Wei X.-Y., Kamamoto J., Takarada T. // J. Anal. Appl. Pyrolysis.

2014. V. 105. P. 116. https://doi.org/10.1016/j.jaap.2013.10.010

- Xing B.-L., Guo H., Chen L.-J., Chen Z.-F., Zhang C.-X., Huang G.-X., Xie W., Yu J.-L. // Fuel Proc. Technol. 2015. V. 138. P. 734. https://doi.org/10.1016/j.fuproc.2015.07.017
- Byamba-Ochir N., Shim W.G., Balathanigaimani M.S., Moon H. // Appl. Surface Sci. 2016. V. 371. P. 331. https://doi.org/10.1016/j.apsusc.2016.04.082
- 7. Kucherenko V.A., Shendrik T.G., Tamarkina Y.V., Mysyk R.D. // Carbon. 2010. V. 48. № 15. P. 4556. https://doi.org/10.1016/j.carbon.2010.07.027
- Саберова В.А., Тамаркина Ю.В., Кучеренко В.А. // XTT. 2019. № 3. С. 9 [Solid Fuel Chemistry. 2019. V. 53, № 3, Р. 135. DOI: 10.3103/S0361521919030091] https://doi.org/10.1134/S0023117719030101
- 9. Тамаркина Ю.В., Цыба Н.Н., Кучеренко В.А., Шендрик Т.Г. // Вопросы химии и химической технологии. 2013. № 3. С. 132.
- Тамаркина Ю.В., Кучеренко В.А., Шендрик Т.Г. // XTT. 2012. № 5. С. 13 [Solid Fuel Chemistry. 2012. V. 46. № 5. Р. 289. DOI: 10.3103/S0361521912050114] https://doi.org/10.3103/S0361521912050114
- 11. *Кучеренко В.А., Тамаркина Ю.В., Раенко Г.Ф., Попов А.Ф. //* Вопросы химии и химической технологии. 2017. № 4. С. 49.
- 12. *Jagiello J. Olivier J.P.* // Carbon. 2013. V. 55. P. 70. https://doi.org/10.1016/j.carbon.2012.12.011
- Tai Z, Zhang Q., Liu Y., Liu H., Dou S. // Carbon. 2017. V. 123. P. 54. https://doi.org/10.1016/j.carbon.2017.07.041
- Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. // Pure &
- Appl. Chem. 1985. V. 57. № 4. P. 603.
 15. Dresselhaus M.S., Dresselhaus G. // Advances in Physics. 2002. V. 51. № 1. P. 1. https://doi.org/10.1080/00018730110113644