ХИМИЧЕСКАЯ ФИЗИКА ЭКОЛОГИЧЕСКИХ ПРОЦЕССОВ

УДК 574.635; 662.2-3

ОКИСЛЕНИЕ НИТРОВАННОЙ ЦЕЛЛЮЛОЗЫ МИКРОБНЫМ СООБЩЕСТВОМ АКТИВНОГО ИЛА

© 2022 г. Е. А. Саратовских^{1*}, Л. В. Авдеева¹, В. А. Щербакова², Р. Н. Яруллин³

¹Институт проблем химической физики Российской академии наук, Черноголовка, Россия ²Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина, Российской академии наук, Пущино, Россия

³Казанский (Приволжский) федеральный университет, Казань, Россия

*E-mail: easar@icp.ac.ru

Поступила в редакцию 02.07.2021; после доработки 03.11.2021; принята в печать 20.11.2021

Исследовано окисление нативной и обработанной с помощью ультрафиолетового излучения и озона (УФ + озон) нитрованной целлюлозы (НЦ) под действием сообщества микроорганизмов активного ила (АИ) очистных сооружений, а также при совместном культивировании АИ с сульфатвосстанавливающими бактериями *Desulfovibrio* (*D.*) *desulfuricans* (штамм ВКМ В-1388) и микроскопическими грибами *Fusarium* (*F.*) *solani* (штамм ВКМ F-819). Показано, что использование предварительной обработки значительно повышает степень разложения НЦ при ее последующей биодеградации с помощью симбиоза микроорганизмов АИ с бактериями *D. desulfuricans* и грибами *F. solani*. Применение мутагенной обработки АИ нитрозометилмочевиной позволяет биоценозу микроорганизмов активного ила с загрязнителем – НЦ сохранять высокую окисляющую способность с хорошими седиментационными свойствами в течение 65 сут инкубации. Степень разложения НЦ составила 24.36%.

Ключевые слова: активный ил, нитроцеллюлоза, биологическое окисление, грибы Fusarium solani, бактерии Desulfovibrio desulfuricans.

DOI: 10.31857/S0207401X22070147

введение

Исследования в области высокоэнергетических полимеров, начатые еще лауреатом Нобелевской премии академиком Н.Н. Семеновым [1]. не потеряли своей актуальности и в настоящее время. Они охватывают широкий круг задач [2, 3]. Однако с каждым годом все более актуальной становится экологическая сторона вопроса. В процессе промышленного производства нитратов целлюлозы образуется значительное количество стоков, содержащих трудноразлагающиеся поллютанты, в том числе и нитрованную целлюлозу (НЦ). Разработка методов и технологических приемов, направленных на ускорение разложения соединений, находящихся в отходах производства НЦ, позволит решить экологические проблемы, связанные с ее накоплением, и снизить отрицательную нагрузку на окружающую среду.

Известно, что наиболее перспективными и экологически безопасными являются биологические методы утилизации ксенобиотиков [4–6]. Очистка любых сточных вод проводится на очистных сооружениях, завершающей стадией работы которых является биологическая обработка воды в аэротенках, работающих на активном иле (АИ). Последний представляет собой сложный биоценоз большого числа микроорганизмов, в основном бактерий, у которых клетки находятся в среде растворимых или слаборастворимых внеклеточных полимерных образований — полисахаридов, протеинов, рибонуклеиновых и дезоксирибонуклеиновых кислот.

Существуют варианты применения метода химического мутагенеза, разработанного Рапопортом [7], для увеличения окисляющей способности (ОС) АИ в отношении трудно или практически не разлагаемых химических загрязняющих веществ [7–9]. При этом ферментативная активность микроорганизмов АИ увеличивается более чем в 2 раза [10]. Например, использование генетического метода [11, 12] позволило ускорить процесс деструкции бензола и синтетических жирозаменителей при применении в качестве мутагена нитрозометилмочевины (HMM).

В различных отраслях промышленности находят применение микроорганизмы [13]. Ранее при исследовании биологического разложения НЦ сульфатредуцирующими бактериями *Desulfovibrio* (*D.*) *desulfuricans* [14] и мицелиальным грибом *Fusarium* (*F.*) *solani* [15, 16] мы показали, что предварительная обработка нитроцеллюло-

№ реактора	Состав	Объем среды, мл	Объем посеянных бактерий, мл	Кол-во посев. грибов, косяки	Объем АИ, мл	Концентрация НЦ, г/л
Контроль	Активный ил (АИ)	1000	—	_	200	_
1	АИ + НЦ	500	—	—	100	5
2	АИ + НЦ _{обр}	1000	—	—	200	10
3	АИ + НЦ + D. desulfuricans + F. solani	1000	50	3×2	200	10
4	$AU + HII_{obp} + D.$ desulfuricans +	1000	50	3×2	200	10
	+ F. solani					
5	АИ + НММ + НЦ	1000	—	—	200	10
6	АИ + HMM + HЦ _{обр} + D. desulfuri-	1000	50	3×2	200	10
	cans + F. solani					

Таблица 1. Варианты экспериментов по исследованию биологической деградации нитроцеллюлозы

зы УФ-облучением и озоном способствовала более глубокой ее биодеградации. Деградация обработанной таким образом НЦ смешанной культурой из *F. solani* и *D. desulfuricans* приводила к уменьшению содержания азота с 13.38 до 10.03%, а среднечисловой (M_n) и средневесовой (M_w) молекулярной массы (MM) — в 3 и 2 раза соответственно.

Цель настоящей работы — оценка возможности применения в процессе очистки стоков промышленного производства НЦ активного ила очистных сооружений, подвергнутого мутагенной обработке, в сочетании с инкубацией с грибами *F. solani* и бактериями *D. desulfuricans*.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реактивы. Для приготовления микробиологических сред, буферных систем и выполнения физико-химических исследований использовали реагенты и растворители производства компаний Sigma-Aldrich (USA), BioRad (USA) и Реахим (Россия).

Для исследований использовали образцы НЦ, предоставленные Казанским пороховым заводом, марки "М/л 26 432-01" с содержанием азота 13.38% (масса элементарного звена макромолекулы – 284.4, степень полимеризации – 1140, ММ – 324216) согласно ГОСТ Р50461-92.

Микроорганизмы. В работе использовали мицелиальный гриб F. solani (штамм BKM F-819) и сульфатвосстанавливающую бактерию D. desulfuricans (штамм BKM B-1388), полученные из Bceроссийской коллекции микроорганизмов Института биохимии и физиологии микроорганизмов им Г.К. Скрябина ФИЦ "Пущинский научный центр биологических исследований РАН". Культивирование микроорганизмов проводили, как описано ранее [15].

В качестве консорциума микроорганизмов использовали АИ, отобранный из аэротенка на очистных сооружениях ВКХ ФГУП "Управление эксплуатации НЦЧ РАН" в г. Черноголовка Московской области. Активный ил имел буро-коричневый цвет со слегка болотистым запахом без преобладания запаха химических примесей.

Мутагенная обработка АИ. В качестве мутагенного агента была использована N-метил-Nнитрозомочевина марки "х.ч." (Sigma, США) в концентрации 0.07% (в/о). Обработка АИ проводилась через 4 сут контакта АИ с исследуемой НЦ. Обработку проводили в течение 18 ч [7]. На 29-е сутки от начала эксперимента АИ был подвергнут повторной обработке нитрозометилмочевиной также в течение 18 ч. Исследования выполнялись параллельно как на исходном, так и на обработанном АИ.

Биодеградацию НЦ культурами бактерий и грибов проводили согласно методу, описанному в работе [16]. Варианты исследования биологической деградации НЦ с использованием микроорганизмов приведены в табл. 1. Эксперименты по исследованию биологического окисления НЦ под действием микробного сообщества АИ проводили в лабораторных стеклянных реакторах объемом 3 л при естественном освещении с продувом воздухом, содержащих 1000 мл питательной среды, 200 мл АИ и 10 г/л НЦ. В первой серии экспериментов в реакторы № 1, 3, 5 загружали исходную НЦ, во второй серии в реакторы № № 2, 4, 6 загружали обработанную НЦ (НЦ_{обр}).

В вариантах, предусматривающих исследование окисления НЦ под влиянием АИ, бактерий и грибов, к раствору АИ в питательной среде добавляли культуры бактерии *D. desulfuricans* и гриба *F. solani*, как описано выше (реакторы №№ 3, 4 и 6). Пробы для анализа отбирали на 5-, 16-, 36-е и 65-е сут от начала эксперимента в объеме 50 мл после механического перемешивания раствора. Обработку НЦ ультрафиолетом и озоном, выделение НЦ из раствора, определение концентраций азота и других элементов в НЦ, нитрата и нитрита,

вязкости и молекулярно-массового распределения (ММР) НЦ проводили, как описано ранее [15].

Изменения состояния активного ила. Исходный АИ перед началом экспериментов имел плотность по весу в 6.86 г/дм³. Объем осажденного АИ за 30 мин в цилиндре объемом 500 мл составил 30 мл, т.е. что составляет 940 см³/дм³. Иловый индекс был равен 137 см³/г. Видовой состав АИ определяли по методу, описанному в работах [17, 18] с использованием светового микроскопа "МБИ-6" производства завода ЛОМО (Ленинград, СССР).

Погрешности измерений и статистическая обработка экспериментальных данных. В холостом опыте установили, что общая потеря массы НЦ в процессе растворения и центрифугирования может достигать 6%. С использованием этих данных определяли количество выделенной НЦ в изолированных растворах.

При определении концентраций элементов C, H, S, N предел обнаружения составлял <40 ppm; стандартное отклонение результатов – не более 0.1%. Определение концентрации нитрата происходит при колебании величин измерений примерно на 0.1% от измеряемой величины. Измерение вязкости одного и того же образца проводили три раза. Погрешность измерений составляет ±0.35% от измеряемых значений.

Все эксперименты выполнены в трех повторностях. Статистическую обработку экспериментальных данных проводили путем определения их средних арифметических и стандартных ошибок. Достоверность измерений оценивали с помощью критерия Стьютента, считая разницу достоверной при значении $P \le 0.05$.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Степень биологического окисления НЦ

Как видно из табл. 1, были проведены исследования биодеградации нитроцеллюлозы и НЦ, предварительно обработанной УФ-облучением и озоном, в нескольких вариантах: с добавлением активного ила и АИ, обработанного мутагеном, а также с добавлением грибов и бактерий. Биодеструкция оценивалась по изменению характеристических параметров: рН, вязкости и ММР, содержанию С, Н, N в НЦ, появлению нитратов и нитритов в растворе, изменению величины тепловыделения образцов. Ни в одном из исследованных образцов НЦ, отобранных из реакторов №№ 1–6, сера не была обнаружена (табл. 2). Водный раствор исходной НЦ имеет рН, соответствующий слабокислой среде. Обнаруженное в ней со-

держание NO_3^- колебалось от 5.94 до 6.24 мкг/мл; присутствия NO_2^- не обнаружено. В контрольном реакторе, содержавшем только АИ за 65 сут инкубации, pH возрастает от 6.5 до 7.68. Содержание

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 7 2022

нитратов и нитритов в этом реакторе незначительное: максимальное содержание нитратов составило 2.63 мкг/мл, нитритов – 0.44 мкг/мл.

В реакторах №№ 1—4 величина pH от начала эксперимента к 16-м суткам возрастает от значений, соответствующих нейтральной и слабокислой средам до 8.15—8.60, а к 65-м суткам снижается до значений 5.41—6.40. В процессе биодеградации количество нитрат-ионов в среде роста АИ в реакторе № 1 на 38-е сутки незначительно отличается от контрольного и только к 65-м суткам возрастает значительно — до 16.03 мкг/мл. В реакторе № 2, содержащем НЦ_{обр} и АИ, картина принципиально иная: через 5 сут инкубации содержание

NO₃ составляет 12.9 мкг/мл. Затем концентрация нитрата падает, практически до показателей из контрольного реактора и только на 65-е сутки вновь возрастает до 17.5 мкг/мл. В реакторе № 4 $(AU + H\coprod_{obp} + D. desulfuricans + F. solani)$ на 5-е сутки инкубации содержание нитрат-ионов значительное – 10.86 мкг/мл, к 16-м суткам еще более возрастает – до 16.9 мкг/мл; а к 38-м суткам начинает снижаться. Инкубация НЦ с АИ во всех исследованных вариантах приводит к уменьшению содержания азота к 65-м суткам (рис. 1). Предварительная обработка НЦ с помощью УФ-облучения и озона повышает скорость разложения НЦ на АИ. Так, содержание азота через 38 сут инкубации в реакторе № 2 (10.38%) ниже, чем в реакторе № 1 (10.97%). Аналогично, в реакторе № 4 азота меньше, чем в реакторе № 3, а в реакторе № 6 его меньше, чем в реакторе № 5.

Использование АИ, обработанного мутагеном НММ, оказывает дополнительное положительное действие на процесс окисления НЦ. К 38-м суткам инкубации содержание азота в реакторе № 5 (10.12%) и тем более в реакторе № 6 (9.97%) значительно ниже, чем в реакторе № 1 (10.97%) и реакторе № 2 (10.38%).

Добавление к АИ бактерий и грибов, т.е. попытка создать симбиоз микроорганизмов, не приводит к значительному влиянию на степень разложения НЦ. Содержание азота в реакторе № 3 стабильно было выше на протяжении всего эксперимента (от 5 до 38 сут), чем в реакторе № 1, содержавшем только АИ. Низкое содержание азота (11.21%) в образцах достигается в реакторе № 4, в котором к АИ добавлены бактерии и грибы при использовании НЦобр, уже к 16-м суткам. Содержание азота в этом реакторе к 38-м суткам экспозишии снижается до 10.68%. Наименьшее содержание азота за 38 сут инкубации достигается в аналогичном варианте обработки, но в присутствии АИ, обработанного НММ (реактор № 6). В этом варианте содержание азота составило 10.12%, максимальная потеря азота — 3.26%, а степень разложения по азоту составляет, соответственно, 24.36%.

САРАТОВСКИХ и др.

	Время инкубации, сут	pН	Содержание				
№ реактора			С, мас.%	Н, мас.%	NO ₃ , мкг/мл	NO ₂ , мкг/мл	
Контроль	0	6.50	Н.О	н.о	н.о	н.о	
	5	7.04	Н.О	н.о	н.о	н.о	
	16	7.15	Н.О	н.о	2.13 ± 0.02	0.15 ± 0.001	
	38	7.45	н.о	н.о	1.62 ± 0.02	0.44 ± 0.002	
	65	7.68	Н.О	н.о	2.63 ± 0.01	0.35 ± 0.001	
1	0	6.50	Н.О	Н.О	н.о	н.о	
	5	н.о	31.23 ± 0.20	3.570 ± 0.01	4.30 ± 0.02	н.о	
	16	8.39	27.07 ± 0.15	3.264 ± 0.01	3.64 ± 0.02	н.о	
	38	5.98	26.46 ± 0.22	3.135 ± 0.05	2.02 ± 0.01	12.48 ± 0.05	
	65	5.73	25.70 ± 0.14	2.794 ± 0.02	16.03 ± 0.05	н.о	
2	0	5.00	н.о	н.о	н.о	н.о	
	5	Н.О	29.44 ± 0.25	3.744 ± 0.02	12.90 ± 0.04	н.о	
	16	8.15	24.92 ± 0.19	2.606 ± 0.05	7.58 ± 0.03	Н.О	
	38	6.99	25.80 ± 0.11	3.038 ± 0.03	2.02 ± 0.01	0.18 ± 0.001	
	65	6.40	25.16 ± 0.13	2.721 ± 0.05	17.50 ± 0.02	44.6 ± 0.08	
3	0	6.00	н.о	н.о	н.о	н.о	
	5	н.о	29.92 ± 0.12	3.810 ± 0.02	3.80 ± 0.01	н.о	
	16	8.60	26.01 ± 0.18	2.993 ± 0.02	8.08 ± 0.04	н.о	
	38	6.84	25.91 ± 0.22	2.759 ± 0.01	3.03 ± 0.02	0.15 ± 0.001	
	65	6.34	25.00 ± 0.15	2.865 ± 0.05	6.62 ± 0.03	23.4 ± 0.003	
4	0	4.50	н.о	н.о	н.о	н.о	
	5	Н.О	32.52 ± 0.15	4.333 ± 0.02	10.86 ± 0.05	н.о	
	16	8.21	27.59 ± 0.20	2.970 ± 0.03	16.90 ± 0.03	0.57 ± 0.002	
	38	7.00	27.55 ± 0.14	3.396 ± 0.02	7.37 ± 0.02	0.99 ± 0.001	
	65	5.41	26.58 ± 0.15	3.213 ± 0.01	4.04 ± 0.02	2.52 ± 0.002	
5	0						
	5		28.54 ± 0.11	3.550 ± 0.03			
	16		25.01 ± 0.18	2.621 ± 0.02			
	38		25.55 ± 0.20	2.976 ± 0.05			
	65		25.96 ± 0.21	2.845 ± 0.03			
6	0						
	5		29.65 ± 0.15	3.683 ± 0.03			
	16		26.49 ± 0.18	2.902 ± 0.02			
	38		25.91 ± 0.11	3.477 ± 0.02			
	65		26.09 ± 0.18	2.895 ± 0.02			

Таблица 2. Содержание углерода, водорода в НЦ, нитрат- и нитрит-ионов в среде роста микроорганизмов и АИ после биодеградации

Примечания: н.о – не обнаружено.

Рис. 1. Изменение содержания азота в образцах НЦ, инкубированных с АИ: 1 - AH + HЦ, $2 - AH + HЦ_{oбp}$, 3 - AH + HЦ + D. desulfuricans + F. solani, $4 - AH + HЦ_{oбp} + D$. desulfuricans + F. solani, 5 - AH + HMM + HЦ, $6 - AH + HMM + HU_{ofp} + D$. desulfuricans + F. solani, 5 - AH + HMM + HU, $6 - AH + HMM + HU_{ofp} + D$. desulfuricans + F. solani.

В реакторе № 6 наблюдается результат влияния всех использованных воздействий на НЦ_{обр}, однако, снижение содержания азота в нем незначительно по сравнению с реактором № 4. Это дает основания задуматься о целесообразности введения дополнительной технологической операции в реальном технологическом процессе.

Изменение вязкости и молекулярно-массовых характеристик в процессе окисления НЦ

В процессе исследования биологического разложения НЦ для каждой отобранной пробы были определены: вязкость ацетоновых растворов, среднечисленная (М_n) и средневесовая молекулярная масса (M_w), полидисперсность (M_w/M_n). Процесс биологического окисления НЦ может происходить путем отщепления групп NO₂ и NO₃ либо путем разрыва связи С-С. Если наличие нитрати нитрит-ионов может служить доказательством протекания реакции в первом направлении, то изменение вязкости связано с молекулярным весом полимера и демонстрирует способность микроорганизмов расщеплять эту связь. Результаты измерения вязкости растворов НЦ в ацетоне показывают, что в результате инкубации НЦ с АИ происходит значительный рост величины как абсолютной, так и динамической вязкости по сравнению с контрольным образцом (табл. 3).

Видно, что НЦобр имеет несколько меньшую вязкость в растворе ацетона, чем исходная НЦ. Во всех вариантах исследования (кроме эксперимента в реакторе № 3) уже к 5-м суткам инкубации наблюдается значительное увеличение вязкости раствора НЦ в ацетоне по сравнению с исходной. Вязкость нарастает до 16 сут инкубации, а затем снижается в реакторах №№ 2, 3, 4 и 6. Совсем иная картина наблюдается в реакторе № 3, содержащем исходную НЦ. В этом реакторе вязкость ацетоновых растворов ацетона остается близкой к исходным значениям в течение всего времени инкубации (38 сут). Самые высокие показатели вязкости – 13.25 для абсолютной вязкости и 16.51 для динамической наблюдаются в реакторе № 4, где использована НЦ, обработанная УФ-облучением и озоном. Вязкость растворов НЦ после инкубации с АИ, подвергнутым мутагенной обработке (реакторы № 5 и № 6), также выше, чем у исходной нитроцеллюлозы. Причем вязкость растворов росла в зависимости от времени биологического воздействия на НЦ. Применение обработки нитрозометилмочевиной в реакторе № 6, содержащем НЦ_{обр}, приводило к снижению вязкости по сравнению с результатами, полученными в реакторах № 4 и № 5. Однако в реакторе № 6 абсолютная и динамическая вязкости были в 2–2.5 раза выше, чем в реакторе № 1 и почти в 10 раз выше, чем в исходной НЦ.

САРАТОВСКИХ и др.

Образен	Brand Out	Вязи	кость		
Образец	бремя, сут	абсолютная, сПа	динамическая, сСт	M _n	$M_{ m w}$
Ацетон (сравнение)		$0.28 \pm 8 \cdot 10^{-4}$	$0.35 \pm 7 \cdot 10^{-4}$		
НЦисх		$0.58 \pm 7 \cdot 10^{-4}$	$0.73 \pm 8 \cdot 10^{-4}$	8600 ± 30.1	27500 ± 96.0
НЦ _{обр}		$0.50 \pm 7 \cdot 10^{-4}$	$0.62 \pm 7 \cdot 10^{-4}$	6750 ± 24.4	20200 ± 93.0
1	5	$2.01 \pm 8 \cdot 10^{-3}$	$2.51 \pm 8 \cdot 10^{-3}$	19300 ± 67.5	127800 ± 440.0
	16	$2.04 \pm 7 \cdot 10^{-3}$	$2.54 \pm 8 \cdot 10^{-3}$	13800 ± 48.3	89800 ± 300.0
	38	$2.40 \pm 7 \cdot 10^{-3}$	$2.99 \pm 6 \cdot 10^{-3}$	10800 ± 32.5	77630 ± 270.0
2	5	$8.44 \pm 2 \cdot 10^{-2}$	$10.53 \pm 3 \cdot 10^{-2}$	12600 ± 38.7	32200 ± 96.9
	16	$10.24 \pm 3 \cdot 10^{-2}$	$12.77 \pm 3 \cdot 10^{-2}$	11000 ± 33.4	30200 ± 95.0
	38	$8.60 \pm 3 \cdot 10^{-2}$	$10.72 \pm 2 \cdot 10^{-2}$	5350 ± 10.8	24300 ± 90.7
3	5	$0.51 \pm 8 \cdot 10^{-4}$	$0.64 \pm 7 \cdot 10^{-4}$	15400 ± 50.1	40800 ± 142.0
	16	$0.55 \pm 7 \cdot 10^{-4}$	$0.69 \pm 8 \cdot 10^{-4}$	13400 ± 47.6	49500 ± 153.0
	38	$0.45 \pm 8 \cdot 10^{-4}$	$0.57 \pm 7 \cdot 10^{-4}$	13900 ± 44.9	32200 ± 97.3
4	5	$9.37 \pm 2 \cdot 10^{-2}$	$11.69 \pm 2 \cdot 10^{-2}$	6600 ± 21.3	20500 ± 90.6
	16	$10.97 \pm 2 \cdot 10^{-2}$	$13.68 \pm 3 \cdot 10^{-2}$	4800 ± 12.5	18400 ± 64.4
	38	$13.25 \pm 3 \cdot 10^{-2}$	$16.51 \pm 2 \cdot 10^{-2}$	5350 ± 11.3	23640 ± 95.0
5	5	$5.98 \pm 8 \cdot 10^{-3}$	$7.46 \pm 1 \cdot 10^{-2}$	15500 ± 51.6	52600 ± 155.0
	16	$8.52 \pm 2 \cdot 10^{-2}$	$10.62 \pm 2 \cdot 10^{-2}$	13400 ± 40.7	32200 ± 98.7
	38	$13.34 \pm 3 \cdot 10^{-2}$	$16.62 \pm 3 \cdot 10^{-2}$	19640 ± 63.3	51950 ± 150.0
6	5	$4.41 \pm 8 \cdot 10^{-3}$	$5.49 \pm 6 \cdot 10^{-3}$	14500 ± 47.3	45700 ± 148.0
	16	$4.75 \pm 8 \cdot 10^{-3}$	$5.92 \pm 8 \cdot 10^{-3}$	12300 ± 35.5	37700 ± 98.4
	38	$3.10 \pm 7 \cdot 10^{-3}$	$3.86 \pm 6 \cdot 10^{-3}$	17080 ± 53.9	48500 ± 149.0

Таблица 3. Изменение вязкости растворов в процессе биологической обработки нитроцеллюлозы

Примечание: номера образцов соответствуют составам из табл. 1.

Известно, что высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Вязкость возрастает с увеличением длины макромолекулы и степени ее вытянутости [19], а также с увеличением сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора.

Полученные нами данные об изменении вязкости растворов однозначно свидетельствуют, что деформация молекул НЦ и НЦ_{обр} в реакторах №№ 1— 6, за исключением реактора № 3, приводила к преобразованию клубкообразных молекул в линейные структуры. Вероятно, в реакторе № 3 по неизвестным причинам этого изменения не произошло.

Для углубленного анализа изменений состояния НЦ в процессе биологической деструкции также был выполнен контроль молекулярно-массового распределения образцов (табл. 3). Видно, что первоначальная обработка НЦ (УФ + озон) способствует уменьшению ММ полимера при дальнейшей инкубации в присутствии микроорганизмов в аналогичных вариантах — *М_n* в образцах из реактора № 1 (АИ + НЦ) изменяется в зависимости от времени выдержки: $M_n = 19300, 13800, 10800.$ В реакторе № 2, в котором использована НЦобр, молекулярная масса составила 12600, 11000, 5350 в эти же промежутки времени инкубации. Такая же картина сохраняется и в других парных вариантах обработки: в реакторах № 3 и № 4, № 5 и № 6. Добавление бактерий D. desulfuricans штамма BKM B-1388 и грибов F. solani штамма ВКМ F-819 к АИ в реакторе № 4, содержащем НЦ_{обр}, приводит к тому, что значения *M_n* (6600, 4800, 5350) и *M_w* (20500, 18400, 23640) образцов из этого реактора в 2-2.8 раз ниже, чем в реакторе № 3: $\dot{M}_n = 6600, 4800, 5350$ за 5,

Рис. 2. Кривые ММР для следующих образцов: *1* – исходная НЦ, *2* – НЦ_{обр}.

16 и 38 сут обработки соответственно. Это самые низкие значения MM из всех вариантов обработки. Следует отметить, что эффект снижения MM в образцах из всех реакторов наблюдается уже через первые 5 сут инкубации. В реакторах № 3– 6 минимальные значения MM наблюдаются на 16-е сутки инкубации и несколько возрастают к 38-м суткам. Кривые MMP исходных образцов имеют близкие характеристики (рис. 2). Кривые MMP для образцов из реакторов, содержащих HЦ_{обр}, показывают наилучшие результаты (рис. 3).

Из кривых, представленных на рис. 3, видно, что инкубация НЦ с АИ приводит к возникнове-

нию низкомолекулярных фракций полимера, что может свидетельствовать о расщеплении связи С-С ферментами микроорганизмов, присутствующих в биоценозе АИ. В результате биологической обработки с АИ и дополнительного введения бактерий *D. desulfuricans* и грибов *F. solani* в реакторе № 4 НЦ_{обр} уже через 5 сут образуется значительное количество низкомолекулярных продуктов. Доля этих фракций нарастает по мере увеличения времени биологической обработки и доходит до 99–92%.

Влияние НЦ на свойства АИ

Гидробиоценоз исходного АИ после 22 сут инкубации с НЦ разнообразен по видовому составу и обладает низкой активностью. В целом, состояние АИ можно оценить как удовлетворительное: прозрачная надиловая вода, осадок и "хлопок" плотные (табл. 4). Гидробиоценоз предварительно подвергшегося мутагенной обработке активного ила после 22 сут инкубации с НЦ сохраняет видовое разнообразие эукариотных микроорганизмов и низкую активность, однако надиловая вода становится слегка мутной, а "хлопок" — средний по плотности.

До начала эксперимента в контрольном образце АИ идентифицированы 17 видов простейших организмов: представители водорослей, амеб, прикрепленных инфузорий, флагеллаты. Однако после введения загрязнителя происходило уменьшение числа регистрируемых видов до семи. Обработка мутагеном НММ приводила к качественному изменению состава АИ и увеличению регистрируе-

Рис. 3. Кривые ММР образцов $H\coprod_{oбp}$ после 16 сут микробиологической обработки: *1* – $H\amalg_{oбp}$, *2* – реактор № 3 (АИ + $H\amalg + D$. desulfuricans + *Esolani*), *3* – реактор № 6 (АИ + $HMM + H\amalg_{oбp} + D$. desulfuricans + *Esolani*), *4* – реактор № 4 (АИ + $H\coprod_{oбp} + D$. desulfuricans + *F. solani*), *5* – реактор № 2 (АИ + $H\amalg_{oбp}$).

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 7 2022

САРАТОВСКИХ и др.

	Таблица 4. Гидробиологиче	еский состав активного ила	L	
0		Через 22 сут инкубации с НЦ		
Организм	исходныи Аи	исходный АИ	АИ, обработанный НММ	
	Водоросл	ии (Algae)		
Spirulina	+			
Thiotrix sp.		+	+	
Zoogloea ramigera	+			
Нитчатые водные грибы Гифомицеты	+			
	Простейши	ie (Protozoa)		
Amoeba sp.	+	+		
Amoeba proteus			+	
Arcella vulgaris	+		+	
Centropyxis aculeata	+		+	
Diatomae		+	+	
Litonotus sp.			+	
Nematoda	+		+	
Pamphagus hyalinus		+	+	
	Инфузории свободно	плавающие (Infusoria)		
Amphiertus sp.				
Aspidisca sp.	+	+		
Rabdophriya	+			
Thuricola similis	+			
-	Реснитчатые инфуз	зории (Gastrotricha)		
Chaetonotus sp.	много	+	+	
	Инфузории прикре	епленные (Sessilida)		
<i>Epistylis</i> sp.	+	+		
Vorticella alba	+			
Vorticella convularia		+	+	
Vorticella microstoma			+	
	Коловратки	и (Ploimida)		

Kolobparki (<i>Folmuu</i>)					
<i>Colurella</i> sp.		+			
<i>Lecane</i> sp.	+				
Rotaria rotatoria	+		+		

Реактор	Вес сухого АИ, г	Содержание АИ, см ³ /дм ³	Иловый индекс, см ³ /г	pН
Исходный АИ	6.86 ± 0.003	940 ± 3.5	137.00	7.53
Контроль 1 (АИ)	0.76 ± 0.001	40 ± 0.30	52.36	7.68
Контроль 2 (АИ + НММ)	0.91 ± 0.002	80 ± 0.60	88.11	7.40
Реактор № 1 (АИ + НЦ)	0.76 ± 0.002	100 ± 0.90	131.58	5.73
Реактор № 2 (АИ + НЦ _{обр})	0.96 ± 0.001	80 ± 0.40	83.07	6.40
Реактор № 3 (АИ + НЦ + б + г)	2.25 ± 0.002	100 ± 0.80	42.53	6.34
Реактор № 4 (АИ + $H \coprod_{oбp} + 6 + г$)	1.51 ± 0.002	64 ± 0.60	44.45	7.00
Реактор № 5 (АИ + НММ + НЦ)	1.39 ± 0.001	130 ± 0.95	93.86	6.53
Реактор № 6 (АИ + HMM + $H\coprod_{obp}$ + σ + Γ)	2.10 ± 0.001	126 ± 0.95	59.95	6.82

Таблица 5. Изменение илового индекса АИ

Примечание: б – бактерии, г – грибы.

мого видового разнообразия: биоценоз представлен двумя типами водорослей и четырьмя классами беспозвоночных (реснитчатые, жгутиконосцы, нематоды, коловратки), заметно увеличивалась и численность простейших.

Показателем качества АИ является его иловый индекс (ИИ), характеризующий состояние АИ и его седиментационные свойства [20]. Как правило, АИ, обладающий хорошими седиментационными свойствами, характеризуется величиной ИИ, составляющей от 60–90 до 120–150 мг/л. Резкое увеличение ИИ может быть связано как со слишком высокими, так и слишком низкими нагрузками на АИ, в результате чего наблюдается его "вспухание". При высоких значениях ИИ, активный ил будет выноситься из вторичного отстойника вместе с очищенной водой, ухудшая степень ее очистки. Величины ИИ для АИ после 65 сут инкубации с НЦ представлены в табл. 5.

В контрольном реакторе АИ сильно терял свои окислительные свойства (контроль 1, табл. 5), что происходило, вероятно, из-за недостаточной аэрации. Проведенная обработка нитрозометилмочевиной позволила сдерживать уменьшение ИИ, т.е. способствовала поддержанию окислительной способности АИ в течении 65 сут (контроль 2, табл. 5). Как видно из табл. 5, присутствие как обработанной, так и нативной НЦ снижает показатели ИИ. Самый низкий ИИ зафиксирован в реакторах № 3 и № 4, в которых к АИ были добавлены бактерии и грибы. Такой ил обладает хорошими седиментационными свойствами, однако для него также характерна низкая скорость прироста биомассы, связанная с понижением активности его метаболизма, что в результате не позволяет поддерживать необходимую нагрузку на АИ [20]. В аналогичном варианте биологической обработки – в реакторах № 5 и № 6 АИ был обработан НММ. В результате снижение ИИ в них не столь заметное и остается

в рамках, требуемых для илового индекса в АИ химических комбинатов: 50–90 см³/г [21].

Анализ состояния АИ после инкубации с НЦ в течение 65 сут показывает, что сообщество простейших и грибов сохранило свое разнообразие. Вероятно, эти микроорганизмы участвовали в деградации НЦ [22]. Предварительная обработка нитрозометилмочевиной позволяет в значительной степени сохранять окислительные свойства АИ и не приводит к образованию взвешенных частиц с высокой плотностью [20], т.е. к "слипанию" частиц НЦ. Использование мутагенной обработки АИ стабилизирует значение ИИ, что указывает на создание условий, оптимальных для жизнедеятельности биоценоза АИ в данном процессе очистки НЦ, а также на правильность выбора режима эксплуатации установки аэробной биологической очистки.

ЗАКЛЮЧЕНИЕ

В проведенном исследовании установлено, что НЦ разлагается биологическими деструкторами – микроорганизмами. За период до 38 сут пребывания под действием различных микроорганизмов – потенциальных биологических деструкторов степень биодеградации НЦ исследованными микроорганизмами составила 24.36%.

Из отдельных видов микроорганизмов наиболее существенные результаты разложения НЦ достигнуты при окислении НЦ мицелиальным грибом *F. solani* штамма ВКМ F-819. Использование предварительной обработки УФ-облучением и озоном значительно повышает степень разложения НЦ. Для биодеградации эффективно создание симбиоза микроорганизмов *D. desulfuricans* (штамм ВКМ B-1388) и *F. solani* (штамм ВКМ F-819) с биоценозом микроорганизмов АИ.

Показано, что применение мутагенной обработки АИ нитрозометилмочевиной позволяет биоценозу микроорганизмов активного ила с высокотоксичным и трудноразлагаемым загрязнителем — НЦ сохранять высокую окисляющую способность с хорошими седиментационными свойствами в течение 65 сут инкубации.

Работа выполнена в рамках госзадания № 0089-2019-0014 (регистрационный номер АААА-А19-119071890015-6).

СПИСОК ЛИТЕРАТУРЫ

- 1. Трофимов В.С., Веретенников В.А., Петров Е.В. // Хим. физика. 2021. Т. 40. № 4. С. 63; https://doi.org/10.31857/S0207401X21040129
- 2. Анпилова А.Ю., Масталыгина Е.Е., Храмеева Н.П., Попов А.А. // Хим. физика. 2020. Т. 39. № 1. С. 66; https://doi.org/10.31857/S0207401X20010021
- 3. *Назин Г.М., Дубихин В.В., Гончаров Т.К. и др.* // Хим. физика. 2021. Т. 40. № 7. С. 16; https://doi.org/10.31857/S0207401X21070050
- Gallo B., Allen A., Bagalawis R.L. et al. // Microbial degradation of nitrocellulose. Nitrocellulose fines separation and treatment workshop proceedings. Champaign, IL: US Army Construction Engineering Research Laboratory, 1993.
- 5. *White G.F., Snape J.R.* // J. Gen. Microbiol. 1993. V. 139. P. 1947;
- https://doi.org/10.1099/00221287-139-9-1947
- 6. Попов А.А., Зыкова А.К., Масталыгина Е.Е. // Хим. физика. 2020. Т. 39. № 6. С. 71; https://doi.org/10.31857/S0207401X20060096
- Применение химических мутагенов в защите среды от загрязнения и в сельско-хозяйственной практике / Под ред. Рапопорта И.А. М.: Наука, 1981.
- Человек и среда его обитания / Под ред. Лисичкина Г.В., Чернова Н.Н. М.: Мир, 2003.
- 9. *Жмур Н.С.* Технологические и биохимические процессы очистки сточных вод на сооружениях с аэротенками. М.: Акварос, 2003.

- Силантьева Н.С., Замелин В.И., Федосова Н.Ф. // Применение химических мугагенов в защите среды от загрязнения и в сельско-хозяйственной практике / Под ред. Рапопорта И.А. М.: Наука, 1981. С. 49–52.
- 11. Лебедь Э.С., Загустина Н.А., Бартошевич Ю.Э., Безбородов А.М. // Там же. С. 71–73.
- 12. Ванифатьева М.Т., Филиппов Н.А., Сергиенко З.М. // Там же. С. 41-42.
- Калинина И.Г., Иванов В.Б., Семенов С.А. и др. // Хим. физика. 2021. Т. 40. № 6. С.71; https://doi.org/10.31857/S0207401X21060054
- 14. Саратовских Е.А., Казаков А.И., Хрячков В.А., Яруллин Р.Н. // Рос. хим. журн. 2016. Т. LX. № 4. С. 106.
- 15. Хрячков В.А., Е.А. Саратовских Е.А., Яруллин Р.Н., Куликов А.В. // Хим. физика. 2017. Т. 36. № 8. С. 82; https://doi.org/10.7868/S0207401X17080052
- Саратовских Е.А., Щербакова В. А., Саратовских Е. А., Яруллин Р.Н. // Прикл. биохимия и микробиол. 2018. Т. 54. № 1. С. 55; https://doi.org/10.7868/S0555109918010075
- Беляева М.А., Гюптер Л.И. // Биолог. науки. 1969. № 7. С. 89.
- Липеровская Е.С. Итоги науки и техники. Общая экология. Биоценология. Гидробиология. Т. 4. Сер. М.: ВИНИТИ, 1977. С. 25.
- 19. Лосев И.П., Тростянская Е.Б. Химия синтетических полимеров. М.: Госхимиздат, 1960.
- Яковлев С.В., Ганин Б.А., Матросов А.С., Кольчугин Б.М. Совместная обработка осадков сточных вод и осадков, образующихся на водопроводных станциях. М.: Стройиздат, 1990.
- Ласков Ю.М., Воронов Ю.В., Калицун В.И. Примеры расчетов канализационных сооружений. М.: Стройиздат, 1987.
- 22. Ксенофонтов Б.С. Очистка сточных вод: флотация и сгущение осадка. М.: Химия, 1992.