УДК 538.955 : 537.635 : 547.912

ЗАВИСИМОСТЬ РЕАКЦИОННОЙ СПОСОБНОСТИ ОТ СТРУКТУРНЫХ И ФИЗИКО-ХИМИЧЕСКИХ ХАРАКТЕРИСТИК СОСТАВЛЯЮЩИХ ТЯЖЕЛЫХ ВЫСОКОВЯЗКИХ НЕФТЕЙ

© 2019 г. А. Л. Лапидус¹, А. М. Гюльмалиев^{2,*}, О. Ю. Полетаева^{3,**}, Г. Ю. Колчина^{3,***}, С. Н. Гусейнова^{3,****}, Э. М. Мовсумзаде^{3,*****}

¹ ФГБУН Институт органической химии имени Н.Д. Зелинского РАН, 119991 Москва, Россия ² ФГБУН Институт нефтехимического синтеза имени А.В. Топчиева РАН, 119991 Москва, Россия ³ ФГБОУ ВО Уфимский государственный нефтяной технический университет, 450062 Уфа, Россия

*e-mail: gyulmaliev@ips.ac.ru, **e-mail: ol612@mail.ru, ***e-mail: kolchina.gyu@mail.ru, ****e-mail: guseynovas@yandex.ru, ****e-mail: eldarmm@yahoo.com Поступила в редакцию 07.03.2018 г. После доработки 15.08.2018 г. Принята к публикации 24.10.2018 г.

Проведен квантово-химический анализ растворимости высокомолекулярных компонентов тяжелой нефти, содержащей ароматические и парафиновые фрагменты, а также гетероатомы N, O и S. Получены результаты расчетов теплот образования ΔH_{298} модельных соединений и их комплексов по методу PM3, калиброванному по тестовым молекулам. Показано, что димеры макромолекул, содержащие алкильные группы, а также гетероатомы, более устойчивы и лучше сольватируются в гептане, чем в бензоле. Между свободными энергиями сольватации модельных соединений в бензоле и гептане имеется линейная зависимость. Согласно термодинамическим расчетам равновесного состава реакции, между донором и акцептором водорода возможно образование новых сложных структур.

Ключевые слова: смолы, асфальтены, модельные соединения, квантово-химическое моделирование, энергия образования, растворимость, сольватация, структурные изменения нефти **DOI:** 10.1134/S0023117719020087

В связи с истощением запасов нефти в настоящее время ее переработка в основном направлена на разработку новых технологических процессов получения синтетической нефти с помощью гидрогенизационной переработки угля, сланцев и биомассы, а также гидроконверсии тяжелых нефтей и нефтяных остатков. Вследствие высокой плотности и высокодисперсности тяжелых нефтей при их транспортировке и переработке для снижения вязкости используют смесь двух или нескольких нефтей различного состава. Нефть является многокомпонентной, высокодисперсной и термодинамически нестабильной системой с отличающимися локальными плотностями. Изза неустойчивости структур и свойств дисперсных систем в условиях транспортировки и переработки фазовый состав смеси нефтей может претерпевать сушественные изменения.

Компоненты дисперсной системы отличаются по элементному составу, плотности и надмолекулярными образованиями. В такой системе за счет энергий межмолекулярных взаимодействий формируется фазовый состав, приводящий к межфазным взаимодействиям, - адгезии. В результате нескомпенсированности поверхностных энерв конденсированных фазах молекулы, гий находящиеся на поверхности фаз, обладают большей энергией, чем молекулы в объеме. Процессы идут самопроизвольно - разрушаются существующие и образовываются новые фазы до тех пор, пока их химические потенциалы не станут равны. Следовательно, неустойчивость состава нефти обусловлена самопроизвольно идущими процессами: растворением и осаждением макрокомпонентов.

Асфальтены и смолы — высокомолекулярные компоненты тяжелой нефти с полиароматической структурой и температурой кипения выше 500°С [1–4]. При наличии в системе растворителей (бензола, толуола и т.д.) асфальтены с плот-

Растворитель	Т _{кип} , К [9]	$\Delta H_{\scriptscriptstyle V_{\scriptscriptstyle i}}$ ккал/моль [9]	Нерастворимый остаток, %		
н-Пентан	309.22	6.16	33.5		
Изооктан	390.8	8.08	32.2		
2,2,3-Триметилбутан	354.02	6.918	27.2		
н-Гептан	371.58	7.575	25.7		
3-Метилгептан	392.07	8.1	23.6		
н-Нонан	423.96	9.03	15.1		
1,3-Диметилциклопентан	364.87	7.361	0		
Метилциклогексан	374.08	7.58	0		
Этилциклогексан	404.93	8.29	0		
Циклогексан	353.88	7.19	0		
Бензол	353.25	7.353	0		

Таблица 1. Свойства некоторых растворителей и растворимость в них асфальтена

ностью около 1.1 г/см³ растворяются, а при наличии осадителей (гексана, гептана и т.д.) — осаждаются. Следовательно, в нефти различные соединения могут выступать как в качестве растворителей, так и осадителей.

Углеводородный состав нефти в основном состоит из трех классов соединений: парафиновых, нафтеновых и ароматических [2]. Стабильность нефти зависит от соотношения этих трех структурных составляющих. Нефть с большим содержанием ароматических структур более стабильна из-за их низкой реакционной способности. Асфальтены состоят из конденсированных ароматических колец и алкильных заместителей с длиной цепи до C_{30} . Гетероатомы N, O, S находятся в определенных положениях: азот связан в виде пиррола и пиридина, сера — в виде бензтиофено-

Рис. 1. Зависимости нерастворимых остатков асфальтенов от физико-химических показателей растворителей: температуры кипения и теплоты испарения.

вых колец, меркаптанов, тиоэфиров и кислород в виде кетонов, фенолов, карбоновых кислот [5].

В настоящее время предлагаются многочисленные структурные модели асфальтенов и смол и на их основе — методы описания свойств [1], но сложность структуры и простота применяемых расчетных методов не позволяют на количественном уровне оценить их свойства. По этой же причине отсутствуют достоверные экспериментальные данные, что интерпретация их структурных особенностей приводит к малоубедительным, а иногда к противоречивым выводам.

Основными факторами, которые могут привести к структурным изменениям при мягких условиях смешивания при транспортировке и переработке нефти, являются различие в элементных и фракционных составах нефтей, а также наличие соединений, выступающих в качестве растворителей и осадителей.

В работе был проведен теоретический анализ растворимости высокомолекулярных компонентов нефти при их сольватации в гептане и бензоле, которые присутствуют в бензиновой фракции.

Рассмотрим эмпирические зависимости растворимости асфальтенов от физико-химических параметров растворителей. В табл. 1 приведены экспериментальные данные по нерастворимым остаткам асфальтенов в различных растворителях [1]. На рис. 1 представлены зависимости нерастворимых остатков от температуры кипения растворителей $T_{\rm кип}$ и их теплоты испарения ΔH_{ν} . Как следует из рис. 1, с ростом температуры кипения растворителя количество нерастворимых остатков линейно уменьшается. Поскольку теплота испарения коррелирует с температурой кипения, то и в случае зависимости нерастворенных остатков от теплоты испарения имеется линейная зависимость. Приведенные примеры показывают, что различие в растворимости компонентов нефти, естественно, является следствием структур-

Рис. 2. Зависимость ΔH_{298} (кор.) от ΔH_{298} (РМЗ) для тестовых молекул.

ных особенностей, как самих компонентов, так и растворителей. Но эта зависимость не простая, например чем больше разветвлен парафиновый углеводород, тем выше его растворяющая способность [6]. Однако, с другой стороны, с ростом разветвленности парафинов температура кипения уменьшается. Следует отметить, что теория растворимости органических макромолекул пока мало изучена. Различные подходы к расчету растворимости изложены в работе [7]. В работе [8] предложен метод выбора структурных параметров органических молекул произвольной структуры, которые могут быть использованы для полуэмпирического описания их растворимости в различных растворителях.

Сольватация является следствием межмолекулярных взаимодействий в растворителях и растворенных веществах. Обозначим молекулу растворителя *P*, растворенного вещества *B* и реакцию сольватацию запишем в следующем виде:

$$(P - P) + (B - B) = 2(P - B).$$
(1)

По формуле (1) можно вычислить энергию сольватации, если принять энергию взаимодействия двух молекул растворителя E(P-P), двух молекул растворенного вещества E(B-B) и молекулы растворителя с молекулой растворенного вещества E(P-B). Тогда

$$\Delta E = 2E(P - B) - [E(P - P) + E(B - B)].$$
 (2)

Учитывая, что энергии взаимодействия величины отрицательные, реакция сольватации возможна при $\Delta E < 0$.

Энергия межмолекулярных взаимодействий (ЭМВ) соединений зависит от их состава, строения и молекулярной массы. Следовательно, у различных классов соединений ЭМВ будут зависеть только от их строения. Рассмотрим этот вопрос более подробно на модельных соединениях. В качестве их энергетических характеристик можно использовать теплоты образования в стандартных условиях ΔH_{298} . Для расчета теплоты образования модельных соединений использовали квантово-химический метод РМЗ [10]. Для повышения точности расчета энергетических характеристик соединений провели калибровку метода по линейному уравнению (3), используя экспериментальные значения теплоты образования тестовых молекул

$$\Delta H_{298}(\text{kop.}) = n[\Delta H_{298}(\text{PM3})] + m.$$
(3)

Коэффициенты *n* и *m* определяли корреляцией экспериментальных значений теплоты образования ΔH_{298} (эксп.) с расчетными данными ΔH_{298} (PM3) молекул (ккал/моль): бензола (19.82), толуола (11.95), нафталина (36.08) и 1-метилнафталина (27.93) [9]. Зависимость представлена на рис. 2.

Результаты расчетов теплоты образования при стандартных условиях тестовых молекул приведены в табл. 2, из которой следует, что корреляционное уравнение (3) удовлетворительно воспроизводит литературные данные по ΔH_{298} [9]. Тестированный метод применяли для расчета энергетических характеристик ряда соединений и их комплексов, моделирующих структурные фрагменты макромолекул нефти. В табл. 2 приведены вычисленные по уравнению (3) ΔH_{298} для модельных соединений.

По данным табл. 2, вычисленным по уравнению (3), найдены энтальпии образования молекулярных комплексов (рис. 3):

Пирен + Пирен = Ди-Пирен. $\Delta H_{298} = 1.35 \text{ ккал/моль.}$

Коронен + Коронен = Ди-Коронен. $\Delta H_{298} = 1.73$ ккал/моль.

Ди-Коронен + Ди-Коронен = Тетра-Коронен. $\Delta H_{298} = 4.42$ ккал/моль.

Модель-II + Модель-II = Модель-III. $\Delta H_{298} = -7.07$ ккал/моль.

Модель-IV + Модель-IV = Модель-V. $\Delta H_{298} = -3.08$ ккал/моль.

Приведенные данные показывают, что реакции образования димеров пирена и коронена, а также тетрамера коронена эндотермичны, но реакции образования больших молекул, содержащих ароматические и алкильные группы, а также гетероатомы, экзотермичны.

Квантово-химическое моделирование энергии растворимости асфальтенов в органических растворителях — гептане и бензоле. Взаимосвязь растворимости и сольватации растворителя и растворенного вещества следует из уравнений (1), (2). Энергию сольватации соединений представленных в табл. 2, в гептане и бензоле оценили квантово-химическим методом. При расчете энергии сольватации отдельных классов органических соединений в различных органических средах часто

ЛАПИДУС и др.

	$\Delta H_{298},$ ккал/моль				
Соединение	по уравнению (1) *	по методу РМЗ			
Бензол (C ₆ H ₆)	20.14 (19.82)	23.29			
Толуол (С ₆ Н ₅ СН ₃)	11.62 (11.95)	13.91			
Нафталин (С ₁₀ Н ₈)	35.69 (36.08)	40.42			
1-Метилнафталин (С ₁₀ Н ₇ СН ₃)	28.32 (27.93)	32.30			
Декан (C ₁₀ H ₂₂)	-57.3 (-59.67)	-62.00			
Пирен (C ₁₆ H ₁₀)	56.90	63.77			
Тетрадекан (С ₁₄ Н ₃₀)	-77.13 (-79.38)	-83.84			
Коронен (С ₂₄ Н ₁₂)	77.95	86.96			
Ди-пирен. 2(C ₁₆ H ₁₀)	115.15	127.93			
Ди-коронен. 2(C ₁₀ H ₁₂)	157.63	174.71			
Тетра-коронен. 4(C ₂₄ H ₁₂)	316.22	349.37			
Модель - I (С ₂₈ Н ₃₄)	-2.13	-1.24			
Модель-II (С ₂₇ NH ₃₃)	4.32	5.87			
Модель-III (C ₅₄ N ₂ H ₆₆)	-15.71	-16.19			
Модель-IV ($C_{29}N_2H_{32}SO_3$)	-63.60	-68.93			
Модель-V ($C_{58}N_4H_{64}S_20_6$)	-130.28	-142.37			

Таблица 2. Результаты расчета теплоты образования соединений при стандартных условиях по корреляционному уравнению (3) и методу РМЗ

* В скобках приведены данные из [9].

используют "модель поляризованного континуума" (PCM). В этой модели расчеты выполняются как для вакуума, так и с учетом растворителя [10]. Растворитель представляется как континуум, обладающий определенными значениями диэлектрической проницаемости и поляризуемости. В модели PCM энергия сольватации рассчитывается как сумма трех вкладов:

$$E_{solv} = E_{cav} + E_{el} + E_{disp},\tag{4}$$

где E_{cav} — кавитационная энергия, т.е. энергия образования полости в растворителе, где помещается молекула растворенного соединения; E_{el} энергия электростатического взаимодействия между собственными и наведенными зарядами растворенного соединения и молекулами растворителя; E_{disp} — дисперсионная составляющая энергии взаимодействия, учитывающая ван-дерваальсовское взаимодействие.

В модели PCM молекулярная свободная энергия вычисляется как сумма трех членов:

$$G_{sol} = G_{es} + G_{dr} + G_{cav}, \tag{5}$$

где es — электростатические, dr — дисперсионноотталкивающие вклады в свободную энергию, cav — энергия кавитации (каверны).

Можно показать, что полная свободная энергия сольватации G_{sol} равна сумме электростатического и неэлектростатического вкладов.

Результаты расчетов по методу *HF*/6-31*g*(*d*) представлены в табл. 3, из которой видно, что по величине свободной энергии Гиббса все рассмотренные молекулы лучше сольватируются в гептане, чем в бензоле; энергия кавитации в гептане меньше, чем в бензоле, а дипольный момент в бензоле незначительно больше; дисперсионная энергия в случае гептана больше, чем в бензоле. Следовательно, рассмотренные вещества лучше должны растворяться в гептане, чем в бензоле. С другой стороны, согласно рис. 4, энергия сольватации модельных соединений в бензоле коррелирует с энергией сольватации в гептане. Отметим, что, согласно предложенной в [11] модели строе-

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2019

Рис. 3. Структура модельных соединений: I – $C_{28}H_{34}$, II – $C_{27}NH_{33}$, III – $C_{54}N_2H_{66}$, IV – $C_{29}N_2H_{32}SO_3$, V – $C_{58}N_4H_{64}S_2O_6$.

ния асфальтенов, выпадение их в осадок гептаном объясняется тем, что смолы, которые хорошо растворяются в гептане, выступают в роли поверхностно-активного вещества для асфальтенов. Далее, после растворения смол в гептане, асфальтены выпадают в осадок, что свидетельствует о сложных самопроизвольных процессах в неф-ти [12].

Реакции диспропорционирования водорода. В нефти между гидроароматическими и ароматическими фрагментами возможны реакции передачи водорода от донора к акцептору [12]. На рис. 5

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2019

Рис. 3. Окончание

приведены модельные гидроароматические и ароматические соединения.

Методами химической термодинамики [13] при давлении P = 0.1 МПа вычислена температурная зависимость равновесного числа молей компонентов по схеме:

Тетралин + Антрацен → {Тетралин, Нафталин, Антрацен, Фенантрен. 9,10-Дигидроантрацен, 9,10-Дигидрофенантрен, Водород}.

Результаты расчета представлены на рис. 6, из которого видно, что с ростом температуры равновесная концентрация тетралина и фенантрена

Таблица 3. Параметры сольватации	структур I и II, вычислен	ные по методу <i>HF</i> /6-31 <i>g(d)</i> [10]

	Сольватация							
Соединение	в гептане				в бензоле			
	G_{sol}	G _{cav}	G _{dr}	μ	G_{sol}	G _{cav}	G _{dr}	μ
	ккал/моль			Дебай	ккал/моль			Дебай
Гептан	2.98	18.39	-17.12	0.136	5.98	21.84	-18.88	0.137
Бензол	-1.28	10.55	-12.02	0.001	0.29	12.62	-13.33	0.001
Коронен	-2.77	27.19	-30.14	0.001	1.11	32.65	-33.35	0.001
Модель I – (С ₂₈ Н ₃₄)	4.25	44.99	-42.47	0.573	10.77	53.55	-47.23	0.584
Модель II-(C ₂₇ NH ₃₃)	3.15	44.40	-42.40	3.344	9.24	52.95	-46.99	3.469
Модель IV-(C ₂₉ N ₂ H ₃₂ SO ₃)	-0.34	51.05	-49.73	7.743	6.55	61.05	-55.37	7.914
Дигексил	4.06	24.08	-21.97	0.0	7.60	28.58	-24.48	0.0

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2019

Рис. 4. Зависимость энергии сольватации модельных соединений в гептане от энергии сольватации их в бензоле.

Рис. 5. Ароматические молекулы и их гидропроизводные: I – тетралин (C₁₀H₁₂), 2 – нафталин (C₁₀H₈), 3 – антрацен (C₁₄H₁₀), 4 – фенантрен (C₁₄H₁₀), 5 – 9,10-дигидроантрацен (C₁₄H₁₂), 6 – 9,10-дигидрофенантрен (C₁₄H₁₂), 7 – водород.

Рис. 6. Температурная зависимость равновесного числа молей компонентов реакции (2).

увеличивается, а 9,10-дигидрофенантрена – падает. Видно, что в присутствии водородо-донорных и водородо-акцепторных фрагментов возможно

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 2 2019

протекание сложных реакций передачи водорода от донора к акцептору.

Таким образом, результаты квантово-химических расчетов энергии межмолекулярных взаимодействий модельных соединений, состоящих из парафиновых и ароматических фрагментов, показывают, что димеры макромолекул, содержащие алкильные группы, более устойчивы и лучше сольватируются в гептане, чем в бензоле. при этом растворимости в бензоле и гептане имеют линейную зависимость. Согласно термодинамическим расчетам равновесного состава реакции, между донором и акцептором водорода возможны образования новых структур. Сделан вывод о том, что смешивание нефтей при транспортировке может привести к реакциям сольватации, растворения и диспропорционирования водорода, а также к существенным структурным изменениям.

СПИСОК ЛИТЕРАТУРЫ

- Болышая энциклопедия нефти и газа. http://www.ereading.mobi/chapter.php/1006958/15/Sklyarov-Sensacionnaya_istoriya_Zemli.html
- Горбунова Л.В., Филимонова Т.А., Камьянова В.Ф. Химический состав высших ногонов нефтей и нефтяных остатков. М.: ЦНИИТЭнефтехим, 1986. 96 с.
- 3. *Dekkers C., Daan R.* // Oil and Gas. 1999. V. 97. № 9. P. 41.
- 4. Movsumzade E.M., Poletaeva O.Yu., Kolchina G.Yu., Leontev A.Yu. // DGMK Tagungsbericht. 2017. P. 227.
- Сафиева Р.З. Физикохимия нефти. Физико-химические основы технологии переработки нефти. М.: Химия, 1998. 448 с.
- 6. Шкаликов Н.В., Васильев С.Г., Скирда В.Д. // Коллоидный журн. 2010. Т. 72. № 1. С. 120.
- Аскадский А.А., Матвеев Ю.И. Химическое строение и физические свойства полимеров. М.: Химия, 1983. 248 с.
- 8. Яркова Т.А., Гюльмалиев А.М. // XTT. 2018. № 2. С. 17.
- Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. М.: Мир, 1971. 807 с.
- Granovsky A.A. GAMESS. V. 7.1. http://classic.chem.msu. su/gran/gamess/index.html
- Сафиева Р.З. Химия нефти и газа. Нефтяные дисперсные системы: состав и свойства. Ч. 1. Учебное пособие. М.: РГУ нефти и газа имени И.М. Губкина, 2004. 112 с.
- Гюльмалиев А.М., Головин Г.С., Гладун Т.Г. Теоретические основы химии угля. М.: Изд-во МГГУ, 2003. 556 с.
- 13. HSC Chemistry 6. http://www.hsclchemistry.net/