УЛК 662.73

ВЛИЯНИЕ ИНИЦИИРУЮЩЕЙ ДОБАВКИ CuSO₄ НА ИЗМЕНЕНИЕ ХАРАКТЕРИСТИК ПРОЦЕССОВ ОКИСЛЕНИЯ И ПИРОЛИЗА БУРЫХ УГЛЕЙ¹

© 2019 г. К. Б. Ларионов^{1,*}, И. В. Мишаков^{1,2,**}, А. А. Ведягин^{1,2,***}, В. Е. Губин^{1,***}

1 Томский политехнический университет, 634050 Томск, Россия

² ФГБУН Институт катализа имени Г.К. Борескова СО РАН, 630090 Новосибирск, Россия

*e-mail: laryk070@gmail.com

**e-mail: mishakov@catalysis.ru

***e-mail: vedyagin@catalysis.ru

****e-mail: gubin@tpu.ru

Поступила в редакцию 07.05.2018 г. После доработки 03.09.2018 г. Принята к публикации 24.10.2018 г.

Исследованы процессы окисления и пиролиза бурых углей, содержащих 5 мас. % инициирующей добавки (CuSO₄). Эксперимент выполнен методом термогравиметрии при скорости нагрева 2.5°С/мин в атмосфере воздуха и азота. Проведена оценка характеристик процесса в режиме пиролиза и окисления и определена энергия активации процесса по методу Coats-Redfern. Установлено, что добавление инициирующего агента $CuSO_4$ приводит к существенному снижению начальной температуры процессов окисления и пиролиза, что способствует смещению реакции в низкотемпературную область. Максимальное изменение температуры инициирования реакции (ΔT_i) в режиме окисления составило 35°С, в режиме пиролиза (ΔT_d) — 50°С. Установлено, что введение $CuSO_4$ приводит к снижению энергии активации горения на 7.1 кДж/моль и для процесса пиролиза ΔE_a составляет 10 кДж/моль. Наблюдалось сокращение времени пребывания образца в пределах возгонки летучих веществ: для окисления Δt_i составило 12 мин, для пиролиза Δt_d — 18 мин. По данным массспектрометрического анализа, в продуктах реакции окисления и пиролиза модифицированных образцов обнаружено присутствие SO_2 (пики при 230 и 320°С), что объясняется химическим взаимодействием сульфата меди с компонентами бурого угля.

Ключевые слова: бурый уголь, сульфат меди, процессы окисления и пиролиза, энергия активации, термический и масс-спектрометрический анализы

DOI: 10.1134/S0023117719010043

ВВЕДЕНИЕ

В настоящее время уголь играет важнейшую роль в энергетической отрасли крупнейших стран мира [1]. По данным мировой энергетической статистики, за последние пятнадцать лет потребление угля возросло на 15.3%, что говорит о востребованности данного вида ресурса. Одним из эффективных способов использования угля является его каталитическое сжигание в топках энергетических котлов [2]. Данное технологическое решение позволяет обеспечить максимальную конверсию топлива в продукты полного окисления и снизить температуру протекания реакции без образования открытого пламени [3]. Понижение температуры окисления твердого топлива

минимизирует содержание оксидов азота и серы, уходящих в составе газофазных продуктов [4], а также исключает зашлаковывание экранных труб котла путем отвода золы в стабильном агрегатном состоянии.

Большинство исследований в области каталитического окисления твердого топлива направлено на использование оксидов различных металлов, способствующих снижению начальной температуры и ускорению реакции [5—7]. Найдено, что введение оксидных добавок приводит к существенному снижению температуры зажигания высвобождаемых летучих веществ одновременно с увеличением скорости горения коксового остатка.

В работе [8] наряду с различными оксидами было рассмотрено влияние нитратов и хлоридов металлов на процесс окисления бурых углей.

¹ Работа выполнена при финансовой поддержке Минобрнауки РФ, в рамках реализации проекта № 13.7644.2017/8.9.

Образец	W^{a}	A^d	V^{daf}	C^{daf}	\mathbf{H}^{daf}	N ^{daf}	S ^{daf}	\mathbf{O}^{daf}	Влагоемкость,	
	мас. %			% на <i>daf</i>					мл/г	
1	4	4	38	59.4	5.3	1.7	0.9	32.7	3.2	
2	4	4	33	62.5	6.0	2.1	0.4	29.0	3.0	

Таблица 1. Технические характеристики исходных бурых углей

Примечание. Для модифицированных образцов: $CuSO_4/1$ и $CuSO_4/2$.

Введение данных солей также способствует заметному снижению температуры зажигания летучих веществ и повышению скорости процесса окисления в целом. Было установлено, что инициирующие добавки на основе солей и их оснований оказывали наибольшее влияние на процесс окисления углей в отличие от металлооксидных промоторов.

В [9] было проведено исследование влияния минеральной добавки в виде $Cu(NO_3)_2$ на изменение параметров процесса окисления бурого угля. Показано, что внесение инициирующего промотора способствовало ускорению высвобождения летучих веществ и снижению температуры их последующего зажигания. Высказано предположение, что повышение интенсивности процесса окисления угля при использовании добавкипредшественника связано с разложением соли на начальном этапе нагрева образца (до 200° C). Термическая деструкция частиц твердого топлива способствует снижению диффузионного сопротивления и ослаблению молекулярной матрицы за счет интенсификации подвода кислорода.

В настоящей работе рассматривается влияние инициирующей добавки $CuSO_4$ на изменение характеристик процесса окисления и пиролиза бурых углей.

ЭКСПЕРИМЕНТАЛЬНАЯ И АНАЛИТИЧЕСКАЯ ЧАСТИ

В работе использовались образцы бурых углей Бородинского (образец 1) и Балахтинского (образец 2) разрезов Канско-Ачинского угольного бассейна. Крупнодисперсные образцы исходных углей (5—10 мм) измельчались в барабанной мельнице в течение 8 ч при равном соотношении массы мелющих тел и массы измельчаемого материала. После помола образцы фракционировались на ситах с размером ячеек 80 мкм.

В табл. 1 представлены данные технического и элементного анализов исследуемых типов углей, выполненных с использованием стандартных методик [10]. Массовая доля основных элементов в составе образцов (C, H, N, S, O) была определена с помощью анализатора элементного состава *Euro EA* 3000 (*EuroVector*, Италия). Видно, что исследуемые образцы во многом сходны при не-

большой разнице в содержании летучих веществ и углерода. Схожесть образцов 1 и 2 прослеживается и в морфологии частиц, что видно из микрофотографий, представленных на рис. 1. Снимки выполнены с использованием растрового электронного микроскопа *JSM*-6460*LV* (*JEOL*, Япония) с ионным сфокусированным пучком. Частицы исследуемых углей имеют неправильную многогранную форму с неоднородной поверхностью и множеством углублений и трещин.

Инициирующая добавка $CuSO_4$ вводилась в состав образцов методом пропитки по влагоемкости [11]. Содержание сульфата меди в приготовленном образце после сушки составляло 5 мас. %. Предварительное растворение сульфата меди осуществлялось в водно-спиртовом растворе (объемное соотношение $H_2O/C_2H_5OH=50:50$). При полном растворении соли раствор был по каплям нанесен на подготовленные порошки угля с помощью механического дозатора. Полученные образцы выдерживались в сушильном шкафу при $105^{\circ}C$ в течение 20 ч.

Исследование процессов окисления и пиролиза образцов углей проводилось с помощью синхронного термического анализатора STA 449 C Jupiter (Netzsch, Германия). Эксперименты осуществлялись в одинаковых условиях при скорости нагрева 2.5°С/мин в корундовом тигле с перфорированной крышкой в интервале температур 25-600°C. Загрузка образца составляла ~25 мг. В режиме пиролиза использовался инертный газ азот, а в качестве окислительной среды смесь воздуха (60 мл/мин) и азота (10 мл/мин). В последнем случае азот использовался в качестве зашитного газа для обеспечения надежной работы анализатора и корректной регистрации полученных данных. Для образцов серии 1 было выполнено качественное определение состава продуктов окисления с помощью приставки *STA* в виде квадрупольного масс-спектрометра *QMS* 403 D Aeolos (Netzsch, Германия). Все эксперименты проводились при атмосферном давлении.

Определение параметров процессов окисления и пиролиза проводилось графическим способом (рис. 2) с помощью полученных ТГ- и ДТГ-кривых. Точка A на ТГ-кривой характеризует температуру начала процесса окисления (T_i) и пиролиза (T_d) исследуемых углей; точка B отно-

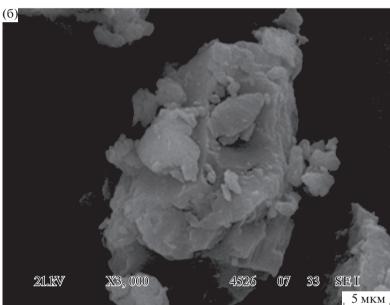


Рис. 1. Снимки РЭМ образцов бурых углей: образец 1 (a), образец 2 (б). Данные РЭМ (×3000).

сится к окончанию процесса потери массы за счет окисления (рис. 1, а; T_f) или пиролиза (рис. 1, б; T_v). Точка C на ДТГ-кривой соответствует максимальному значению скорости процесса ($w_{\rm max}$), достигаемой при температуре $T_{\rm max}$. Также было проведено вычисление значений энергии активации окисления и пиролиза образцов с использованием метода Coats-Redfern [7].

В основе данного метода лежит следующее соотношение:

$$\ln\left[-\frac{\ln(1-\alpha)}{T^2}\right] = \ln\left[\frac{AR}{bE_a}\right] - \frac{E_a}{RT},$$

где α — степень конверсии угля; T — температура, K; R — универсальная газовая постоянная, Дж/(моль · K); A — предэкспоненциальный множитель, 1/мин; $E_{\rm a}$ — энергия активации, Дж/моль; β — скорость нагрева, K/мин. Решение данного уравнения и определение основных кинетических показателей осуществлялось путем аппроксимации экспериментальной зависимости в координатах $\ln(-\ln(1-\alpha)/T^2)$ от 1/T.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 3 представлены результаты термического анализа (ТГ- и ДТГ-кривые) образцов бу-

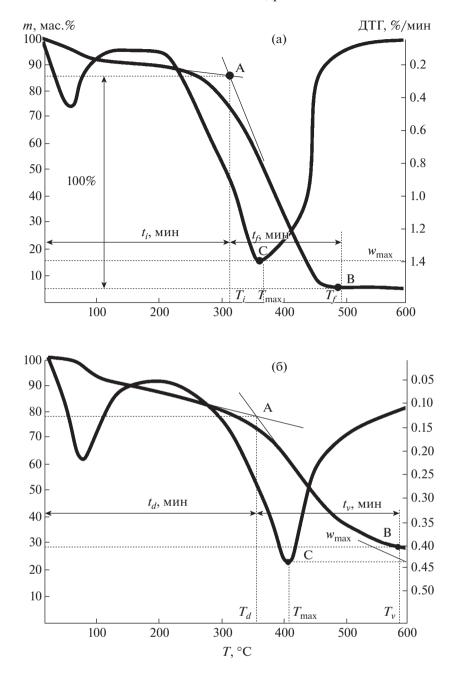


Рис. 2. Определение характеристик процесса окисления (а) и пиролиза (б) немодифицированного образца 1.

рых углей в атмосферах воздуха (окисление) и азота (пиролиз). Видно, что введение сульфата меди в состав образца приводит к заметному изменению характера процесса по сравнению с немодифицированным углем.

ТГ- и ДТГ-кривые образцов сравнения, полученные в режиме окисления (рис. 3, а), имеют схожий характер. Процесс в данном случае можно условно разделить на четыре стадии. Первая связана с удалением влаги (до 100°С); вторая (100—295°С) характеризуется возгонкой летучих веществ в результате термической деструкции ча-

стиц топлива. На третьей и четвертой стадиях (295—505°С) процесса окисления происходит зажигание высвобождаемых летучих соединений с последующим горением твердой фазы образца (горючей массы). Исследуемые типы углей характеризуются высоким содержанием летучих соединений (табл. 1), поэтому третья и четвертая стадии окисления (при заданных экспериментальных условиях) протекают параллельно, о чем свидетельствует широкий пик на ДТГ-кривой (рис. 3, а). В свою очередь, процесс пиролиза образцов (рис. 3, б) можно описать двумя основны-

Рис. 3. ТГ- и ДТГ-профили для процессов окисления (а) и пиролиза (б) бурых углей.

ми фазами: удалением внешней влаги и выходом летучих веществ и горючих газов: CO, H_2 и CH_4 [14].

Полученные результаты ТГА (рис. 3) свидетельствуют о том, что нанесение инициирующей добавки $CuSO_4$ на бурый уголь способствует повышению интенсивности высвобождения летучих соединений, а также снижению начальной температуры их воспламенения. Результатом активирующего действия добавки является заметное смещение процесса окисления в низкотемпературную область.

Из анализа ДТГ-кривых (рис. 3, а) модифицированных образцов следует, что смещение температурных пиков сопровождается возрастанием скорости протекания реакции. Важно отметить, что для процессов окисления и пиролиза модифицированных образцов характерно появление дополнительного пика в районе 120° С, что связано с дегидратацией соли $CuSO_4 \cdot 5H_2O$ и образованием моногидрата $CuSO_4 \cdot H_2O$.

Несмотря на существенное различие в характере ДТГ-кривых, полученных для процесса пиролиза образцов сравнения и модифицированных образцов (рис. 3, б), положение температурных пиков остается практически неизменным. В то же время заметим, что полосы на ДТГ-кривых для пиролиза модифицированных образцов заметно расширены по сравнению с исходными

углями. В температурном диапазоне 190—230°C наблюдается появление дополнительной полосы, что может объясняться деструкцией нанесенных частиц сульфата меди.

Отметим, что положение экзотермических максимумов на ДСК-кривых для процесса окисления (рис. 4) практически совпадает со значениями $T_{\rm max}$, соответствующими максимальной скорости протекания реакции (вычисленными из данных ДТГ, рис. 3).

Наблюдаемые на рис. 4 экзотермические эффекты связаны с выделением теплоты на стадиях окисления летучих веществ и коксового остатка [12]. ДСК-кривые процесса окисления исходных образцов 1 и 2 характеризуются бимодальной формой, что позволяет достаточно четко различить отдельные стадии. Вносимая в состав угля инициирующая добавка усиливает тенденцию к слиянию двух отдельных стадий тепловыделения в одну. Так, для образца $CuSO_4/2$, имеющего температурный сдвиг $\Delta T_{\rm max} = 104 {\rm ^{\circ}C}$, второй пик в области 400°C преобразуется в характерное "плечо", которое характеризует реакцию окисления образующегося коксового остатка. В то же время, для образца с большим содержанием летучих веществ (CuSO₄/1, табл. 1) ДСК-кривая имеет единственный максимум выделения тепла, смещенный в область низких температур: $\Delta T_{\text{max}} = 92^{\circ}\text{C}$.

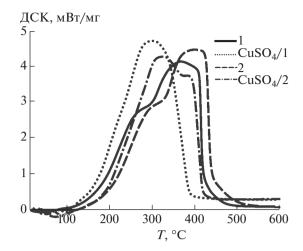
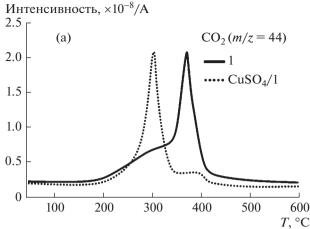
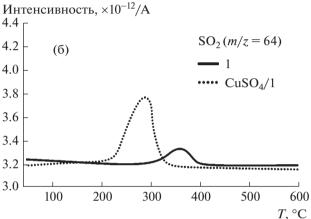
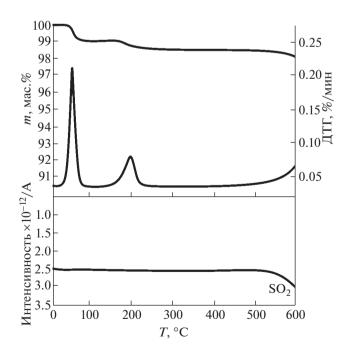


Рис. 4. ДСК-профили для процесса окисления.


На рис. 5 приведены масс-спектрометрические профили, соответствующие появлению ${\rm CO_2}$ (m/z=44) и ${\rm SO_2}$ (m/z=64) в составе газофазных продуктов на примере серии образцов 1, пребывающих в окислительной среде.


Сравнение полученных результатов масс-спектрометрического анализа показывает, что для образца $CuSO_4/1$ максимум выделения CO_2 имеет температурный сдвиг $\Delta T_{\rm max}$, совпадающий с таковым на ДТГ-кривой (рис. 3, а). При этом наибольшая интенсивность образования CO_2 , в отличие от образца сравнения, приходится на стадию окисления высвобождаемых летучих компонентов. Важно отметить, что снижение температуры начала процесса окисления модифицированного образца совпадает с образованием пика выделения SO_2 (рис. 5), смещение в низкотемпературную область которого, вероятнее всего, происходит в результате частичной деструкции $CuSO_4$ в интервале температур $160-240^{\circ}C$.

На рис. 6 представлены ТГ-, ДТГ- и МС-профили термического разложения промотора $CuSO_4$, нанесенного на инертный носитель в виде α - Al_2O_3 с массовым содержанием 5%. Видно, что потеря массы исследуемой добавки $CuSO_4$ при термическом воздействии в рассматриваемом диапазоне температур (45–600°C) составляет 1.5%, что обусловлено дегидратацией соли в интервале температур 80–220°C.


При этом в области более высоких температур (свыше 550° C) наблюдается потеря массы добавки, которая связана с термическим разложением добавки, что подтверждается началом выделения SO_2 , отраженном на MC-профиле процесса (рис. 6).

Частичное разложение сульфата меди в низкотемпературной области процесса окисления можно объяснить химическим взаимодействием

Рис. 5. МС-профили выделения CO_2 (а) и SO_2 (б) для процесса окисления серии образцов 1.

Рис. 6. ТГ-, ДТГ- и МС-профили термического разложения добавки $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$, нанесенной на инертный носитель $\alpha\text{-Al}_2\text{O}_3$, с выделением SO_2 в окислительной среде.

Параметр	1	CuSO ₄ /1	2	CuSO ₄ /2
Окисление		1	I	
Температура начала окисления, T_i , $^{\circ}$ С	295	265	310	275
Время начала окисления, t_i , мин	108	96	114	78
Температура окончания окисления, T_f , ${}^{\circ}\mathrm{C}$	485	425	505	440
Время окисления горючей массы, t_f , мин	76	64	78	66
Максимальная скорость реакции окисления, $w_{\rm max}$, мас. %/мин	1.30	1.43	1.32	1.40
Пиролиз	1	1	l	1
Температура начала пиролиза, T_d , °C	350	305	360	310
Время начала пиролиза, t_d , мин	130	112	134	114
Температура окончания пиролиза, T_v , $^{\circ}$ С	590	550	600	545
Время прохождения процесса пиролиза, t_v , мин	96	98	96	94
Максимальная скорость реакции пиролиза, w_{max} , мас. %/мин	0.45	0.35	0.43	0.33

Таблица 2. Характеристики процесса в режиме окисления и пиролиза

CuSO₄ и углеродного субстрата, обладающего хорошими восстановительными свойствами [13].

Взаимодействие сульфата меди с бурым углем можно разделить на две составляющие: реакция $CuSO_4$ с кислородосодержащими функциональными группами угля (1) [14] и химическое взаимодействие в результате тесного контакта с твердой фазой — коксовым остатком — (2):

$$CuSO_4 + C_xH_y \rightarrow CuO + SO_2 + CO_2 + H_2O$$
, (1)

$$2CuSO_4 + C \rightarrow 2CuO + 2SO_2 + CO_2. \tag{2}$$

Таким образом, частичная деструкция $CuSO_4$ с выделением SO_2 способствует активации окисления летучих соединений, в результате чего наблюдается интенсивное выделение CO_2 при более низкой температуре.

В результате анализа экспериментальных данных были определены параметры для процессов окисления и пиролиза бурых углей (табл. 2).

Сопоставление данных табл. 2 показывает, что внесение инициирующей добавки $CuSO_4$ способствует значительному снижению начальной температуры окисления T_i и возгонки летучих соединений T_d . В результате модифицирования наблюдается сдвиг обоих процессов в низкотемпературную область, о чем свидетельствует снижение значений T_f и T_v . При этом максимальное изменение наблюдается для образцов, процесс разложения которых протекает в инертной среде (45 и 50°С для образцов $CuSO_4/1$ и $CuSO_4/2$, соответственно). В то же время снижение начальной температуры для модифицированных образцов в окислительной среде составило 30°С ($CuSO_4/1$) и 35°С ($CuSO_4/2$).

Наблюдаемая разница в значениях ΔT_i и ΔT_d для образцов 1 и 2 может быть объяснена различным содержанием летучих соединений в составе бурого угля (табл. 1). Отметим, что полученный результат согласуется с данными работы [6], где было рассмотрено влияние оксидов металлов на кинетические характеристики окисления углей различной степени метаморфизма.

Установлено, что внесение инициирующей добавки также ведет к сокращению времени протекания процесса в режиме окисления Δt_f на 12 мин. В то же время общая продолжительность процесса пиролиза практически не меняется (Δt_v близко к нулю).

Результаты расчетов по методу *Coats-Redfern* показали, что введение сульфата меди во всех случаях приводит к снижению наблюдаемой энергии активации процесса ($E_{\rm a}$). Из табл. 3 следует, что значение энергии активации для образцов сравнения 1 и 2 во всех рассматриваемых процессах близки и составляют 57.3 и 58.7 (окисление), 32.6 и 33.3 (пиролиз), соответственно. Вычисленные значения $E_{\rm a}$ хорошо согласуются с литературными данными [15].

Отметим, что внесение инициирующей добавки во всех случаях приводит к снижению энергии активации процесса, причем максимальное падение E_a ($\Delta E_a = 10 \, \text{кДж/моль}$), как и следовало ожидать, соответствует режиму пиролиза модифицированных углей, для которых зафиксировано наибольшее изменение температуры начала процесса (табл. 2).

Таблица 3. Энергия активации процесса в режиме окисления и пиролиза

Образец	Энергия активации $E_{\rm a}$	ΔE_{a}				
Образец	кДж/моль					
Окисление						
1	57.3	5.4				
CuSO ₄ /1	51.9					
2	58.7	7.1				
CuSO ₄ /2	51.6					
Пиролиз						
1	32.6	9.5				
CuSO ₄ /1	23.1					
2	33.3	10.0				
CuSO ₄ /2	23.3					

ЗАКЛЮЧЕНИЕ

Исследование влияния инициирующей добавки CuSO₄, вводимой в состав бурых углей в количестве 5 мас. %, показало существенное снижение начальной температуры возгонки летучих соединений, независимо от среды, в которой испытывались образцы. Наибольшее изменение начальной температуры процесса наблюдалось для термодеструкции модифицированных образцов в инертной среде (режим пиролиза). При этом наибольший эффект проявлялся для образцов серии 2, отличающихся меньшим содержанием летучих вешеств.

В результате снижения начальной температуры возгонки летучих соединений отмечается уменьшение энергии активации. При сокращении времени окисления горючей массы образца происходит увеличение средней скорости протекания реакции, что способствует общему сдвигу процесса в область более низких температур. Наблюдаемый эффект, по-видимому, связан с дегидратацией и частичным гидролизом кристаллогидрата $CuSO_4 \cdot 5H_2O$, о чем свидетельствует появление SO_2 в продуктах реакции в интервале

температур $160-240^{\circ}$ С в результате взаимодействия добавки с углеродным субстратом. Дегидратация $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$ и его дальнейшая деструкция в порах углеродной матрицы способствует интенсификации процессов массо- и теплопереноса, тем самым ускоряя протекание реакции.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Королев А.В., Ломакина Н.С.* // Современные наукоемкие технологии. 2013. № 8. С. 125.
- 2. Симонов А.Д., Федоров И.А., Дубинин Ю.В., Языков Н.А., Яковлев В.А., Пармон В.Н. // Катализ в промышленности. 2012. № 3. С. 50.
- 3. *Пармон В.Н., Симонов А.Д., Садыков В.А., Тихов С.Ф.* // Физика горения и взрыва. 2015. Т. 51. № 2. С. 5. [Combustion, Explosion and Shock Waves, 2015, vol. 51, Issue 2, p. 143. 10.1134/S001050821502001X.]
- 4. *Liu Y., Che D., Xu T. //* Fuel Process. Technol. 2002. V. 79. № 2. P. 157.
- Zou C., Zhao J., Li X., Shi R. // J. Therm. Anal. Calorim. 2016. V. 126. P. 1469.
- Gong X., Guo Z., Wang Z. // Combust. Flame. 2010. V. 157. P. 351.
- 7. *Yin K., Zhou Y.M., Yao Q.Z., Fang C., Zhang Z.W.* // Reac. Kinet. Mech. Cat. 2012. V. 106. № 2. P. 369.
- 8. Zhao G.W., Yu W.Q., Xiao Y.H. // Adv. Mater. Res. 2011. V. 236. P. 660.
- 9. Larionov K.B., Mishakov I.V., Slyusarskiy K.V., Bolgova D.A., Lavrinenko S.V. // MATEC Web of Conferences. 2017. V. 141. 01026.
- 10. Slyusarskiy K.V., Larionov K.B., Osipov V.I., Yankovsky S.A., Gubin V.E., Gromov A.A. // Fuel. 2017. V. 191. P. 383.
- 11. Токарева И.В., Мишаков И.В., Ведягин А.А., Корнеев Д.В., Петухова Е.С., Саввинова М.Е. // Композиты и наноструктуры. 2014. Т. 6. № 3. С. 158.
- 12. *Ozbas K.E., Kök M.V., Hicyilmaz C. //* J. Therm. Anal. Calorim. 2003. V. 71. P. 849.
- 13. Shaikhutdinov Sh.K., Avdeeva L.B., Novgorodov B.N., Zaikovskii V.I., Kochubey D.I. // Catal. Lett. 1997. V. 47. № 1. P. 35.
- Zhang L., Hu S., Chen Q., Xiao L., Shatir A. Syed-Hassan S.S.A., Jiang L., Wang Y., Su S., Xiang J. // Fuel. 2017. V. 189. P. 178.
- Fangxian L., Shizong L., Youzhi C. // J. Therm. Anal. Calorim. 2009. V. 95. P. 633.