УЛК 662.7

ХИМИЧЕСКИЙ СОСТАВ И ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗОЛЫ УГЛЯ РАЗРЕЗА "БОГАТЫРЬ"

© 2020 г. Б. Т. Ермагамбет^{1,*}, Б. К. Касенов^{2,**}, Н. У. Нургалиев^{1,*}, М. К. Казанкапова^{1,*}, Ж. М. Касенова^{1,*}, Е. Е. Куанышбеков^{2,**}, А. А. Сыздыкова^{1,*}

¹ ТОО "Институт химии угля и технологии", 020000 Астана, Казахстан
² Химико-металлургический институт имени Ж. Абишева, 1000009 Караганда, Казахстан
*e-mail: coaltech@bk.ru
**e-mail: kasenov 1946@mail.ru

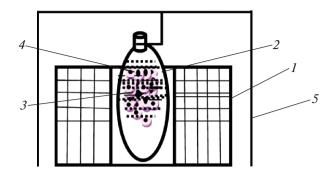
Поступила в редакцию 06.03.2019 г. После доработки 18.11.2019 г. Принята к публикации 25.11.2019 г.

Исследованы химический состав и температурные зависимости электрофизических характеристик (электроемкости, электросопротивления, диэлектрической проницаемости) в интервале $293-483~\rm K$ для золы угля разреза "Богатырь" в исходном виде, после электромагнитного (ЭМ) и электроразрядного (ЭР) воздействий, с приведением методик данных обработок золы угля. Установлены температурные интервалы, в которых материал проявляет как полупроводниковые свойства, так и металлический характер проводимости. Рассчитана ширина запрещенной зоны (ΔE) для исследуемых образцов. Результаты измерений показали, что по сравнению с исходной золой и золой после ЭМ-обработки, у золы после ЭР-обработки наблюдаются наибольшие значения электроемкости и диэлектрической проницаемости и наименьшее электросопротивление. Зола угля после ЭР-обработки представляется перспективным в качестве подготовленного сырья для его дальнейшей термохимической переработки с извлечением таких ценных компонентов, как редкие металлы, кремнезем, глинозем.

Ключевые слова: зола угля, электроемкость, электросопротивление, диэлектрическая проницаемость, электроразрядная обработка, полупроводниковая проводимость, металлическая проводимость

DOI: 10.31857/S0023117720020024

Золошлаковые отходы (ЗШО) энергетической промышленности относятся к числу многотоннажных промышленных отходов, представляющих собой собой сложные разнородные вещества, состоящие из нескольких генетических классов минеральных примесей [1]. В качестве последних выступают силикаты, сульфиды, сульфаты, карбонаты, оксиды кремния, алюминия, магния, железа [2].


Наряду с минеральной частью в угольной золе обычно содержатся несгоревшие органические включения (в основном менее 5%). При этом свойства золы сильно варьируются в зависимости от типа угля, температуры горения, технологии сжигания, соотношения воздух/топливо и размера частиц угля [3].

Ежегодно в мире образуется приблизительно 750 млн т ЗШО [4—7]. В настоящее время в Казахстане накопилось более 300 млн т ЗШО, и этот объем растет на 19 млн т ежегодно [8, 9]. Из золошлаковых отходов угля, вырабатываемых ТЭЦ, в Казахстане перерабатывается менее 10% золы

(менее $1.9 \,\mathrm{млн}\,\mathrm{T}$), что значительно ниже по сравнению с Индией (около 60%), Китаем (около 70%), США (около 50%) [5].

Вместе с тем золошлаковые отходы обладают специфическими свойствами, что определяет возможность их эффективного использования в различных отраслях промышленности, например при извлечении редких металлов [10—13], алюмосиликатных и магнитных микросфер [14], кремнезема [15] и глинозема [16, 17], в производстве строительных материалов (в качестве добавок в цемент, бетон, кирпич и др.) [14, 18, 19].

Традиционно ископаемые угли относят к полупроводникам, поскольку их электропроводность при постоянном токе и комнатной температуре находится в интервале 10^{-8} – 10^{-6} Ом⁻¹ м⁻¹. В достаточно большом интервале температур до 200° С электропроводность увеличивается с повышением температуры, что характерно для полупроводников [20—22]. Поэтому изучение данных свойств минеральной части угля с учетом широ-

Рис. 1. Измельчение золы в ЭМА-1 в периодическом режиме: 1 — индуктор; 2 — рабочая камера; 3 — магнитные гранулы; 4 — измельчаемый материал; 5 — штатив.

кого применения ЗШО представляет определенный научный и практический интерес.

Цель работы — исследование химического состава и влияния электрофизического воздействия на электрофизические характеристики золы угля разреза "Богатырь" Экибастузского бассейна (Казахстан).

Ранее были проведены аналогичные исследования по определению электрофизических характеристик исходного и активированного сланцев Кендырлыкского месторождения [23].

В данной работе в качестве исходного сырья использовали золошлаковые отходы от сжигания угля разреза "Богатырь" в котельной, которые выдерживали в муфельной печи при 815°С в течение 1.5 ч для удаления недожога (углеродной части ЗШО). Характеристики полученных проб золы угля исследовали в исходном состоянии, после обработки на электромагнитном аппарате (ЭМ-обработки) (для тонкого измельчения золы) и после электроразрядной обработки (ЭР-обработки) (для ослабления и/или разрыва химических связей в водном растворе золы). Это дает возможность изучить степень влияния электрофизического воздействия на электрофизические характеристики угольной золы.

Выбор ЭР-обработки угольной золы обусловлен тем, что действующими факторами являются высокие и сверхвысокие импульсные давления, мощные импульсно возникающие кавитационные процессы, механические резонансные явления, мощные электромагнитные поля (десятки тысяч эрстед), многократная ионизация соединений и элементов и многие другие сильнодействующие процессы [24]. Данные процессы могут приводить к взаимному отслаиванию друг от друга многокомпонентных твердых тел сложного фазового состава (к каким относится зола угля), например с целью дальнейшего ускорения реагентной размывки пульпы с образованием солей извлекаемых металлов. При электрогидравличе-

ском дроблении горных пород и других материалов многие химические элементы и их соединения, входящие в состав этих пород, переходят в воду в виде растворимых соединений в количествах, достигающих 90—95% от массового содержания их в исходном материале [25]. Более того, в результате ранее проводимых исследований [26] было обнаружено, что при электрогидравлической обработке угля выделяются более 50% содержащегося в нем германия и еще 26 элементов в виде различных их соединений.

Подготовку образцов золы угля разреза "Богатырь" проводили в три этапа. На 1-м этапе золу предварительно измельчали и готовили среднюю пробу (по химическому и гранулометрическому составу) из объединенной пробы — методом квартования. На 2-м и 3-м этапах осуществляли соответственно сначала ЭМ-обработку и затем ЭР-обработку.

ЭМ-обработку образцов золы проводили на электромагнитном аппарате ЭМА-1 (рис. 1), который состоит из индуктора, рабочей камеры и штатива. Электрические параметры ЭМА-1: номинальный ток -8 A; номинальныя напряженность электромагнитного поля в центре индуктора (при 220 B) -40-45 кА/м; мощность активная -0.15-0.2 кВт; мощность и емкость конденсаторов для компенсации $\cos \phi - 400$ мкФ.

Обработку проводили следующим образом:

- угольную золу (100 г) перемешивали с магнитными гранулами (диаметром 2-3 мм) (соотношение массы измельчаемого материала к массе магнитных гранул 1:10; магнитные гранулы занимали 70-80% по объему рабочей камеры);
- в рабочую камеру (около 1 л) ставили стеклянный стакан, в котором предварительно закладывали внутри эластичный материал (резинотканый, для предотвращения прилипания измельчаемой золы к стенкам и образования трещин на стенках стакана от соударения магнитных гранул);
- полученную смесь золы с магнитными гранулами выгружали в рабочую камеру и закрывали ее (для предотвращения попадания золы в атмосферу);
- рабочую камеру устанавливали внутри индуктора (посередине);
- электромагнитную обработку в ЭМА-1 проводили 3 раза, каждую в течение 8 мин.

При этом во время обработки в камере происходило тщательное перемешивание и измельчение золы из-за сильных вращающихся и соударяющихся действий магнитных гранул, что обусловлено наведением вихревого электрического поля из-за действия переменного электромагнитного поля от индуктора.

Визуально было установлено, что размеры частиц золы после электромагнитной обработки заметно уменьшились по сравнению с частицами исходной золы.

ЭР-обработку золы угля высоковольтным импульсным разрядом осуществляли на лабораторной электроразрядной установке (рис. 2), состоящей из следующих комплектующих: регулятор мощности (I), блок конденсаторов (2), трансформатор повышающий (от 220 до 30 кВ) (3), реактор (емкость 200 мл для водного раствора угольной золы с 2 электродами) (4).

Эксперименты проводили следующим образом. Предварительно устанавливали и настраивали необходимые технические параметры (напряжение 30 кВ, количество подачи разряда в реактор 5 раз за 1 с, расстояние между верхним электродом и поверхностью раствора 3—5 мм). Приготовленную золу массой 40 г и воду 80 мл тщательно перемешивали, полученный раствор заливали в реактор, с помощью пульта включали установку и обрабатывали дуговым разрядом в течение 3 мин. Полученный раствор доводили до сухого состояния для последующего измерения физико-химических характеристик золы угля.

Исследование элементного состава золы угля разреза "Богатырь" проводили методом энергодисперсионной рентгеновской спектроскопии на сканирующем растровом электронном микроскопе SEM (Quanta 3D 200i) с приставкой для энергодисперсионного анализа (EDAX). Образцы закрепляли на медном держателе с помощью проводящей клейкой бумаги. Предварительно на поверхность образцов в специальной вакуумной установке наносили тонкий проводящий слой углерода для лучшего прохождения зарядов. Энергия возбуждающего пучка электронов при анализе была 15 кэВ, рабочее расстояние — 15 мм.

Результаты проведенного элементного анализа золы угля, приведенные в табл. 1, показывают, что основные макроэлементы золы — это кислые и амфотерные оксиды кремния, алюминия и железа, общая концентрация которых составляет 90.1%, что почти совпадает с аналогичными данными, полученными в работе [27] для золы угля Экибастузского бассейна (90.0%).

Для идентификации кристаллических фаз, входящих в состав золы, использовали рентгеновскую дифракцию. Рентгенофазовый анализ проводили на дифрактометре $Rigaku\ MiniFlex\ 600$. Режим съемки образцов: FeK_{β} -излучение, напряжение на рентгеновской трубке $U=40\ \mathrm{kB}$ при силе тока $J=15\ \mathrm{mA}$. Результаты рентгенофазового анализа золы угля разреза "Богатырь" представлены в табл. 2.

Полученные данные по рентгенофазовому анализу показывают, что общим для всех исследуемых образцов золы является наличие двух

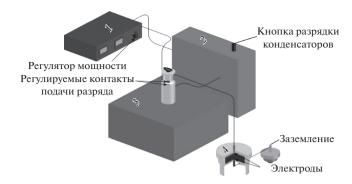


Рис. 2. Общий вид электроразрядной установки.

кристаллических фаз основных золообразующих элементов: α -кварц (SiO₂) и муллит (3Al₂O₃ · 2SiO₂). Это совпадает с результатами, полученными при исследовании фазового состава золы углей других месторождений, где основными кристаллическими фазами также являются кварц и муллит [28—30]. В результате ЭР-обработки золы удаляются магнетит и гисмондин, вместе с тем образуются новые минеральные фазы с содержанием оксида титана и железа и алюмосиликата с цезием и кальцием (табл. 2). Измерения электрофизических характеристик золы угля разреза "Богатырь" были проведены в лаборатории термохимических процессов Химико-металлургического института имени Ж. Абишева (Караганда).

Определение диэлектрической проницаемости ϵ и электрического сопротивления R проводили путем измерения электроемкости образцов C на серийном приборе LCR-800 (Тайвань) при рабочей частоте 1 к Γ ц непрерывно в сухом воздухе в термостатном режиме со временем выдержки в течение 3 мин при каждой фиксированной температуре.

Предварительно изготавливались плоскопараллельные образцы в виде дисков диаметром 10 мм и толщиной 5-6 мм со связующей добавкой ($\sim 1.5\%$). Прессование проводили под давлением 20 кг/см^2 . Полученные диски обжигались в силитовой печи при 400°C в течение 6 ч. Далее проводилось их тщательное двухстороннее шлифование.

Диэлектрическая проницаемость определялась из электроемкости образца и электроемкости конденсатора. Для получения зависимости между электрической индукцией D и напряжен-

Таблица 1. Химический состав минеральной части угля разреза "Богатырь"

Содержание, %								
SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	TiO ₂	SO_3	P_2O_5	$K_2O + Na_2O$
60.34	23.87	5.90	2.96	1.03	1.13	0.73	1.25	0.79

Фаза	Минеральный состав					
Фаза	зола исходная	зола после ЭМ-обработки	зола после ЭР-обработки			
α-Quartz	SiO ₂	SiO ₂	SiO ₂			
Mullite	$3Al_2O_3 \cdot 2SiO_2$	$3Al_2O_3 \cdot 2SiO_2$	$3Al_2O_3 \cdot 2SiO_2$			
Magnetite	Fe_3O_4	Fe ₃ O ₄	_			
Calcium catena-yphosphate (V)	$Ca(PO_3)_2$	$Ca(PO_3)_2$	$Ca(PO_3)_2$			
Gismondine	$CaAl_2Si_2O_8 \cdot 4H_2O$	$CaAl_2Si_2O_8 \cdot 4H_2O$	_			
Iron Titanium Oxide	_	_	$Fe_{1.696}Ti_{0.228}O_3$			
Caesium Calcium Tecto-alumosilicate	_	_	$Cs_6Ca_3(Si_{12}Al_{12}O_{48})$			

Таблица 2. Минеральный состав золы угля разреза "Богатырь"

ностью электрического поля E использована схема Сойера—Тауэра. Визуальное наблюдение D (E-петли гистерезиса) проводилось на осциллографе C1-83 с делителем напряжения, состоящим из сопротивления 6 мОм и 700 кОм, и эталонным конденсатором 0.15 мкФ. Частота генератора 300 Гц. Во всех температурных исследованиях образцы помещались в печь, температура измерялась хромель-алюмелевой термопарой, подключенной к вольтметру B2-34 с погрешностью ± 0.1 мВ. Скорость изменения температуры

Таблица 3. Зависимость электросопротивления (R), электроемкости (C) и диэлектрической проницаемости (E) от температуры (исходная зола)

<i>T</i> , K	С, нФ	<i>R</i> , Ом	ε	lgε	lg <i>R</i>
293	0.04834	6165000	417	2.62	6.79
303	0.0986	4353000	852	2.93	6.64
313	0.33202	2364000	2867	3.46	6.37
323	0.84491	1435000	7297	3.86	6.16
333	1.5696	1003000	13556	4.13	6.00
343	4.8319	216200	41731	4.62	5.33
353	8.7173	363900	75 287	4.88	5.56
363	17.967	229 000	155172	5.19	5.36
373	33.532	154500	289 599	5.46	5.19
383	51.088	117800	441222	5.64	5.07
393	79.231	88320	684279	5.84	4.95
403	114.78	69980	991299	6.00	4.84
413	89.929	84250	776673	5.89	4.93
423	3.4127	681100	29 474	4.47	5.83
433	0.243	2743000	2099	3.32	6.44
443	0.04094	6064000	354	2.55	6.78
453	0.01529	6913000	132	2.12	6.84
463	0.01072	5660000	93	1.97	6.75
473	0.01032	5274000	89	1.95	6.72
483	0.00988	5206000	85	1.93	6.72

 \sim 5 л/мин. Величина диэлектрической проницаемости при каждой температуре определялась по формуле $\varepsilon = \frac{C}{C_0}$, где $C_0 = \frac{\varepsilon_0 S}{d}$ — емкость конденсатора без исследуемого вещества (воздушного).

Результаты измерений электрофизических характеристик золы угля разреза "Богатырь" в исходном виде, после ЭМ- и ЭР-обработок привелены в табл. 3—5.

Анализ полученных данных показал, что образцы исходной золы (табл. 3) и золы (табл. 4) после ЭМ-обработки в температурных интервалах соответственно 293—403 К и 293—373 К проявляют полупроводниковые свойства, в интервалах 403—453 К и 373—423 К проявляют металлический характер проводимости, а в интервалах 453—483 К и 423—473 К — опять полупроводниковые свойства.

В отличие от данных образцов зола после ЭРобработки (табл. 5) имеет только один температурный интервал 293—393 К, где проявляет полупроводниковую проводимость, металлическую проводимость проявляет в интервале 393—473 К. Таким образом, ЭР-обработка золы (табл. 5) приводит к расширению температурного диапазона при нагревании, в котором проявляется металлическая проводимость.

Анализ электрофизических параметров показывает, что по сравнению с исходной золой ЭМ-обработка (табл. 4) последней приводит к заметному уменьшению значений электроемкости и диэлектрической проницаемости на всем температурном интервале 293—483 К.

Электрофизические параметры изменяются после электроразрядного воздействия на золу, чем после ЭМ-обработки в интервале температур 293—453 К. Так, если значения электросопротивлений образцов исходной золы и золы после ЭМ-обработки приблизительно близки по значениям и меняются в диапазоне $\sim 10^7 - 10^5$ Ом, то у золы после ЭР-обработки значение электросо-

Таблица 4. Зависимость электросопротивления (R), электроемкости (C) и диэлектрической проницаемости (ε) от температуры (зола после \Im M-обработки)

		• • •	•		
<i>T</i> , K	С, нФ	<i>R</i> , Ом	ε	lgε	lg <i>R</i>
293	0.02351	8101000	203	2.31	6.91
303	0.02941	7544000	254	2.40	6.88
313	0.05031	5921000	435	2.64	6.77
323	0.1625	3319000	1403	3.15	6.52
333	0.57702	1714000	4983	3.70	6.23
343	1.5247	1004000	13168	4.12	6.00
353	3.2869	644000	28387	4.45	5.81
363	6.2322	436100	53824	4.73	5.64
373	8.0045	378900	69131	4.84	5.58
383	7.3765	391100	63707	4.80	5.59
393	4.1945	560700	36226	4.56	5.75
403	0.92745	1406000	8010	3.90	6.15
413	0.09694	4829 000	837	2.92	6.68
423	0.01509	9031000	130	2.12	6.96
433	0.00777	6522000	67	1.83	6.81
443	0.00687	4002000	59	1.77	6.60
453	0.00664	3022000	57	1.76	6.48
463	0.00667	2662000	58	1.76	6.43
473	0.00687	2712000	59	1.77	6.43
483	0.00701	2915000	61	1.78	6.46

Таблица 5. Зависимость электросопротивления (R), электроемкости (C) и диэлектрической проницаемости (ε) от температуры (зола после $\Im P$ -обработки)

- (, · · · · · · · · · · · · · · · · · · ·	J1 (******		1	,
<i>T</i> , K	С, нФ	<i>R</i> , Ом	ε	lgε	lg <i>R</i>
293	16.121	172 500	150832	5.18	5.24
303	20.994	145600	196424	5.29	5.16
313	30.415	114800	284569	5.45	5.06
323	50.005	83670	467858	5.67	4.92
333	85.139	57930	796579	5.90	4.76
343	127.05	42300	1188708	6.08	4.63
353	187.59	30 470	1755133	6.24	4.48
363	261.57	22340	2447306	6.39	4.35
373	411.63	14490	3851301	6.59	4.16
383	530.99	11550	4968059	6.70	4.06
393	719.95	8862	6736011	6.83	3.95
403	475.34	12400	4447386	6.65	4.09
413	213.02	23930	1993062	6.30	4.38
423	86.808	56050	812195	5.91	4.75
433	27.285	150700	255284	5.41	5.18
443	7.4046	374000	69279	4.84	5.57
453	0.20811	2755000	1947	3.29	6.44
463	0.05548	5189000	519	2.72	6.72
473	0.01396	7377000	131	2.12	6.87
483	0.00965	6093000	90	1.96	6.78

противления значительно меньше $\sim 10^5 - 10^4$ Ом. Электроемкость золы после ЭР-обработки изменяется в пределах 16-700 нФ, что существенно больше, чем в исходной золе (0-115 нФ) и золе после ЭМ-обработки (0-8 нФ). Образец после ЭР-обработки также отличается большим значением диэлектрической проницаемости, достигающим при температуре перехода от полупроводниковой в металлическую проводимость (393 K) максимального значения $\approx 6.7 \cdot 10^6$, в отличие от образцов исходной золы и золы после ЭМ-обработки (до $\sim 10^6$). Однако, нагревание с 453 до 483 K приводит к фактически сопоставимым значениям электрофизических параметров для всех исследуемых образцов.

Расчет ширины запрещенной зоны (ΔE) исследуемых веществ определяли по формуле: $\Delta E = (2kT_1T_2)/(0.43(T_2-T_1))(\log R_1 - \log R_2)$ (где k- постоянная Больцмана, равная $8.6173303 \cdot 10^{-5}$ эВ · K⁻¹; R_1 — электросопротивление при T_1 ; R_2 — электросопротивление при T_2). Расчеты проводили исходя из параметров, приведенных в табл. 6.

Результаты расчета ширины запрещенной зоны (ΔE) составляют:

для исходной золы: 1-я зона $\Delta E \approx 0.84$ эВ, 2-я зона $\Delta E \approx 0.35$ эВ;

для золы после ЭМ-обработки: 1-я зона $\Delta E \approx 0.73$ эВ, 2-я зона $\Delta E \approx 0.85$ эВ;

для золы после ЭР-обработки: $\Delta E \approx 0.59$ эВ.

Полученные значения ширины запрещенной зоны ($\Delta E = 0.3 - 0.8$ эВ) показывают, что фактически все исследуемые образцы золы являются узкозонными полупроводниками.

Таким образом, были исследованы химический состав и температурные зависимости электрофизических характеристик золы угля разреза "Богатырь" в исходном виде, после ЭМ- и ЭР-обработок. Определены температурные интервалы для исследуемых образцов, в которых полупроводниковая проводимость переходит в металлическую, и наоборот. Установлено, что ЭР-обработка угольной золы оказывает существенное влияние на электрофизические характеристики золы угля, что характеризуется повышением проводимости и электроемкости. Такое влияние ЭР-обработки, по-видимому, связано с тем, что во время данного процесса происходит одновременное влияние на сложный механизм всех действующих факторов электрогидравлического эффекта, что приводит к разрыву сорбционных и периферических химических связей и, как следствие, к образованию множества заряженных и реакционных частиц, а также новых соединений.

Результаты проведенного исследования показали эффективность использования электрофизического воздействия на золу угля и возможность его практического использования в про-

Зола	1-й интервал полупроводниковой проводимости				2-й интервал полупроводниковой проводимости			
	<i>T</i> ₁ , K	<i>T</i> ₂ , K	<i>R</i> ₁ , Ом	<i>R</i> ₂ , Ом	<i>T</i> ₁ , K	T_2 , K	<i>R</i> ₁ , Ом	<i>R</i> ₂ , Ом
Исходная	293	403	6.79	4.84	453	483	6.84	6.72
После ЭМ-обработки	293	373	6.91	5.58	423	473	6.96	6.43
После ЭР-обработки	293	393	5.24	3.95	_	_	_	_

Таблица 6. Исходные данные для расчета ширины запрещенной зоны (ΔE)

цессе подготовки угольной золы с целью ее дальнейшей термохимической переработки с более полным выщелачиванием ценных компонентов (редких металлов, кремнезема, глинозема) и/или возможностью проведения процесса при более низких значениях технологических параметров (температура, концентрация реагентов, время выдержки растворов и т.д.), по сравнению с золой без такой предварительной обработки. Как показал проведенный анализ, зола угля после ЭР-обработки может применяться в качестве емкостного материала при производстве конденсаторов и полупроводников.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена в рамках научно-технической программы № ИРН BR05236359 "Научно-технологическое обеспечение переработки углей и производство продуктов углехимии высокого передела", финансируемой Комитетом науки МОН РК.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пашков Г.Л., Сайкова С.В., Кузьмин В.И., Пантелеева М.В., Кокорина А.Н., Линок Е.В.* // Журнал Сибирского федерального университета. 2012. Т. 5. № 5. С. 520.
- 2. *Пашков Г.Л.* Соросовский образовательный журнал. 2001. Т. 7. № 11. С. 67.
- 3. *Dhadse S., Kumari P., Bhagia L.J.* // J. Sci. Ind. Res. 2008. V. 67 (1). P. 11.
- 4. Prafulla Kumar Sahoo, Kangjoo Kim, M.A. Powell, Sk Md Equeenuddin // Int. J. Coal Sci. Technol. 2016. V. 3 (3). P. 267. https://doi.org/10.1007/s40789-016-0141-2
- 5. *Yao Z.T., Ji X.S., Sarker P.K., Tang J.H., Ge L.Q., Xia M.S., Xi Y.Q.* // Earth Sci Rev. 2015. V. 141. P. 105. https://doi.org/10.1016/j.earscirev.2014.11.016
- 6. *Blissett R.S.*, *Rowson N.A.* // Fuel. V. 2012. 97. P. 1. https://doi.org/10.1016/j.fuel.2012.03.024
- Izquierdo M., Querol X. // Int. J. Coal Geol. 2012. V. 94.
 P 54
- 8. Ниязбекова Р.К., Исахмет У.С., Мусина Ж.С., Гладких Л.Н. // Матер. IV Междунар. научно-практ. конф. "Проблемы строительного производства и управления недвижимостью". Кемерово, КузГТУ имени Т. Ф. Горбачева. 2016. С. 50.

- http://science.kuzstu.ru/wp-content/Events/Conference/Other/2016/si nedv/psp.pdf
- 9. *Хусаинов А.Т., Искаков А.Ж., Тарчуков В.А., Ай-шук Е.Ж.* // Вестн. науки Казахского агротехнического ун-та имени С. Сейфуллина. 2018. № 2 (97). С. 94.
- Xiang-Yang C., Xin-zhe L., Qui-li Z., Hong-zhou M.A., Hin Z. // Trans. Nonferr. Met. Soc. China. 2010. V. 20. P. 123. https://doi.org/10.1016/S1003-6326(09)60108-4
- Arroyo F., Font O., Chimenos J.M., Pereira C.F., Querol X., Coca P. // Fuel Process Technol. 2014.
 V. 124. P. 222. https://doi.org/10.1016/j.fuproc.2014.03.004
- 12. Hernandez-Exposito A., Chimenos J.M., Fernandez A.I., Font O., Querol X., Coca P., Garcia P.F. // Chem. Engng J. 2006. V. 118. P. 69. https://doi.org/10.1016/j.cej.2006.01.012
- Torralvo F.A., Fernández-pereira C. // Miner Eng. 2011.
 V. 24. P. 35.
 https://doi.org/10.1016/j.mineng.2010.09.004
- 14. *Адеева Л.Н., Борбат В.Ф.* // Вестн. Омского ун-та. 2009. № 2. С. 141.
- Борбат В.Ф., Михайлов Ю.Л., Адеева Л.Н., Голованова О.А. // Химия и химическая технология. 2000.
 № 1. С. 102.
- 16. *Liu K., Xue J.L., Zhu J.* // Light Metals, Suarez CE. (Ed.). John Wiley & Sons Inc. 2012. V. 6. P. 201.
- Bai G.H., Qiao Y.H., Shen B., Chen S.L. // Fuel Process. Technol. 2011. V. 92. P. 1213.
- 18. Menshov P.V., Khlupin Y.V., Nalesnik O.I., Makarovskikh A.V. // Procedia Chemistry. 2014. V. 10. P. 184. https://doi.org/10.1016/j.proche.2014.10.032
- 19. *Шабаров А.Н., Николаева Н.В.* Комплексное исследование отходов переработки теплоэлектростанций // Зап. Горного ин-та. 2016. Т. 220. С. 607. https://doi.org/10.18454/PMI.2016.4.607
- 20. Алексеев А.Д., Константинова Т.Е., Кириллов А.К., Дорошкевич А.С., Сапрыкина А.В. // Физико-технические проблемы горного производства. 2010. № 13. С. 22.
- 21. Василенко Т.А., Кириллов А.К., Дорошкевич А.С., Сапрыкина А.В. // Физико-технические проблемы горного производства 2013. № 16. С. 7.
- Podder J., Majumder S. // Thermochimica Acta. 2001.
 V. 372. P. 113. .
 https://doi.org/10.1016/s0040-6031(01)00442-7

- 23. Ermagambet B.T., Kasenov B.K., Nurgaliyev N.U., Nabiev M.A., Kasenova Zh.M., Kazankapova M.K., Zikirina A.M. // Solid Fuel Chem. 2018. V. 52. № 2. P. 138—141. [XTT. 2018. № 1. C. 68]. https://doi.org/10.3103/S0361521918020039
- 24. *Юткин Л.А.* Электрогидравличекий эффект и его применение в промышленности. Л.: Машиностроение, 1986. 253 с.
- 25. *Гаврилов Г.Н., Егоров А.Л., Коровин С.К.* Электроимпульсная технология в горном деле и строительстве. М.: Недра, 1991. 127 с.
- 26. *Юткин Л.А.* Электрогидравличекий эффект и его применение в промышленности. Л.: Машиностроение, 1986. 253 с.
- 27. Tauanov Z., Abylgazina L., Spitas C., Itskos G., Inglezakis V. // International Conference on Materials Sciences and Nanomaterials. IOP Conf. Series: Materials Science and Engineering, 2017. V. 230. P. 43.
- 28. *Герк С.А., Смолий В.А.* // Известия вузов. Северо-Кавказский регион. Сер. Техн. науки. 2013. № 4. С. 76.
- 29. Khairul Nizar Ismail, Kamarudin Hussin, Mohd Sobri Idris. // Journal of Nuclear and Related Technology. 2007. V. 4. P. 47.
- 30. Khairul Nizar I., Mustafa Al Bakri A.M., Rafiza A.R., Kamarudin H., Alida A., Zarina Y. // Key Engineering Materials. 2014. V. 594–595. P. 985.