ХИМИЧЕСКАЯ ФИЗИКА ПОЛИМЕРНЫХ МАТЕРИАЛОВ

УДК 535.71

ТОПОЛОГИЯ, МИКРО- И НАДМОЛЕКУЛЯРНАЯ СТРУКТУРА ЭТИЛЕНПРОПИЛЕНДИЕНОВЫХ ЭЛАСТОМЕРОВ И ОСОБЕННОСТИ ИХ СОВМЕЩЕНИЯ С БУТАДИЕН-НИТРИЛЬНЫМИ КАУЧУКАМИ

© 2022 г. Н. М. Ливанова^{1*}, В. А. Хазова¹, Е. С. Правада^{1**}, Ю. О. Андриасян¹, А. А. Попов^{1, 2}

¹Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, Москва, Россия ²Российский экономический университет им. Г.В. Плеханова, Москва, Россия *E-mail: livanova@sky.chph.ras.ru **E-mail: ekaterina.pravada@yandex.ru Поступила в редакцию 16.09.2021;

после доработки 03.12.2021; принята в печать 20.12.2021

В работе рассмотрены особенности межфазного взаимодействия в вулканизатах на основе смесей бутадиен-нитрильных каучуков (БНК) со статистическим и блочным расположением акрилонитрильных звеньев и этиленпропилендиеновых эластомеров (СКЭПТ) — синтетический каучук этилен-пропиленовый тройной с линейной и разветвленной структурой цепи и различной стереорегулярностью пропиленовых звеньев. Установлено влияние флуктуационной сетки этиленовых звеньев с высокой микроблочностью в разветвленном СКЭПТ и паракристаллических изотактических пропиленовых структур в линейном СКЭПТ на направленность и интенсивность межфазного взаимодействия. Показано, что участие блочных дефектных структур БНК в межфазном взаимодействии этих сополимеров минимизировано на фоне вклада доли свободного объема *транс*-1,4-звеньев бутадиена в междефектные области матрицы вблизи дефектных структур БНК.

Ключевые слова: бутадиен-нитрильный каучук, тройной этиленпропиленовый сополимер, дефекты структуры, доля свободного объема, смеси каучуков, межфазное взаимодействие.

DOI: 10.31857/S0207401X2207010X

введение

В работах [1-6] установлена структура дефектных областей в статистических и блочных сополимерах бутадиена с акрилонитрилом (бутадиеннитрильных каучуков (БНК)) с различным содержанием полярных звеньев. Показано, что в них происходит абсорбшия низкомолекулярных соединений. С помощью расчета соотношения акрилонитрильных (АН) звеньев и числа нарушений регулярности звеньев бутадиена, находящихся преимущественно в *транс*-1,4-конфигурации, и анализа данных ЯМР-спектроскопии [7-11] обнаружено, что центрами сорбции являются дефекты структуры, образованные чередованием акрилонитрильных и транс-1,4-звеньев бутадиена и цис-1,4- и 1,2-конформерами. Транс-1,4-звенья бутадиена, находящиеся в междефектных областях матрицы, образуют упорядоченные структуры, в которых абсорбция низкомолекулярных веществ затруднена [3, 12, 13]. Установлена идентичность центров сорбции в каучуках и резинах на их основе, что свидетельствует об их устойчивости в условиях термомеханических воздействий.

В работе [4] установлено, что формирование межфазного слоя в смесях БНК с этиленпропилендиеновыми эластомерами (СКЭПТ) — синтетический каучук этилен-пропиленовый тройной также происходит с участием дефектных структур БНК. Совместимость полимеров и закономерности межфазного взаимодействия в смесях эластомеров с различной полярностью рассматриваются в ряде монографий и обзоров [14–20].

В работах [4, 21] интенсивность межфазного взаимодействия, объем и плотность межфазного слоя охарактеризованы величиной отклонения ($-\alpha$) равновесной степени набухания совулканизатов бутадиен-нитрильных и этиленпропилендиеновых эластомеров от аддитивных значений в селективном растворителе н-гептане (метод Заппа [21–23]). В работе [4] установлена корреляция величины отклонения $-\alpha$ с долей свободного объема в дефектах структуры БНК, рассчитанной по индивидуальному вкладу каждой структурной единицы.

Увеличение доли свободного объема в дефектах способствует образованию более развитого межфазного слоя, объем и плотность которого за-

Manya KHK		Содержание звеньев, %	
Марка БШК	транс-1,4	1,2	цис-1,4
БНКС-18	82.0	8.2	9.8
БНКС-28	76.4	14.4	9.2
БНКС-40	93.0	4.4	2.6

Таблица 1. Изомерный состав бутадиеновых звеньев в сополимерах бутадиена с акрилонитрилом

Примечание: коэффициенты поглощения (л/см · моль) для полосы ИК-спектра при 910 см⁻¹ (1,2-звенья) – 195.5, при 967 см⁻¹ (*транс*-1,4-звенья) – 77.7, при 730 см⁻¹ (*цис*-1,4-звенья) – 32.2 [25].

висят от состава и структуры СКЭПТ [1–6]. Метод дает возможность определить структуру дефектов, участвующих и не участвующих в межфазном взаимодействии в зависимости от состава и микроструктуры СКЭПТ [1–6].

Вследствие вариаций в условиях полимеризации сополимеров СКЭПТ производства различных фирм при близком сомономерном составе могут различаться топологией цепей, степенью разветвленности, микроструктурой, стереоизомерией пропиленовых звеньев, регулярностью и размером последовательностей звеньев одной природы, определяющей их способность к образованию надмолекулярных структур, и, как следствие, свойствами.

В настоящей работе исследованы особенности межфазного взаимодействия в зависимости не только от состава сополимеров СКЭПТ, но и от разветвленности их цепей, конфигурации пропиленовых звеньев (степени их изотактичности [1– 6]), структуры и объема этиленовых, пропиленовых и смешанного состава паракристаллических образований. Показано также влияние содержания АН-звеньев в БНК и характера их распределения по цепи (статистического или блочного) на интенсивность межфазного взаимодействия с участием дефектных структур БНК и нарушений упорядоченности *транс*-1,4-звеньев бутадиена в междефектных областях матрицы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объектами исследования были совулканизаты БНК со СКЭПТ марок "Royalen" (R521) компании "Lion" (USA) и DSM 778 компании Naamloze Vennootschap (Netherlands) с соотношением компонентов 70 : 30 мас. ч. Использовали промышленный БНК марок БНКС-18АМН, БНКС-28АМН и БНКС-40АМН с содержанием акрилонитрильных звеньев 18, 28 и 40% соответственно. Показатели этих каучуков отвечают требованиям ТУ. Вязкость по Муни при 373 К – соответственно 40–50, 45–65, 45–70 у.е. Методом ИК-спектроскопии определено содержание *mpaнc*-1,4-, *цис*-1,4- и 1,2-звеньев бутадиена по полосам при 967, 730 и 911 см⁻¹, соответственно, [24] с использованием коэффициентов экстинкции, измеренных в работе (табл. 1).

Данные по содержанию в СКЭПТ этиленовых и пропиленовых звеньев, диенового компонента этилиденнорборнена, степени изотактичности пропиленовых звеньев и вязкости по Муни приведены в табл. 2. Степень изотактичности пропиленовых звеньев определяли методом ИК-спектроскопии [23] на образцах пленок толщиной около 40 мкм, полученных из раствора каучука в CCl₄ [4, 23-27]. Количество этиленовых и пропиленовых последовательностей различной длины, содержание бутена-1 и полибутена-1 определены в растворе CCl₄ без геля и с гелем (табл. 3) [28, 29]. Оптическую плотность полос ИК-спектров относили к оптической плотности полосы при 1465 см⁻¹ общей для полипропилена (ПП) и полиэтилена (ПЭ) [24].

Состав вулканизующей системы для БНК в мас. ч.: стеариновая кислота – 2.0, сульфенамид – Ц 1.5, оксид цинка – 5.0, сера – 0.75. Сополимер СКЭПТ сшивали пероксимоном F-40 на носителе в количестве 5.5 мас. ч. Смешение каучуков с вулканизующей системой проводили на вальцах при 313–333 К в течение 15 мин. Затем в тех же условиях получали смесь каучуков. Вулканизацию смесей осуществляли при 443 К в течение 15 мин.

Плотность и объем межфазного слоя определены методом набухания в селективном растворителе н-гептане [21, 22]. Компоненты исследованных систем являются термодинамически несовместимыми, поскольку различаются полярностью и структурой неполярных участков цепей. Совместимость полимерных компонентов оценена по величине параметра растворимости $\delta = (E/V)^{1/2}$ (кал/м³)^{1/2} [30]. Величина $\delta =$ $= \Pi \Im K^{1/2}$, где $\Pi \Im K$ – плотность энергии когезии. Для сополимеров бутадиена с акрилонитрилом величина $\delta \cdot 10^{-3}$ (кал/м³)^{1/2} для указанных составов составляет: 82: 18 – 8.7, 70: 30 – 9.64, 61: 39 – 10.30, для полиакрилонитрила – 14.5, сополимеров этилена с пропиленом – 7.95, полибутадиена – 8.44 и н-гептана – 7.4 [30].

Отклонение равновесной степени набухания (-α) от аддитивной величины рассчитана следующим образом [22]:

	=	=	=		
Марка СКЭПТ	Этилен/пропилен*,	Степень	Содержание диена,	Вязкость по	о Муни, у.е.
Марка СКОПТ	мас.%	изотактичности, %	мас.%	при 100°С	при 125°С
R 512	68/32	20	4	80	57
R 505	57/43	24	8	82	55
R 521	52/48	22	5	45	29
DSM 778	65/35	13	4.5	—	63
DSM 714	50/50	12	8	—	63
DSM 712	52/48	11	4.5	—	63

Таблица 2. Состав, степень изотактичности пропиленовых звеньев, содержание диена и вязкость по Муни этиленпропилендиеновых эластомеров

* Данные фирмы-производителя.

$$-\alpha = \left[(Q_{a\pi} - Q_{p}) / (Q_{a\pi} - Q_{2}) \right] \cdot 100\%,$$

где $Q_{\rm p}$ — равновесная степень набухания совулканизата, $Q_{\rm ag}$ — аддитивная величина, полученная из значения равновесной степени набухания вулканизатов каждого из каучуков, Q_2 — доля набухания БНК.

Вулканизация СКЭПТ пероксимоном F-40 на носителе позволяет минимизировать количество вымывающихся веществ при набухании в растворителе. Ошибка определения равновесной степени набухания составляет ~5%. Увеличение отклонения Q_p от Q_{aq} (рис. 1) обусловлено меньшей плотностью межфазных слоев по сравнению с фазами при слабом межфазном взаимодействии термодинамически несовместимых компонентов [4–6, 12–22, 28, 29].

Структура дефектных областей БНК и доля свободного объема в них обсуждаются в работах [1-6]. Из данных табл. 1 следует, что суммарное содержание *цис*-1,4- и 1,2-структур бутадиена примерно равно количеству АН-звеньев в БНКС-18 и БНКС-28, а в БНКС-40 оно в ~6 раз меньше. Методом ЯМР-спектроскопии [7-10] установлено, что длина последовательности чередующихся АН-(А) и *транс*-1,4-бутадиеновых (В) звеньев [8, 9] в блочных сополимерах с 40% акрилонитрила альтернативных АВ-блоков увеличивается до 7-8 единиц, а количество ВВВ-блоков снижается до нуля [9].

Из работ [7–10] также следует, что помимо триад состава АТА имеются триады составов АVС, АСС и диады составов AV, АС, СС, VC, где Т – *транс*-1,4-, V – 1,2-, С – *цис*-1,4-звенья бутадиена. Структура дефектных областей может быть представлена следующим образом: (TA)_nV, (TA)_nC, (TA)_nVC [2–6].

По содержанию АН-звеньев и изомерному составу бутадиенового компонента (табл. 1) определена структура дефектных областей для каждой марки БНК. По индивидуальному вкладу каждой структурной единицы оценена доля свободного объема в них [2–6]. Согласно правилу БойераСимхи, $(\alpha_{\rm m} - \alpha_{\rm c})T_{\rm c} \approx 0.113$ [31], по величине температурного коэффициента объемного расширения в высокоэластическом состоянии $(\alpha_{\rm m})$ и температуре стеклования $(T_{\rm c})$ рассчитана доля свободного объема $(f_{\rm c})$ при комнатной температуре: $f_{\rm c} = 0.025 + \alpha_{\rm m}$ (294 – $T_{\rm c}$) [29–31]. В полибутадиенах (ПБ) $f_{\rm c}$ составляет: 0.1447 в *цис*-ПБ, 0.0473 в *транс*-ПБ, 0.0398 в 1,2-ПБ. Аналогично величины $f_{\rm c}$ оценены в бутадиен-нитрильных эластомерах: 0.0741 в БНКС-18, 0.0601 в БНКС-28, 0.0562 в БНКС-40. Доля свободного объема АН-звеньев $f_{\rm c}^{\rm A}$ в БНКС-18 равна 0.0990, в БНКС-28 – 0.0174, в БНКС-40 – 0.0167.

Доля свободного объема в дефектах структуры согласно составу сополимеров и изомерии бутадиеновых звеньев (табл. 1) составляет [4, 6]:

в БНКС-18 I (ATAVC) \cdot 0.082 = 0.0352; II (ATACC) \cdot 0.008 = 0.0043; Σ = 0.0395;

B GHKC-28 I (ATAVC) · 0.092 = 0.0245; II (ATAVTATAV) · 0.026 = 0.007567; $\Sigma = 0.0321$;

B BHKC-40 I (ATATATATATATATATATAVC) \cdot 0.026 = 0.0185; II (ATATATATATATATATAV) \cdot 0.018 = 0.01024; Σ = 0.0288.

В работе [4] установлена корреляционная зависимость величин $-\alpha$, $-\alpha^{100\%}$ (при пересчете величины -α на 100% содержания бутадиеновых звеньев) совулканизатов БНК со СКЭПТ от доли свободного объема в дефектах структуры. Для большинства исследованных систем совмещение осуществляется только с дефектами, содержащими структуры AVC в БНКС-18 и БНКС-28 и (AVC+AV) в БНКС-40 [2-6]. Сополимер БНКС-40 характеризуется максимальным расстоянием межлу цепями в связи с повышенным количеством АНзвеньев и блочным их расположением [32]. В работе [4] на основании экспериментальных данных по связи вращательной динамики зондов и абсорбции растворителей со структурой дефектных микрообластей и величины свободного объема в них показано, что СКЭПТ с высоким содержанием этиленовых звеньев и пропиленовых после-

	Таблица .	3. Состав СКЭПТ, сти и пропиленовых пос	епень изотакт ледовательно	гичности проп стей (<i>D</i> _m) раз	иленовых зве личной длинь	ньев, содерж 1, а также бу	ание в СКЭ гена-1 и пол	ПТ этиленов ибутена-1	$\operatorname{bix}(G_n)$	
Марка СКЭПТ	Этилен/ пропилен*	Степень изотактичности, %	$G_{n=1}$ (815 cm ⁻¹)	$G_{n=2}$ (752 cm ⁻¹)	$G_{n=3}$ (735 cm ⁻¹)	$G_{n\geq 5}$ (722 cm ⁻¹)	$D_{m\geq 4}$ (973 cm ⁻¹)	$D_{m < 10}$ (1155 cm ⁻¹)	Бутен-1 (765 см ⁻¹)	Полибутен-1 (787 см ⁻¹)
R 512 (p-p)	55/45	15	0.041	0.043	0.092	0.167	0.053	0.074	0.014	0.001
R 512 (p-p c reurem)	63/37	19	0,040	0.146	0. 185	0.249	0.062	0.079	0.259	0.349
R 505 (p-p)	59/41	24	0.079	0.035	0.085	0.184	0.061	0.052	0≈	0≈
R 521 (p-p)	54/46	22	0.048	0.024	0.045	0.146	0900	0.173	∞	0≈
R 521 (p-p c re.rem)	54/46	30	0.065	0.016	0.024	0.131	0.076	0.087	0.055	0.048
778 (p-p)	70/30	13	0.043	0.030	0.069	0.279	0.049	0.073	0.025	0.051
778 (р-р с гелем)	68/32	13	0.119	0.142	0.124	0.293	0.040	0.067	0.208	0.256
714 (p-p)	50/50	12	0.045	0.020	0.051	0.175	0.043	0.079	0≈	0≈
712 (p-p)	57/43	Π	0.053	0.027	0.096	0.167	0.035	0.065	∞	0≈
712 (р-р с гелем)	57/43	20	0.079	0.040	0.053	0.176	0.054	0.083	0.048	0.044
Примечание: p-p – p	acrbop.									

ЛИВАНОВА и др.

70

ХИМИЧЕСКАЯ ФИЗИКА том 41

2022

№ 7

Рис. 1. Зависимость величин $-\alpha$ (1, 2), $-\alpha^{100\%}$ (3, 4) и $-\alpha^{4uc+1,2}$ (5, 6) от доли свободного объема f_c в дефектах структуры AVC в БНКС-18 и БНКС-28, от доли свободного объема $f_c^{\text{БНК}}$ в БНКС-40 (1, 3, 5), от доли свободного объема Σf_c во всех дефектах структуры в БНКС-18 и БНКС-28 и от доли свободного объема $f_c^{\text{БНК}}$ в БНКС-40 (2, 4, 6) совулканизатов со СКЭПТ марки 778 фирмы DSM.

довательностей в изотактической конфигурации совмещаются со всеми дефектами структуры: (AVC+ACC) в БНКС-18, (AVC+AV) в БНКС-28 и БНКС-40. Это установлено по данным о зависимости величин $-\alpha$, $-\alpha^{100\%}$ от содержания в БНК нарушений регулярности структуры бутадиеновых звеньев, находящихся преимущественно в *транс*-1,4-конфигурации. Для всех совулканизатов, кроме БНК со СКЭПТ марок 778 и R 521, величина достоверности аппроксимации R^2 составляет 0.97–0.99.

На основании экспериментальных данных о зависимости величины –α, характеризующей интенсивность межфазного взаимодействия, от величины свободного объема в дефектах структуры БНК, состава СКЭПТ и степени изотактичности пропиленовых звеньев [1–6] показано, что формирование межфазного слоя происходит путем диффузионного проникновения участков цепей СКЭПТ в дефектные области более жесткого компонента (БНК). При высоком содержании этиленовых звеньев с повышенной гибкостью образуется более

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 7 2022

развитый межфазный слой, но его плотность зависит от степени изотактичности пропиленовых звеньев.

В совулканизатах со СКЭПТ фирмы DSM с низкой степенью изотактичности пропиленовых фрагментов цепей с ростом свободного объема в дефектах структуры БНК происходит увеличение отклонения равновесной степени набухания Q_p от аддитивных значений (рост величины $-\alpha$). Плотность межфазного слоя мала и чем больше его объем, тем больше величина $-\alpha$ [1–6]. При высокой стереорегулярности пропиленовых звеньев плотность межфазного слоя значительно выше и с увеличением доли свободного объема в дефектных областях величина $-\alpha$ уменьшается.

Лучшая совместимость БНК со СКЭПТ с большим количеством этиленовых и изотактических пропиленовых звеньев объясняется высокой гибкостью этиленовых участков цепей и повышенной жесткостью изотактических пропиленовых последовательностей в связи с затрудненностью конформационных переходов [33]. Потенциальный барьер переходов между поворотными изомерами мономерных единиц изотактического полипропилена составляет 21 кДж/моль, в то время как в ПЭ потенциальный барьер Т-G-переходов составляет 2.5 кДж/моль, G-G-переходов – 8.8– 10 кДж/моль. В результате проникновения стереорегулярных пропиленовых звеньев в области, содержащие полярные звенья, увеличиваются объем и плотность межфазного слоя с локальным снижением последней [1–6].

Величина – α коррелирует с долей свободного объема всей фазы БНК, $f_c^{\text{БНК}}$, только совулканизатов со СКЭПТ с высоким содержанием этиленовых звеньев, которые совмещаются со всеми дефектами структуры [1–6]. Для остальных СКЭПТ пропорциональная зависимость не наблюдается. Эта зависимость иллюстрирует участие междефектных областей фазы БНК в межфазном взаимодействии. В работе [3] показано, что аморфизация структуры *транс*-1,4-звеньев в междефектных областях полимерной матрицы БНК происходит в непосредственной близости от структурных дефектов. Именно эти участки междефектных областей матрицы БНК с наибольшей вероятностью участвуют в межфазном взаимодействии.

Только для смесей БНК со СКЭПТ марок 778 (DSM) и R 521 аналогичные зависимости величин $-\alpha$, $-\alpha^{100\%}$ или $-\alpha^{uuc+1,2}$ (при перерасчете величины $-\alpha^{100\%}$ на 100% содержания *цис*-1,4 + 1,2-звеньев бутадиена, входящих в структуру дефектов) от доли свободного объема в дефектах не получены [34, 35]. В работах [36–38] показано, что вследствие особенностей структуры этих СКЭПТ способность к совмещению с дефектными областями БНК зависит от содержания полярных АНзвеньев и характера их распределения по цепи.

Подробно исследованы микроструктура цепей разветвленного СКЭПТ марки 778 фирмы DSM с высоким содержанием этиленовых звеньев и их повышенной микроблочностью и закономерности совмещения с БНК, т.е. характер распределения введенного компонента по фазе статистических и блочных БНК различной полярности. Аналогичное рассмотрение проведено для СКЭПТ марки R 521 с высоким содержанием пропиленовых звеньев в изотактической конфигурации [3].

Сополимер фирмы DSM марки 778 отличается от других сополимеров этой фирмы микроструктурой цепей и надмолекулярной структурой. Гель в этом сополимере значительно обогащен пропиленовыми звеньями как регулярного присоединения "голова-хвост" ($G_{n = 1}$), так и инверсного присоединения "голова-голова" ($G_{n = 2}$) и чередующимися этиленовыми и пропиленовыми звеньями ($G_{n = 3}$) (табл. 3). В растворе без геля и с гелем содержатся последовательности этиленовых звеньев длиной более пяти мономерных единиц: $G_n \ge 5$ (табл. 3) [19]. По данным термомеханического анализа [37, 38] в этом сополимере наблюдается переход при 298 К, обусловленный распадом надсегментарных флуктуационных микрообластей, образованных последовательностями этиленовых звеньев в ~20 группах (λ -релаксационный процесс) [12, 38, 39]. При этом имеется большое количество нарушений ближнего порядка в расположении цепей, которые характеризуются большей свернутостью и длиной в аморфных прослойках [38].

Кроме того, в геле содержится повышенное количество громоздких звеньев бутена-1 и полибутена-1, так же как и в других СКЭПТ с высоким содержанием этиленовых звеньев [28, 29]. Растворение такой фракции в СКЭПТ марки R 512 в толуоле начинается при 30–35°С, интенсивное – при 45°С, а полное – при 70°С, что объясняется наличием упорядоченных полиэтиленовых структур [12].

Методом спинового зонда исследована температурная зависимость вращательной подвижности нитроксильного радикала ТЕМПО (2,2,6,6-тетраметилпиперидин-1-оксил) в матрице СКЭПТ [13, 36, 39]. Обнаружены переходы, обусловленные процессами λ -релаксации, связанными с распадом упорядоченных микрообластей, образованных звеньями этилена и изотактическими последовательностями пропиленовых звеньев. Эффективная энергия активации λ -релаксаци-онного процесса в СКЭПТ марки 778 составляет 40 кДж/моль, что соответствует энергии активации вязкого течения разветвленного ПЭ (38–45 кДж/моль) [39, 40].

В сополимерах фирмы DSM аморфные области матрицы состоят из пропиленовых звеньев, представленных атактической фракцией, неспособной к кристаллизации (перегибы на зависимостях времени корреляции τ_c от температуры отсутствуют) [38]. Вращательная подвижность радикала по времени корреляции в аморфных областях, содержащих пропиленовые звенья, в СКЭПТ марки 778 близка к среднему из значений т_с в ПЭНП и атактическом полипропилене (аПП): τ_{c} $(\Pi \Theta H\Pi) + \tau_c (a\Pi \Pi)/2 [38]. В этих эластомерах$ присутствуют надмолекулярные структуры только этиленовых звеньев, что коррелирует с массой фракции, нерастворимой в толуоле при комнатной температуре. Совпадение величин энергии активации вязкого течения разветвленного ПЭ и λ-процессов релаксации микроблоков в СКЭПТ марки 778 указывает на единый механизм этих процессов [15, 16, 39].

В геле СКЭПТ марки R 521 содержится в 5.3 раза меньше полибутена-1 (табл. 3). Поскольку СКЭПТ этой марки содержит больше пропиленовых звеньев, которые имеют изотактическую конфигурацию (10.5%, а в СКЭПТ марки 778 – 4.5%, т.е. в 2.3 раза выше), эти звенья образуют упорядоченные структуры. "Нерастворимая" фракция в

Рис. 2. То же, что и на рис. 1, для совулканизатов со СКЭПТ марки R 521.

СКЭПТ марки R 521 полностью растворяется в толуоле только при кипячении (110°C) в течение 15-20 мин. Следовательно, в СКЭПТ этой марки имеются паракристаллические структуры изотактического полипропилена [4]. Эффективные энергии активации на участках температурной зависимости τ_с составляют 43 и 75 кДж/моль, что соответствует энергии активации вязкого течения ПЭ (41-44 кДж/моль) и подвижности мелкомасштабных групп, составляющих звено полимерной цепи в кристаллической фазе изотактического ПП, в 73 кДж/моль [37, 40-43]. Этот переход происходит при 44°С (температура перехода в СКЭПТ марки R 521 лежит в интервале 44-50°С) [39]. Таким образом, в СКЭПТ марки R 521 имеются пропиленовые надмолекулярные образования – микрокристаллиты ПП в изотактической конфигурации. Кроме того, наблюдается высокотемпературный переход при 170°С (температура плавления изотактического ПП). При этой температуре зафиксированы минимальные значения высокоэластической деформации с переходом к пластическому течению [28, 29].

В случае СКЭПТ марок 778 и R 521 наблюдаются аномалии при их совмещении с БНК с различной полярностью и микроструктурой цепей: статистическое и микроблочное распределение АН-звеньев. Для СКЭПТ марки 778 с высокой точностью наблюдается корреляционная зависи-

мость только величины $-\alpha^{100\%}$ от доли свободного объема f_c в дефектах структуры AVC в БНКС-18

и БНКС-28, от $f_c^{\text{БНК}}$ в БНКС-40 и от f_c всех дефектов БНК (рис. 1). Величина достоверности аппроксимации R^2 для БНКС-18 и БНКС-28 составляет соответственно 0.9703 и 0.9577 в отличие от остальных зависимостей (рис. 1). Последнее подтверждает вывод, сделанный ранее о том, что совмещение структур СКЭПТ с полярными звеньями БНК для сополимеров с низкой степенью изотактичности пропиленовых сегментов затруднено [1–6].

Для СКЭПТ марки R 521 величины $-\alpha$, $-\alpha^{100\%}$ и $-\alpha^{uuc+1,2}$ коррелируют с долей свободного объема в дефектах структуры AVC, с f_c всех дефектов в БНКС-18 и БНКС-28 и с $f_c^{\text{БНК}}$ в БНКС-40. Следовательно, СКЭПТ марки R 521 совместим со всеми дефектными структурами БНК. В смеси на основе БНКС-40 с высоким содержанием АН-звеньев и блочным их расположением вклад дефектных структур в совмещение снижается в связи с меньшей долей свободного объема в них из-за возросшей концентрации полярных звеньев, а также вследствие снижения их количества (см. расчет, приведенный выше) и увеличения расстояния между цепями во всей фазе БНК [4, 32]. В работе [32] рентгенодифракционным методом определено кратчайшее межмолекулярное расстояние в цис- и транс-1,4-ПБ и сополимерах бутадиена с

акрилонитрилом. Наличие боковых групп в сополимере приводит к раздвижению макромолекулярных цепей. С увеличением содержания АН-звеньев до 53% межмолекулярное расстояние увеличивается до 6.5 Å, в то время как для кристаллического *транс*-1,4-ПБ оно составляет 4.54 Å. Можно сделать вывод, что СКЭПТ марки R 521 с высокой степенью изотактичности пропиленовых звеньев совмещается не только с дефектными структурами, но и с разупорядоченными междефектными областями матрицы БНК, находящимися в непосредственной близости от дефектных структур [1–6].

ЗАКЛЮЧЕНИЕ

Наличие в СКЭПТ значительного количества громоздких групп (бутен-1, полибутен-1, этилиденнорборнен), а также паракристаллических структур, которые затрудняют проникновение гибких участков цепей СКЭПТ в дефектные области более жесткого сополимера (БНК), приводит к увеличению вклада во взаимодействие фаз доли свободного объема в междефектных областях БНК с нарушенной упорядоченностью цепей в *транс*-1,4-конфигурации (проходные цепи) [4, 5]. Происходит более равномерное распределение СКЭПТ по фазе БНК, а влияние дефектных структур нивелируется. В наибольшей степени это проявляется в блочном сополимере с высоким содержанием АН-звеньев.

Формирование в большом количестве рыхлых микроблочных структур в СКЭПТ марки 778 и упорядоченных надмолекулярных структур в СКЭПТ марки R 521 вследствие особенностей микроструктуры и стереоизомерии цепей вызывает аномалии при их совмещении с БНКС-40 с блочным распределением АН-звеньев. Полученные результаты могут иметь практическое значение для расширения ассортимента полимерных компонентов, использующихся для изготовления эластомерных материалов с необходимыми эксплуатационными свойствами.

СПИСОК ЛИТЕРАТУРЫ

- Livanova N.M., Karpova S.G., Kovaleva L.A., Ovsyannikov N.Ya., Popov A.A. // Polym. Sci. A. 2016. V. 58. № 2. P. 130; https://doi.org/10.1134/S0965545X16020127
- Livanova N.M., Popov A.A. // Polym. Sci. A. 2016.
 V. 58. № 4. P. 525; https://doi.org/10.1134/S0965545X16040088
- Livanova N.M., Popov A.A. // Polym. Sci. A. 2017. V. 59. № 6. P. 844; https://doi.org/10.7868/S2308112017060074
- Ливанова Н.М., Попов А.А. // Хим. физика 2017. Т. 36. № 4. С. 67; https://doi.org/10.7868/S0207401X17040136

- Ливанова Н.М., Попов А.А. // Хим. физика 2019. Т. 38. № 3. С. 64; https://doi.org/10.1134/S0207401X19020109
- Ливанова Н.М., Попов А.А. // Хим. физика 2020. Т. 39. № 6. С. 81; https://doi.org/10.31857/S0207401X20060072
- Markovitz I.H. // J. Chem. Phys. 1952. V. 20. № 5. P. 868; https://doi.org/10.1063/1.1700585
- 8. *Katritzky A.R., Weiss D.E.* // Chem. Brit. 1976. № 2. P. 45.
- Kuzay P., Hoffman W., Sauer W., Rimmer W. // Faserforschung und Textiltechnik. Zeitschrift f
 ür Polymerforschung.1975. V. 26. Heft 5. S. 219.
- 10. Fang T. // Macromolecules. 1990. V. 23. № 8. P. 2145.
- Машуков В.И., Мастушкина И.В., Максимов Д.А., Казаков Ю.М. и др. // Изв. Томского политех. унта. 2010. Т. 316. № 3. С. 106.
- 12. Бартенев Г.М., Бартенева Ф.Г. Структура и релаксационные свойства полимеров. М.: Химия, 1992.
- Livanova N.M., Karpova S.G., Popov A.A. // Polym. Sci. A. 2011. V. 53. № 12. P. 1128; https://doi.org/10.1134/S0965545X1112008X
- 14. Кулезнев В.Н. Смеси полимеров. М.: Химия, 1980.
- 15. The Stereo Rubbers / Ed. Saltmen w.m. v. 2. New York, London, Sydney, Toronto: Wiley, 1979.
- 16. Current Topics in Elastomers Research / Ed. Bhowmick A.L. Boca Raton: CRC Press, 2008.
- 17. Engineering with Rubber. How to Design Rubber Components / Ed. Gent A.N. 2nd ed. Munich: Hanser Publishers, 2001.
- Soares B.G., Sirqueira A.S., Oliveira M.G. Almeida M.S.M. // Rohstoffe und Anwendungen. Kautschuk Gummi Kunststoffe. 2002. B. 55. № 9. S. 454.
- Setua D.K., White J.L. // Polym. Eng. Sci. 1991. 31.
 P. 1742; https://ur.booksc.eu/book/57945/ad2d5c
- Pandey K.N., Setua D.K., Mathur G.N. // Polym. Eng. Sci. 2005. 45. № 9. P. 1265; https://doi.org/10.1002/pen.20396
- 21. Multicomponent Polymer Systems / Ed. Gould R.F. Washington, Housten: Amer. Chem. Sci., 1970.
- Леднев Ю.Н., Захаров Н.Д., Захаркин О.А., Кулезнев В.Н., Усачев С.В. // Коллоид. журн. 1977. Т. 39. № 1. С. 170.
- 23. Livanova N.M. // Polym. Sci. A. 2006. V. 48. № 8. P. 821; https://doi.org/10.1134/S0965545X06080086
- Dechant J., Danz R., Kimmer W., Schmolke R. Ultrarotspektroskopische Untersuchungen an Polymeren. Berlin: Akademie-Verlag, 1972; http://hdl.handle.net/
- 25. Козлова Н.В., Сухов Ф.Ф., Базов В.П. // Заводская лаборатория. 1965. Т. 31. № 8. С. 968.

2027.42/38788

- 26. Киссин Ю.В., Цветкова В.И., Чирков Н.М. // Докл. АН СССР. 1963. Т. 152. № 5. С. 1162.
- 27. Киссин Ю.В., Попов И.Т., Лисицин Д.М. и др. // Производство шин, резино-технических и асбесто-технических изделий. 1966. № 7. С. 22.

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 7 2022

том 41

2022

Nº 7

ХИМИЧЕСКАЯ ФИЗИКА

- Livanova N.M., Lyakin Yu.I., Popov A.A. Shershnev V.A. // Polym. Sci. A. 2007. V. 49. № 1. P. 63; https://doi.org/10.1134/S0965545X07010099
- Livanova N.M., Lyakin Yu.I., Popov A.A., Shershnev V.A. // Polym. Sci. A. 2007. V. 49. № 3. P. 300; https://doi.org/10.1134/S0965545X07030108
- Нестеров А.Е. Справочник по физической химии полимеров. Т. 1. Свойства растворов и смесей полимеров. Киев: Наук. думка, 1984; https://litgu.ru/ knigi/estesstv_nauki/377523-spravochnik-po-fizicheskojhimii-polimerov-v-treh-tomah-tom-1-svojstva-rastvorov-i-smesej-polimerov.html
- 31. Simha R., Boyer R.F. // J. Chem. Phys. 1962. V. 37. 1008.
- 32. Бохян Э.Б., Овчинников Ю.К., Маркова Г.С., Бакеев Н.Ф. // Высокомолекуляр. соединения. А. 1974. Т. 16. № 2. С. 376; http://polymsci.ru/static/Archive/1978/VMS_1978_T20_1/VMS_1978_T20_1_10 6-113.pdf
- Волькенштейн М.В. Конфигурационная статистика полимерных цепей. М.; Л.: Изд-во АН СССР, 1959; https://e-catalog.nlb.by/Record/BY-NLB-rr389
- Shershnev V.A., Yulovskaya V.D., Lyamkina N.V., Motornov M.I., Evreinov Yu.V. // Polym. Sci. A. 1999. V. 41.

№ 3. P. 315; http://pascalfrancis.inist.fr/vibad/index. php?action=getRecordDetail&idt=1817898

- 35. Печенова Н.В., Евреинов Ю.В., Летучий М.А. Шершнев В.А, Юловская В.Д. // Каучук и резина 2000. № 514. С. 14.
- Livanova N.M., Karpova S.G., Popov A.A. // Polym. Sci. A. 2003. V. 45. № 3. P. 238; http://pascalfrancis.inist.fr/ vibad/index.php?action=getRecordDetail&idt=14673820
- 37. *Тейтельбаум Б.Я.* Термомеханический анализ полимеров. М.: Наука, 1979.
- Livanova N.M., Evreinov Yu.V., Popov A.A. Shershnev V.A. // Polym. Sci. A. 2003. V. 45. № 6. P. 530; http://pascalfrancis.inist.fr/vibad/index.php?action=getRecord-Detail&idt=15001155
- 39. Ливанова Н.М., Карпова С.Г., Попов А.А. // Пластич. массы. 2005. № 2. С. 11; https://doi.org/10.1134/S0207401X19030105
- 40. Каргин В.А. Избр. труды. Структура и механические свойства полимеров. М.: Наука, 1979.
- 41. *Тагер А.А.* Физикохимия полимеров. Изд. 4-е, переработ. и дополн. М.: Научный мир, 2007.
- 42. *Бухина М.Ф*. Техническая физика эластомеров. М.: Химия, 1984.
- 43. Jones A.T., Aizlewood J.M., Bechett D.R. // Makromol. Chem. B. 1964. V. 75. № 1. S. 134.