УЛК 553.541:665.6

ИССЛЕДОВАНИЕ СМОЛЫ ПОЛУКОКСОВАНИЯ ВЫСОКОСЕРНИСТЫХ ГОРЮЧИХ СЛАНЦЕВ ВОЛЖСКОГО БАССЕЙНА

© 2019 г. А. Л. Лапидус^{1,2,*}, Н. Ю. Бейлина^{3,**}, Д. С. Худяков^{1,***}, А. М. Козлов^{1,****}

 1 ФГАОУ ВО РГУ нефти и газа (НИУ) имени И.М. Губкина, 119991 Москва, Россия 2 ФГБУН Институт органической химии имени Н. Д. Зелинского РАН, 119991 Москва, Россия

³ АО Научно-исследовательский институт конструкционных материалов на основе графита "НИИграфит",

111524 Москва, Россия

*e-mail: albert@ioc.ac.ru

**e-mail: beilinan@mail.ru

***e-mail: ltybc672@rambler.ru

****e-mail: kozlov.a@gubkin.ru

Поступила в редакцию 10.12.2018 г. После доработки 10.12.2018 г.

Принята к публикации 06.02.2019 г.

Изучена сланцевая смола полукоксования горючего сланца Перелюбского месторождения. Определены характеристики смолы: плотность, фракционный и элементный состав, содержание свинца и марганца, а также проведен детальный анализ ее легких бензиновых фракций.

Ключевые слова: горючие сланцы, смола, полукоксование, пиролиз, тиофен

DOI: 10.1134/S002311771903006X

Учитывая ограниченность запасов нефти, а также сравнительно высокие расходы по ее добыче, в последнее время остро стоит проблема поиска альтернативных источников углеводородного сырья и создания комплексных технологий по его переработке. Дешевым сырьем могут быть горючие сланцы, разведанные запасы которых в России и за рубежом очень велики [1].

Горючие сланцы характеризуются высоким (близким к нефти) атомным соотношением H/C в органической массе, а также уникальным составом органического вещества [2].

В качестве объекта исследования был выбран сланец Перелюбского месторождения крупнейшего в России Волжского бассейна [3].

В процессе термического разложения горючих сланцев при температуре 500—550°С, достигается наиболее высокий выход смолы из переработанного сланца.

Процесс термического разложения горючего сланца Перелюбского месторождения без доступа воздуха осуществляли в реакторе производительностью 8 кг сухого измельченного горючего сланца в 1 ч при температуре 560°С, скорости продвижения горючего сланца 23.5 см/мин в течение 7 мин.

Полученная сланцевая смола была разделена на две части простым отстаиванием. Верхняя (бо-

лее легкая) часть смолы была разделена на фракции в аппарате ректификации нефти АРН-2. Характеристики легкой части смолы приведены в табл. 1. Из смолы от начала кипения до 410°C с интервалом в 20°C выделены 17 фракций, остаток после ректификации в сумме с потерями составил 29.3 мас. %.

В табл. 2 приведены экспериментальные данные элементного анализа сланцевой смолы и ее фракций. Наличие высокого содержания серы в низкокипящих фракциях (11.2—11.7 мас. %), скорее всего, объясняется высоким содержанием в них тиофена и его гомологов. Содержание серы в образцах, выделенных после 140°С, меньше, чем в бензиновой фракции, и неравномерно меняется в широком диапазоне — от 6.1 до 9.5 мас. %, в зависимости от температуры выкипания фракции.

Пирогенетический синтез сероводорода и сероорганических соединений при термической переработке сланцев Поволжья обусловлен совокупностью взаимосвязанных процессов. Вероятно, значительная часть тиофена и его гомологов образуется вследствие деструктивных превращений керогена, включающего алкилзамещенные тиофеновые кольца и более сложные циклоалкилзамещенные структуры. Возможен также пирогенетический синтез тиофена и простых метилпроизводных из промежуточных продуктов термиче-

Таблица 1. Характеристики легкой сланцевой смолы

Показатель	Значение показателя
Плотность, $\Gamma/\text{см}^3$	1.036
Фракционный состав, мас. %:	
н.к.—100°С	2.2
100−120°C	1.6
120-140°C	2.4
140-160°C	3.4
160-180°C	4.7
180-200°C	6.3
200-220°C	0.8
220-240°C	1.5
240-260°C	2.5
260-280°C	1.8
280-300°C	4.6
300-320°C	5.7
320-340°C	5.0
340-360°C	7.3
360–380°C	6.3
380–400°C	7.7
400-410°C	6.9
Выше 410°C + потери	29.3

ской деструкции керогена и превращения некоторых соединений минеральной части сланца [4]. Сероорганические (тиофеновые) соединения могут быть выделены из смолы методом экстракции, используемым в нефтехимии, и переработаны в ценные химические продукты — гербициды, полимеры, присадки к топливам, адсорбенты, антиоксиданты, флотореагенты (тем более, что указанные продукты в настоящее время в России практически не производятся).

Нефть богата водородом, массовое отношение углерода к водороду в органической массе нефти достигает 6-7, чего нельзя сказать об остальных видах твердых горючих ископаемых, где это соотношение превышает значение 10-15. Смола, полученная в результате переработки угля, также отличается по этому показателю. Однако смолы сланцепереработки имеют более близкое к нефти указанное выше отношение, что делает их наиболее вероятным заменителем нефти в будущем. В ходе элементного анализа было установлено отношение углерода к водороду в органической массе фракций исследуемой сланцевой смолы, которое составило 7.6-10.0 (7.6-8.4 для легких фракций, выкипающих до 200°C; 8.0-8.7 для средних фракций, выкипающих в интервале 200- 300° С и 8.7-10.0 для тяжелых фракций, выкипающих выше 300°С). Отношение углерода к водороду для исходной сланцевой смолы составило

Таблица 2. Элементный состав фракций смолы, мас. %

Фракция	N	С	Н	S
Н.к.−100°С	0.0	61.8	8.2	11.5
100-120°C	0.0	64.4	8.1	11.7
120-140°C	0.1	67.5	8.5	11.2
140-160°C	0.1	67.3	8.9	9.5
160-180°C	0.0	64.6	7.7	7.1
180-200°C	0.1	65.6	8.0	6.1
200-220°C	0.1	68.0	8.2	7.5
220-240°C	0.2	63.1	7.9	7.8
240-260°C	0.1	68.2	8.0	7.6
260-280°C	0.2	73.1	8.8	8.6
280-300°C	0.4	73.2	8.4	7.8
300-320°C	0.5	75.1	8.6	7.6
320-340°C	0.6	76.2	8.7	7.2
340-360°C	0.7	76.3	8.6	6.7
360-380°C	0.7	76.9	8.4	6.8
380-400°C	0.7	76.4	8.3	6.6
400-410°C	0.7	76.7	8.4	6.9
Выше 410°C + потери	1.2	78.5	7.9	6.9
Сланцевая смола	0.7	74.2	8.4	8.0

Примечание. CHNS-анализ проведен с использованием анализатора элементного состава EA-3000 (производитель *Euro Vector*).

8.8. Из этого следует, что легкие дистилляты сланцевой смолы могут рассматриваться как альтернатива традиционным видам моторного топлива. Однако в случае использования поволжских сланцев в качестве сырья для этого топлива необходимо обессеривание (например, гидроочистка).

Зависимость массового отношения углерода к водороду от фракционного состава сланцевой нефти представлена на рисунке 1.

Рис. 1. Зависимость массового отношения углерода к водороду в их органической массе от фракционного состава сланцевой нефти.

Бензиновая фракция	Молекулярная масса, г/моль	$ ho_4^{20}$	$ ho_{15}^{15}$	Давление насыщенных паров, кПа
Фракция 1 (н.к100°C)	108.029	0.748	0.752	12.711
Фракция 2 (100-120°C)	117.078	0.757	0.761	6.955
Фракция 3 (120—140°C)	125.411	0.769	0.773	2.307

Таблица 4. Содержание классов веществ в бензиновых фракциях, мас. %

Класс веществ	Фракция 1 (н.к100°C)	Фракция 2 (100-120°C)	Фракция 3 (120—140°C)
н-Парафины	3.4	2.7	2.5
Изо-парафины	18.9	27.9	35.3
Ароматические углеводороды	17. 6	18.5	22.6
Нафтены	7. 9	10.5	12.5
Олефины	41.5	27.6	18.5
Оксигенаты	4.8	0.3	0.1
Неидентифицированные	5.9	12.5	8.5
ИТОГО	100	100	100

Примечание. Детальный углеводородный анализ легких бензиновых фракций смолы проведен методом капиллярной газовой хроматографии в соответствии с ГОСТ 32507-2013 (метод Б) на газовом хроматографе "XPOMATЭK-Кристалл 5000" (детектор ПИД; кварцевая капиллярная колонка BP1-PONA $100 \text{ м} \times 0.25 \text{ мм}$).

Проведен детальный хроматографический анализ бензиновых фракций, выкипающих до 140°С. Значения молекулярной массы фракций, относительной плотности и давления насыщенных паров приведены в табл. 3. Полученные значения содержания отдельных классов органических веществ в бензиновых фракциях (групповой состав) представлены в табл. 4.

Бензиновые фракции нефти состоят из 6-28 мас. % ароматических углеводородов, 21-75 мас. % нафтенов, 1—32 мас. % *н*-парафинов и 18-40 мас. % изо-парафинов [5]. Исследованные фракции сланцевой смолы содержат 17.6-22.6 мас. % ароматических углеводородов, 7.9-12.5 мас. % нафтенов, 2.5—3.4 мас. % н-парафинов и 18.9-35.3 мас. % изо-парафинов. При исследовании более широкой суммарной бензиновой фракции сланцевой нефти эти значения могут несколько отличаться от полученных. При использовании легких фракций сланцевой нефти в качестве компонентов моторного топлива необходима их дополнительная переработка. Исследованные бензиновые фракции также могут быть использованы для производства продуктов, аналогичных нефтяным растворителям (преимущественно относящимся к смешанным) [6].

Содержание олефиновых углеводородов во фракции 1 (н.к.–100°С) составило 41.5 мас. %, а

во фракции 2 ($100-120^{\circ}$ С) и фракции 3 ($120-140^{\circ}$ С) – 27.6 и 18.5 мас. % соответственно. Наибольшее содержание оксигенатов получено для фракции 1 (н.к.– 100° С) – 4.8 мас. %. В каждой исследованной бензиновой фракции смолы содержание ароматических углеводородов не превышает 20 об. %.

Методом атомно-абсорбционной спектроскопии (AAC SavantAA, GBC Scientific Equipment) в сланцевой смоле и ее фракциях определено содержание свинца в соответствии с ГОСТ 32350— 2013 и марганца в соответствии с ГОСТ 33158— 2014.

Из-за высокой вязкости смолы и ее фракций исследуемые пробы были разбавлены в 12 раз: на 1 мл пробы приходилось 10 мл 4-метил-2-пентанона и 1 мл толуола, который был добавлен, так как не все фракции достаточно хорошо растворились в 4-метил-2-пентаноне. В результате проведенного анализа было установлено, что содержание свинца в сланцевой смоле и ее фракциях не превышает 1 мг/л.

Содержание марганца в исследуемых продуктах приведено в табл. 5. Во всех пробах, кроме 14 и 18, содержание марганца не превышает 0.02 мг/л, следовательно, только во фракции 340—360°С (содержание марганца 3.12 мг/л) и в сланцевой

Таблица 5. Содержание Mn в сланцевой смоле и ее фракциях, мг/л

approximation, sar/ri			
Проба	Содержание в разбавленной пробе	Содержание в пробе	
1	0.00	0.00	
2	0.00	0.00	
3	0.01	0.12	
4	0.01	0.12	
5	0.01	0.12	
6	0.01	0.12	
7	0.02	0.24	
8	0.00	0.00	
9	0.00	0.00	
10	0.00	0.00	
11	0.00	0.00	
12	0.02	0.24	
13	0.02	0.24	
14	0.26	3.12	
15	0.00	0.00	
16	0.00	0.00	
17	0.00	0.00	
18	0.04	0.48	

Примечание. Пробы 1—17 соответствуют фракциям сланцевой смолы н.к.−100°C − 400–410°C соответственно; проба 18 − сланцевая смола.

смоле (содержание марганца 0.48 мг/л) содержание марганца более 0.24 мг/л.

Таким образом, в процессе термического разложения при 560°C высокосернистых горючих сланцев Перелюбского месторождения получена сланцевая смола, аналогичная нефти, пригодная для производства моторных топлив и ряда востребованных химических продуктов.

БЛАГОДАРНОСТИ

Авторы статьи выражают благодарность В.Н. Илясову за предоставленные образцы сланневой смолы.

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследования проведены при финансовой поддержке Минобрнауки России в рамках Задания № 10.6569.2017/БЧ на выполнение научно-исследовательской работы (базовая часть государственного задания в сфере научной деятельности).

СПИСОК ЛИТЕРАТУРЫ

- 1. Стрижакова Ю.А., Усова Т.В., Козлов А.М., Лапидус А.Л., Мовсумзаде Э.М. // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2010. № 8. С. 3.
- 2. Лапидус А.Л., Шпирт М.Я., Малиновская Ю.А., Мовсумзаде Э.М., Худяков Д.С. // XTT. 2017. № 6. С. 15. DOI: 10.7868/S0023117717060020 [Solid Fuel Chemistry, 2017, vol. 51, no. 6, p. 349. DOI: 10.3103/S0361521917060040]
- 3. Лапидус А.Л., Бейлина Н.Ю., Худяков Д.С., Жагфаров Ф.Г., Илясов В.Н. // ХТТ. 2018. № 2. С. 6. DOI: 10.7868/S0023117718020020 [Solid Fuel Chemistry, 2018, vol. 52, no. 2, p. 62. DOI: 10.3103/S0361521918020088]
- 4. *Каширский В.Г.*, *Атоян Э.М.* // Сб. матер. Междунар. науч. конф. "Горючие сланцы альтернативный источник топлива и сырья. Фундаментальные исследования. Опыт и перспективы". Саратов: СГТУ, 2007. С. 86.
- 5. *Магарил Р.З.* Теоретические основы химических процессов переработки нефти: Учебное пособие для вузов. Л.: Химия, 1985. С. 10.
- 6. ГОСТ 26377—84. Растворители нефтяные. Обозначение.