ХИМИЧЕСКАЯ ФИЗИКА, 2022, том 41, № 3, с. 3–12

КИНЕТИКА И МЕХАНИЗМ ХИМИЧЕСКИХ РЕАКЦИЙ, КАТАЛИЗ

УДК 544.45; 665.723; 661.961.622-977

МЕХАНИЗМ ВЛИЯНИЯ ДОПОЛНИТЕЛЬНОГО ВНУТРИКАМЕРНОГО ИСТОЧНИКА ТУРБУЛИЗАЦИИ ПОТОКА В ПРОТОЧНОЙ КАМЕРЕ СГОРАНИЯ НА РЕЖИМ ГОРЕНИЯ БОГАТОЙ СМЕСИ ПРИРОДНОГО ГАЗА С КИСЛОРОДОМ

© 2022 г. Н. Н. Буравцев*

Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук, Москва, Россия

**E-mail: buravtsev@ips.ac.ru* Поступила в редакцию 22.04.2021; после доработки 27.05.2021; принята в печать 21.06.2021

Для химического реактора с повышенной теплонапряженностью его проточной камеры сгорания в отсутствие и в присутствии в ней дополнительного внутрикамерного источника турбулизации получены экспериментальные параметры для двух режимов горения предварительно перемешенного потока богатой смеси природного газа с кислородом. Математическое моделирование кинетического горения в проточном реакторе идеального вытеснения при тех же начальных и выходных параметрах стационарных режимов, что и в экспериментах, качественно раскрывает механизм влияния дополнительного турбулизатора потока на экспериментальные режимы горения.

Ключевые слова: турбулентное горение, природный газ, кислород, парциальное окисление, богатая исходная смесь, синтез-газ, проточный реактор, математическое моделирование, кинетическое горение. **DOI:** 10.31857/S0207401X22030037

введение

Существующие технологии переработки углеводородных газов для получения синтез-газа энерго- и ресурснозатратны. металлоемки и в настояшее время экономически оправланы только при очень больших масштабах производства [1, 2]. Особое значение имеет создание экономически эффективных компактных реакторов для малотоннажных технологий конверсии углеводородного газового сырья в жидкие химические продукты [2] непосредственно в районах добычи углеводородов. Углеводородная часть природого газа (ПГ) и попутного нефтяного газа (ПНГ) представлена метаном и его гомологами – алканами C_2 +. Все они обладают низкой, но различной реакционной способностью, что создает дополнительные технологические трудности при их переработке [2]. Поэтому весьма актуальной задачей является исследование различных новых вариантов получения синтез-газа с целью поиска решений для создания более дешевых технологий его производства.

Достоинство метода некаталитического парциального окисления — принципиальная возможность превращения ПГ и ПНГ в синтез-газ в одну стадию без предварительного метанирования или выделения гомологов метана [3, 4]. К другим преимуществам этой технологии относят энергетическую автономность, отсутствие катализаторов, малое содержание CO_2 и остаточного метана, а к недостаткам — потребность в кислороде для повышения температуры процесса с целью полной конверсии реагентов, недостаточное для ряда приложений отношение H_2/CO , а также образование газовой сажи [5, 6]. Повлиять на величину мольного отношения H_2/CO в этом процессе возможно путем добавления водорода к смеси исходных реагентов [7, 8], который, кроме этого, снижает выход газовой сажи [3, 9—11].

В работе [12] проведен экспериментальный поиск оптимальной компактной конструкции проточного химического реактора (CRITI)¹⁾ с повышенной теплонапряженностью и уменьшенным объемом камеры турбулентного сгорания предварительно перемешанных богатых смесей ПГ с кислородом. При удельном расходе реагентов 30.2 кг/(с \cdot м³) было достигнуто оптимальное значение объема $V^{comb} = 15$ см³ камеры сгорания CRITI, при котором осуществлялся стационарный режим горения с мелкомасштабной турбулентностью. В этой работе экспериментальные соотношения продуктов сгорания удовлетвори-

¹⁾ Chemical Reactor with Increased Thermal Intensity (CRITI).

Рис. 1. Конструкция экспериментального CRITI 2: *1* – центробежная форсуночная головка от жидкостного ракетного двигателя МДТО-123, *2* – камера смешения, *3* – датчик давления, *4* – крепежные болты, *5* – уплотнительное аллюминиевое кольцо, *6* – турбулизатор, *7* – штуцер с вольфрамовым стержнем, *8* – свеча зажигания, *9* – выходное критическое сечение камеры сгорания, *10* – камера отбора проб продуктов сгорания, *11* – штуцер для отбора проб продуктов сгорания, *12* – штуцер для подачи дополнительного кислорода при поджиге, *13* – камера сгорания.

тельно согласовывались с соответствующими соотношениями, рассчитанными по одномерной математической модели проточного реактора идеального вытеснения $(MPFR)^{2}$ [13], учитывающей только кинетическое горение стационарного, однородного и изотропного потока смеси горючего с окислителем по детальному кинетическому механизму (ДКМ) GRI-Mech.3.0 [14]. Поэтому для оптимального объема камеры сгорания при расчетах соотношений продуктов на выходе из нее в условиях стационарной однородной и изотропной турбулентности в газовых реагирующих смесях отмеченные авторами работы [15] особенности распространения турбулентного пламени можно не учитывать. Тем более что в работе [16] этих же авторов при кинетическом горении октанов ранее было получено удовлетворительное качественное и количественное согласие расчетов с экспериментами в проточном реакторе по предложенному ими ДКМ для процессов самовоспламенения и распространения пламени в гомогенных топливно-воздушных смесях.

В работе [17] в CRITI с оптимальным объемом экспериментально обнаружено влияние конструкции турбулизатора 6 (рис. 1), на формирование двух стационарных режимов горения при парциальном окислении исходной богатой смеси со значением коэффициента избытка окислителя $\alpha = 0.3$ до практически полной конверсии ПГ и кислорода. Эти режимы горения при неизменных параметрах потока смеси исходных реагентов на входе в турбулизатор 6 с различным расположением проходных отверстий существенно различались величинами выходов компонентов продуктов сгорания.

Задача настоящей работы состояла в получении экспериментальных и модельных результатов для двух режимов горения в проточной камере сгорания потока исходных реагентов с неизменными параметрами на входе в турбулизатор 6 (рис. 1) и его конструкции в отсутствие (CRITI 1) и в присутствии (CRITI 2) дополнительного турбулизатора внутри камеры сгорания. В качестве такого турбулизатора использовали вольфрамовый стержень, вставленный в штуцер 7 и расположенный в том же сечении, что и свеча зажигания 8.

Цель работы — выявление механизма влияния внутрикамерного дополнительного турбулизатора потока богатой смеси природного газа с кислородом на экспериментальный стационарный режим горения в камере сгорания CRITI при сравнении его с модельным режимом кинетического горения в MPFR.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В данной работе на стенде Института нефтехимического синтеза РАН в специальном взрывобезопасном боксе с мощной вытяжкой продуктов сгорания и системой автоматического управления [12, 17] проведены два эксперимента: в CRITI 1 и CRITI 2. В этих реакторах (см. рис. 1) на выходах из камер смешения и сгорания (2 u 13 соответственно) диаметры критических сечений составляли 2.5 и 5 мм соответственно. Объемы камер сгорания в CRITI 1 и CRITI 2 равны $V^{comb} = 15 \text{ см}^3$. В турбулизаторе 6 на входе в камеру сгорания с постоянной конструкцией диаметры восьми отверстий, равномерно чередующихся по окружности диаметром 15 мм, были равны 2.0 и 1.5 мм.

Расходы исходных реагентов и коэффициент избытка окислителя $\alpha = 0.304$ в стационарном режиме горения были одинаковыми в обоих экспе-

²⁾ Model Plug-Flow Reactor (MPFR).

Рис. 2. Экспериментальные временные зависимости давления в камере сгорания: $1 - P_1^{comb}$ (CRITI 1), $2 - P_2^{comb}$ (CRITI 2); I – нестационарный поджиг с $\alpha = 0.6$, II – переходный режим самоформирования стационарной зоны горения, III – стационарный режим горения с $\alpha = 0.304$, IV – отбор проб на выходе из камеры сгорания при стационарном режиме горения.

риментах. Во время нестационарного режима поджига богатой смеси исходных реагентов использовали автомобильную свечу зажигания 8 с одновременной подачей дополнительного кислорода³⁾ через штуцер *12* (рис. 1).

После протекания в течение 2.7 с (рис. 2)⁴⁾ нестационарного режима поджига автоматическая система управления отключала свечу принудительного зажигания δ и подачу через штуцер *12* дополнительного кислорода. После прекращения поджига через 1.3 с (рис. 2) самоорганизации стационарной зоны горения в обоих экспериментах реакторы CRITI 1 и CRITI 2 начинали работать в разных стационарных режимах с самовоспламенением новых порций потока реагентов при $\alpha = 0.304$.

В табл. 1 приведен состав пробы сухой исходной смеси, отобранной из камер смешения CRITI 1 и CRITI 2 в ходе экспериментов в вакуумированные пробоотборники. Состав пробы получен по результатам газожидкостного хроматографического (ГЖХ) анализа⁵⁾, характеристики которого приведены в работах [12, 17]. Определены мольные и массовые процентные содержания *i*-тых компонентов в смеси исходных реагентов, рассчитано значение $\alpha = 0.304$, определены массовые про-

центы атомов С, Н и О в *i*-том компоненте и в самой смеси, а также их соотношения (табл. 1), которые в соответствии с законом сохранения массы должны быть равны аналогичным соотношениям в смеси продуктов сгорания (табл. 2 и 3). Это равенство позволило по результатам ГЖХ-анализа сухих смесей продуктов сгорания получить величины массовых и мольных процентных содержаний H₂O (табл. 2 и 3), так как в работах [12, 17] отмечалось, что в используемой конструкции CRITI с оптимальным объемом камеры сгорания газовая сажа практически не образуется. Из табл. 2 и 3 видно, что образование в продуктах горения углеводородов с содержанием атомов углерода больше трех не превышает (0.8 ± 0.05) мас.%, поэтому количество атомов углерода (µ) в исходной смеси и в сухих продуктах (далее – индекс "d. prod." (dry products)) практически равно $\sum \mu_{i,in}^{C} \approx \sum \mu_{i,d.prod}^{C}$. Тогда при известном составе сухой смеси продуктов сгорания становится возможным рассчитать их содержание в массовых процентах с учетом содержа-

ния воды, так как $\mu_{\rm H_2O} = 100 - k \sum \mu_i^{d.prod}$.

ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТЛЬНЫХ РЕЗУЛЬТАТОВ

Несмотря на то, что в CRITI 1 и CRITI 2 значения таких параметров *j*-го режима горения,

как мольный расход F^{in} , мольный состав v_i^{in} и температура потоков исходных реагентов, входящих в турбулизатор 6 из камеры смешения, были одинаковыми: среднее значение давления

³⁾ Для увеличения в районе свечи зажигания значения коэффициента избытка окислителя до α = 0.60.

⁴⁾ Приношу признательность И.В. Россихину за предоставленные показания датчиков давления.

⁵⁾ Автор выражает признательность И.В. Билере за предоставленные результаты ГЖХ-анализа.

БУРАВЦЕВ

		r r , ,		I , , , ,			
Компоненть	и V _{i, in} об.%	v _{i,in} об.%	μ _{i, in} мас.%	μ ^С мас.%	μ ^н _{<i>i,in</i>} мас.%	μ ⁰ мас.%	
O ₂	38.89	38.89	54.43			54.43	
CO ₂	0.15	0.15	0.286	0.078		0.208	
CH ₄	58.14	58.14	40.79	30.51	10.17		
C ₂ H ₆	1.910	1.91	2.515	2.005	0.501		
C ₂ H ₄	0.002	0.00	0.002	0.002	0.001		
C ₃ H ₈	0.648	0.65	0.001	0.001	0.001		
C ₃ H ₆	0.001	0.00	0.002	0.002	0.001		
C ₂ H ₂	0.002		0.002	0.002	0.001		
iso-C ₄ H ₁₀	0.105		0.267	0.221	0.046		
n-C ₄ H ₁₀	0.110		0.279	0.231	0.048		
neo-C ₅ H ₁₂	0.001		0.003	0.004	0.001		
C ₅ H ₁₀	0.001		0.003	0.002	0.001		
iso-C ₅ H ₁₂	0.020		0.064	0.054	0.011		
n-C ₅ H ₁₂	0.015		0.047	0.039	0.008		
$\Sigma C_6 H_{14}$	0.010		0.028	0.031	0.006		
$\Sigma C_7 H_{16}$	0.003		0.013	0.011	0.002		
Сумма	100	100	100	34.22	11.02	54.64	
	$F_{j, in} = 0.198$ моль,	/c,	$MB_{j, in} = 22.86 \text{ r/}$	моль,	$\alpha_j = 0.304$		

Таблица 1. Результаты хроматографического анализа одинаковых составов проб из камер смешения CRITI 1 и CRITI 2 с массовым балансом атомов С, Н и О при одинаковом мольном расходе исходной смеси природного газа с техническим кислородом

Примечания: $v_{i, in}$ и $v_{i, in}^{mod}$ – мольное процентное содержание *i*-тых компонентов в одной и той же исходной смеси реагентов в *j*-тых экспериментах с CRITI 1 и CRITI 2, а также в моделях MPFR 1 и MPFR 2, соответственно; $V_j^{comb} = 15 \text{ см}^3$ – объем камеры сгорания при *j*-том эксперименте (режиме горения); $\mu_{i, in}$, $\mu_{i, in}^C$, $\mu_{i, in}^H$, $\mu_{0, in}^O$ – массовые процентные содержания *i*-тых компонентов исходной смеси реагентов, атомов С, О и H в них и в исходной смеси; $F_{j, in}$, MB_{*j*, *in* и α_j – мольный расход, молекулярный вес и коэффициент избытка кислорода исходной смеси реагентов на входе в камеру сгорания при *j*-том режиме горения.}

в камере сгорания при стационарном режиме горения в CRITI 1, $P_1^{comb} = 0.468$ МПа, ниже, чем в CRITI 2, $P_2^{comb} = 0.580$ МПа (рис. 2).

В нестационарном режиме поджига рост давления в CRITI 2 в интервале времен от 1.5 до 2 с опережает по времени примерно на 0.5 с рост давления в CRITI 1 (рис. 2).

Таким образом, время задержки принудительного нестационарного процесса при $\alpha = 0.6$ с работающей свечой зажигания и с калийным поджигом исходных реагентов на стержне, которые расположены в одном и том же сечении, меньше, чем в случае без стержня. Очевидно, что в стационарном режиме горения со стержнем время задержки самовоспламенения новых порций потока исходных реагентов при $\alpha = 0.304$ тоже будет меньше, чем в процессе без стержня.

После отключения свечи зажигания и отсечки подачи дополнительного кислорода, когда за время нестационарного режима поджига уже прогреты турбулизатор *6*, стержень и стенки камеры сгорания, после секундного (рис. 2) нестационарного переходного режима горения с одним и тем же мольным расходом $F_{1, in} = 0.198$ моль/с при постоянных, но разных давлениях: $P_1^{comb} = 0.468$ МПа и $P_2^{comb} = 0.580$ МПа (рис. 2) устанавливаются два стационарных режима самовоспламенения и горения: без стержня (при j = 1) и со стержнем (при

Компоненты	$v^*_{i,d.prod},$ Mac.%	$\mu^*_{i,d.prod},$ Mac.%	µ ^{**} _{<i>i</i>,<i>prod</i>} , мас.%	μ ^С ,** _{<i>i</i>,<i>prod</i>} , мас.%	$\mu^{\mathrm{H},**}_{i,\mathit{prod}},$ мас.%	$\mu^{\mathrm{O},**}_{i,prod},$ Mac.%	ν ^{**} _{i,prod} , οδ.%	$v^{mod}_{i,prod}, \ o 6.\%$
CH ₄	6.64	7.02	5.43	4.08	1.36		4.76	2.40
O ₂	1.23	2.61	2.02			2.02	0.88	0.00
H ₂	49.57	6.42	6.67		6.67		47.68	47.50
СО	31.31	57.93	44.86	19.23		25.64	22.46	25.20
H ₂ O			20.73		2.30	18.43	16.15	18.00
CO ₂	5.22	15.18	11.76	3.21		8.55	3.75	2.00
C ₂ H ₂	5.38	9.25	7.16	6.61	0.55		3.86	4.26
C ₂ H ₄	0.308	0.569	0.441	0.378	0.063		0.221	
C ₂ H ₆	0.062	0.124	0.096	0.077	0.019		0.045	
C ₃ H ₈	0.016	0.046	0.036	0.029	0.006		0.011	
C ₃ H ₆	0.006	0.016	0.013	0.011	0.002		0.004	
CH ₂ CCH ₂	0.030	0.078	0.061	0.055	0.006		0.021	
iso-C ₄ H ₁₀	0.003	0.010	0.007	0.006	0.001		0.002	
n-C ₄ H ₁₀	0.003	0.010	0.007	0.006	0.001		0.002	
C ₃ H ₄ -1	0.062	0.163	0.126	0.114	0.013		0.044	
C ₄ H ₆ -1,3	0.003	0.009	0.007	0.007	0.001		0.002	
C ₄ H ₆ -1	0.001	0.004	0.003	0.003	0.000		0.001	
C ₄ H ₄	0.022	0.076	0.059	0.054	0.005		0.016	
C ₄ H ₂	0.098	0.323	0.250	0.240	0.010		0.070	
C ₆ H ₆	0.024	0.124	0.096	0.088	0.007		0.017	
$\Sigma C_7 H_{14}$	0.003	0.016	0.012	0.011	0.002		0.002	
Сумма	100	100	100	34.22	11.02	54.64	100	

Таблица 2. Результаты хроматографического анализа состава пробы продуктов сгорания на выходе из CRITI 1 с массовым балансом атомов С. Н и О, а также расчетов модельных параметров режима горения в MPFR 1 при *j* = 1

 $Примечания: v_{i, d. prod}, \mu_{i, d. prod}, \mu_{i, prod}, \mu_{i, prod}^{C}, \mu_{i, prod}^{H}, \mu_{i, prod}^{O}, v_{i, prod}, v_{i, prod}^{mod}$ – величины, характеризующие мольный и массовый процентный состав сухих продуктов, а также аналогичный состав с учетом содержания воды в продуктах. Модельные параметры режима горения, в которых индекс режима горения j = 1 соответствует результатам в табл. 2, а j = 2 -табл. 3: P_i^{comb} давление в камере сгорания в стационарном *j*-том режиме горения; $T_{j, in}$, $T_{j, prod}$ – модельные значения температуры потока реагентов на входе и выходе из проточной камеры сгорания, при которых модельные выходы продуктов близки к их экспериментальным значениям в *j*-том режиме горения; MB_{*j*, *d*. prod}, MB_{*j*, prod} – молекулярные веса сухих экспериментальных продуктов и содержащих воду; τ_i^{I} , τ_i^{II} , τ_i^{III} – модельные времена пребывания потока реагирующих газов в зонах I, II, III камеры сгорания, в самой камере сгорания $\tau_j^{comb} = \tau_j^{I} + \tau_j^{II} + \tau_j^{III}$ (см. рис. 3). Модельные параметры режима горения при j = 1: $\alpha_1 = 0.304$, $F_{1, in} = 0.198$ моль/с, $T_{1, in} = 1180$ K, $P_1^{comb} = 0.468$ МПа, $T_{1, prod} = 2145$ K, $V_1^{comb} = 15$ см³, $\tau_1^{\rm I} = 1.3$ мс, $\tau_1^{\rm II} = 1.7$ мс, $\tau_1^{\rm III} = 0.14$ мс, τ_{l}^{comb} = 3.14 мс, $\nu_{H_{2},prod}/\nu_{CO,prod}$ = 2.123; 100 $\left(\mu_{C_{2}H_{2},prod}/\mu_{CH_{4},in}\right)$ = 17.7%. * По данным ГЖХ без H2O.

** С учетом H₂O.

ХИМИЧЕСКАЯ ФИЗИКА том 41 Nº 3 2022

		,,	P		F F -	- F	r •	FJ =
Компоненты	$v^*_{i,d.prod}, \ ext{o6.\%}$	$\mu^*_{i,d.prod},$ Bec.%	μ ^{**} _{<i>i</i>,<i>prod</i>} , Bec.%	μ ^{С,**} _{<i>i</i>,<i>prod</i>} , мас.%	μ ^{Н,**} _{<i>i,prod</i>} , мас.%	µ ^{0,**} _{<i>i,prod</i>} , мас.%	$v^{**}_{i,prod},$ of.%	$v^{mod}_{i,prod}, \ o 6.\%$
O ₂	0.00	0.00	0.00			0.00	0.00	0.00
CH ₄	0.27	0.27	0.25	0.19	0.06		0.18	0.27
H ₂	51.02	6.43	10.40		10.41		62.97	59.00
СО	43.26	77.92	70.42	30.18		40.24	29.84	32.00
H ₂ O			4.91		0.55	4.37	3.24	7.10
CO ₂	5.39	15.26	13.79	3.76		10.03	3.72	0.80
C ₂ H ₂	0.052	0.087	0.079	0.07	0.006		0.04	0.11
C ₂ H ₆	0.002	0.004	0.003	0.003	0.001		0.001	
C ₂ H ₄	0.006	0.011	0.010	0.009	0.001		0.004	
Сумма	100	100	100	34.22	11.02	54.64	100	

ТаблицаЗ. Результаты хроматографического анализа состава пробы продуктов сгорания на выходе из CRITI 2 с массовым балансом атомов С. Н и О. а также расчетов молельных параметров режима горения в MPFR 2 при i = 2

Примечание. Модельные параметры режима горения при *j* = 2: α_2 = 304, *F*_{2, *in*} = 0.198 моль/с, *T*_{2, *in*} = 1462 K, *P*₂^{comb} = 0.580 MПа, $T_{2, prod} = 2235 \text{ K}, V_2^{comb} = 15 \text{ см}^3, \tau_2^{\text{I}} = 0.078 \text{ мс}, \tau_2^{\text{II}} = 0.162 \text{ мс}, \tau_2^{\text{III}} = 1.300 \text{ мс}, \tau_2^{comb} = 1.540 \text{ мс}; 100 \left(\mu_{\text{C}_2\text{H}_2, prod} / \mu_{\text{CH}_4, in} \right) = 0.59\%.$ * По данным ГЖХ без H₂O.

** С учетом H₂O.

i = 2). Выше было отмечено, что при i = 2 время задержки самовоспламенения меньше, чем при i = 1. Поэтому при i = 2 зона стационарного горения устанавливается ближе к турбулизатору и нагревает его интенсивней до более высокой температуры, чем при j = 1. Очевидно, что при j = 2 более интенсивный нагрев турбулизатора приведет к более высокому значению температуры выходящего из него потока исходных реагентов, т.е. значение $T_{2, in (MPFR 2)}$ будет выше значения $T_{1, in (MPFR 1)}$.

При одинаковых значениях состава и расхода потока исходных реагентов в проточных реакторах согласно уравнению идеального газа должно соблюдаться равенство отношений:

$$T_{2,in(MPFR 2)}/T_{1,in(MPFR 1)} = P_{2,exp}^{comb}/P_{1,exp}^{comb} = 0.580/0.468 = 1.239.$$
(1)

Таким образом, зарегистрированное в экспериментах увеличение давления при j = 2, по-видимому, связано с увеличением температуры T_{2, in (MPFR 2)} изза приближения зоны горения к турбулизатору.

ОБСУЖДЕНИЕ МОДЕЛЬНЫХ РЕЗУЛЬТАТОВ

Для математического моделирования использовали модель MPFR из модуля Reaction Engineering Lab пакета программ COMSOL Multiphysics 3.5a [18]. Был выбран ДКМ, хорошо описывающий задержки самовоспламенения метано-кислородных смесей, хотя не содержит реакций с участием углеводородов, состоящих из более чем трех атомов углерола. Этот ДКМ – GRI-Mech.3.0⁶⁾ состоит из 325 элементарных стадий и 53 стабильных и радикальных компонентов, в которых количество атомов углерода не превышает трех.

Для запуска MPFR 1 и MPFR 2 задавали начальные значения параметров F^{in} , v_i^{in} , и V_i^{comb} (табл. 1), величины которых соответствовали экспериментальным значениям в CRITI 1 и CRITI 2. Температуру потока на выходе из турбулизатора 6 (рис. 1) в экспериментах не измеряли из-за технических трудностей и погрешностей измерения термопарами пучка нескольких газовых струй, перемешивающихся после выхода из него. Поэтому модельные значения температур потока на входе в

камеру сгорания, T_1^{in} и T_2^{in} , путем нескольких пробных решений подбирали таким образом, чтобы при достижении потоком реагентов объема V^{comb}, модельный выход основного продукта H₂ приближался бы к его экспериментальному значению в преде-

⁶⁾ Судя по данным разработчиков механизма GRI-Mech.3.0, расчеты с его использованием хорошо согласуются с экспериментальными данными по самовоспламенению метано-кислородных смесей в ударных трубах в диапазоне экспериментальных температур T = 1356 - 1706 К как при низких, так и при высоких давлениях, регистрации временных профилей различных радикалов в диапазоне экспериментальных температур $\hat{T} = 1900-2264$ К, скорости распространения ламинарного пламени и горению метановоздушных смесей в проточном реакторе.

лах погрешностей ГЖХ-анализа ($v_{H_2,mod}^{prod} = v_{H_2}^{prod}$). В результате такого подбора были получены следующие значения модельных начальных температур потока реагентов: $T_1^{in} = 1180$ К и $T_2^{in} = 1462$ К.

При одинаковых значениях состава и расхода потока исходных реагентов согласно уравнению идеального газа должно соблюдаться равенство отношений:

$$T_{\rm MPFR\,1}^{in} / T_{\rm MPFR\,2}^{in} = P_1^{comb} / P_2^{comb} \,.$$

Это равенство отношений модельных и экспериментальных параметров выполняется: 1180/1462 = 0.807 = 0.468/0.580.

Таким образом, зафиксированное в экспериментах различие средних давлений в камерах сгорания CRITI 1 и CRITI 2 действительно связано с различием температур T_1^{in} и T_2^{in} потока исходных реагентов, выходящего из турбулизатора *6*, который нагревается в нестационарном режиме поджига до разных температур при их соотношении $T_1^{in}/T_2^{in} = 0.807.$

Следует отметить, что параметры $T_1^{in} = 1180 \text{ K}$ и $P_1^{comb} = 0.468$ МПа, а также $T_2^{in} = 1462$ К и $P_2^{comb} = 0.580$ МПа достигаются за 3.8 с (рис. 2) в конце нестационарного режима принудительного поджига. За это время осуществляется прогрев турбулизатора 6 из-за турбулентного, лучевого и твердотельного теплообмена между ним, цилиндрической камерой сгорания и нестационарной зоной горения с $\alpha = 0.6$ при включенной свече зажигания. Так как в CRITI 2 время задержки воспламенения меньше, чем в CRITI 1, то в реакторе со стержнем зона горения находится ближе к турбулизатору 6, который прогревает поток исходных реагентов до более высокой температуры, чем в CRITI 1, в котором стационарная зона горения смещена на большее расстояние от турбулизатора 6. Поэтому при стационарном горении в CRITI 1 и CRITI 2 различаются не только начальные температуры исходных реагентов, но и средние давления в камере сгорания.

При моделируемом стационарном режиме горения нагретый до вышеуказанных исходных температур поток реагентов сначала проходит зону I (задержки воспламенения) с еле заметной скоростью подъема температуры (рис. 3). Из-за различий значений T_1^{in} , T_2^{in} и P_1^{comb} , P_2^{comb} времена задержек воспламенения потока реагентов отличаются на порядок: $\tau_1^I = 1.3$ мс и $\tau_2^I = 0.078$ мс. Таким образом, наличие дополнительного турбулизатора действительно смещает стационарную зону горения ближе к входу камеры сгорания, в то время как в камере сгорания без дополнительного турбулизатора эта зона смещена ближе к выходному критическому отверстию.

После достижения времени задержки самовоспламенения газовый поток начинает двигаться по зоне II стационарного горения с резким подъёмом температуры потока исходной смеси вследствие протекания экзотермического процесса парциального окисления природного газа кислородом. В конце зоны II (при полной конверсии кислорода) температура потока достигает соответствующих максимумов: $T_1^{max} = 2310$ К при $T_1^{in} = 1180$ К и $T_2^{max} = 2450$ К при $T_2^{in} = 1462$ К. Изза различных значений температур T_1^{in} и T_2^{in} , давлений P_1^{comb} и P_2^{comb} и времен пребывания в зоне II $\tau_1^{II} = 1.7$ мс и $\tau_2^{II} = 0.162$ мс разность максимальных температур в камере сгорания составляет 140 град.

За зоной горения образуется зона III паро-углекислотной эндотермической конверсии. Согласно рис. За в отсутствие внутреннего дополнительного турбулизатора температура в зоне III падает от $T_1^{max} = 2310$ K до $T_1^{prod} = 2145$ K при времени пребывания в этой зоне $\tau_1^{III} = 0.14$ мс, а согласно рис. Зб температура в зоне III падает от $T_2^{max} = 2450$ K до $T_2^{prod} = 2235$ K при времени пребывания в этой зоне, большем почти на порядок: $\tau_2^{III} = 1.3$.

В отсутствие дополнительного турбулизатора, из-за смещения зоны II к выходу из камеры сгорания, в зоне III вследствие более низкой температуры и меньшего времени пребывания уменьшается скорость паро-углекислотной конверсии. Поэтому на выходе из камеры сгорания кроме основных продуктов H_2 , CO, CO₂, H_2O , C_2H_2 зарегистрированы непрореагировавшие O₂ и CH₄, а также следы углеводородов C_3 — C_7 (табл. 2).

Если экспериментальные выходы основных продуктов близки к рассчитанным по детальному кинетическому механизму GRI-Mech.3.0, то наличие в эксперименте непрореагировавших кислорода и метана, а также следов углеводородов С₃, С₄, С₆, С₇, по-видимому, связано с тем, что изза приближения стационарной зоны горения с мелкомасштабной турбулентностью к застойным зонам генерации крупных вихрей вблизи от выходного критического сечения камеры сгорания происходит газодинамический проскок кислорода из зоны горения через зону III, а также проскок следов обнаруженных компонент из области достижения максимальной концентрации ацетилена. Косвенным экспериментальным подтверждением возможности такого проскока может быть увеличение амплитуды акустических колебаний давления (рис. 2) в камере сгорания без дополнительного турбулизатора.

Более высокие температура исходных реагентов и среднее давление в камере сгорания CRITI 2

Рис. 3. Результаты моделирования двух режимов кинетического горения в камере сгорания: a - MPFR 1 и $\delta - MPFR 2$; $1 - адиабатическая температура потока компонентов химически реагирующих газов; содержания компонентов в мольных долях (<math>v_i$): $2 - v_{O_2}$, $3 - v_{CH_4}$, $4 - v_{H_2}$, $5 - v_{CO}$, $6 - v_{H_2O}$, $7 - v_{C_2H_2}$, $8 - v_{CO_2}$ (величины модельных параметров в мольных процентах приведены в табл. 1-3); I – зона задержки воспламенения, II – зона горения, III – зона парового пиролиза.

(в присутствии дополнительного турбулизатора и при почти 10-кратном увеличении времени пребывания газового потока в зоне III) увеличивают скорости и время протекания паро-углекислотной конверсии. Это приводит к практически полной конверсии кислорода, метана и побочных углеводородов из исходной смеси, а также ацетилена, образующегося в начале зоны III, к уменьшению паров воды и повышению выходов H_2 и CO, но с иным соотношением H_2/CO (см. табл. 3), чем в камере сгорания CRITI 1 (см. табл. 2).

Более близкое расположение турбулентной зоны горения к турбулизатору 6 (рис. 1), т.е. к входу камеры сгорания CRITI 2, стало возможным экспериментально подтвердить меньшим временем задержки воспламенения и существенным снижением акустических шумов на временной зави-

симости $P_2^{comb}(t)$ (рис. 2), а также исчезновением следов O₂ и побочных углеводородов C₃, C₄, C₆, C₇, включая следовые количества выхода $v_{C_2H_2}^{prod}$

(табл. 3). Очевидно, что в модели проточного реактора идеального вытеснения такая особенность, как газодинамический проскок в турбулизованном потоке, не учитывается, так же как в кинетическом механизме GRI-Mech.3.0 отсутствуют реакции образования углеводородов C_4 , C_6 , C_7 .

Различие модельных и экспериментальных величин выхода основных продуктов, по-видимому, связано с тем, что:

1. В экспериментальной смеси исходных реагентов присутствуют побочные компоненты ПГ: C_3H_6 и C_4-C_7 (см. табл. 1), реакции которых в механизме GRI-Mech.3.0 отсутствуют.

2. В проточной камере сгорания MPFR 1 из-за приближения зоны стационарного горения с мелкомасштабной турбулентностью к застойным зонам генерации крупных вихрей вблизи от выходного критического сечения происходит газодинамический проскок кислорода и углеводородов С₄-С₇ (см. табл. 2 и 3) из зоны горения, косвенным подтверждением чего может быть увеличение амплитуды акустических колебаний давления. Это явление не может быть рассмотрено в рамках модели реактора идеального вытеснения, а также при использовании механизма GRI-Mech3.0. Тем не менее величины модельных выходов основных продуктов близки к экспериментальным значениям (см. табл. 2). Как видно из табл. 2, наблюдается наибольший разброс значений выхода для основных продуктов: СО₂ и С₂Н₂.

3. Хотя по хроматографическим данным в реакторе со стержнем MPFR 2 углеводороды C_3-C_7 отсутствуют (см. табл. 3), разброс различий модельных и экспериментальных величин выхода основных продуктов в табл. 3 может быть связан кроме этого с каталитическими реакциями на поверхности вольфрамового стержня, которых нет в механизме GRI-Mech.3.0.

Поэтому при ДКМ GRI-Mech.3.0, несмотря на некоторое расхождение модельных выходов основных продуктов парциального окисления с экспериментальными их значениями, моделирование меха-

ХИМИЧЕСКАЯ ФИЗИКА том 41 № 3 2022

низма влияния установки дополнительного внутреннего турбулизатора в теплонапряженной камере сгорания, влияющего на стационарный процесс самовоспламенения потока исходных реагентов, дает удовлетворительное качественное приближение к объяснению экспериментально зарегистрированного явления.

выводы

1. Выявлен качественный механизм влияния различных дополнительных турбулизаторов (как на входе в камеру сгорания [17], так и внутри нее) потока богатой, предварительно перемешенной смеси природного газа с кислородом на режим ее станионарного горения в проточной теплонапряженной камере сгорания с застойными зонами газодинамической генерации крупных вихрей около выходного критического сечения. Он связан с различным расположением по длине камеры сгорания зоны стационарного горения с мелкомасштабной турбулентностью, самоорганизующейся после выключения принудительного поджига в зависимости от наличия или отсутствия стержневого внутрикамерного турбулизатора или, согласно работе [17], от конструкции турбулизатора на входе в камеру сгорания.

2. Из-за изменения положения этой зоны горения по длине проточного реактора изменяются времена самовоспламенения потока исходных реагентов, а также времена пребывания в зонах горения и паро-углекислотной конверсии. Это приводит к изменениям температур турбулизатора и проходящего через него неизменного мольного стационарного потока исходных реагентов, а также к изменению постоянного среднего давления в камере сгорания и к существенным изменениям соотношений основных продуктов сгорания.

3. Увеличение амплитуды акустических колебаний давления и газодинамический проскок кислорода, а также углеводородов C_4 — C_7 через выходное критическое сечение проточной камеры сгорания при приближении к нему зоны стационарного горения связаны с генерацией крупных вихрей в застойных внутрикамерных зонах около этого сечения.

Работа выполнена при поддержке программой Президиума РАН № 33 "Углеродная энергетика: химические аспекты".

СПИСОК ЛИТЕРАТУРЫ

- 1. Corke M. // Oil Gas J. 1998. V. 96. № 38. P. 71.
- 2. Савченко В.И., Макарян И.А., Фокин И.Г. и др. // Нефтепереработка и нефтехимия. 2013. № 8. С. 21.
- Колбановский Ю.А., Билера И.В., Россихин И.В., Борисов А.А., Трошин К.Я. // Рос. хим. журн. 2010. Т. 54. № 5. С. 62.

- Arutyunov V.S., Shmelev V.M., Sinev M.Yu., Shapovalova O.V. // Chem. Eng. J. 2011. V. 176–177. P. 291; https://doi.org/10.1016/j.cej.2011.03.084
- Wilhelm D.J., Simbeck D.R., Karp A.D., Dickenson R.L. // Fuel Processing Technol. 2001. V. 71. № 1–3. P. 139; https://doi.org/10.1016/S0378-3820(01)00140-0
- *Rostrup-Nielsen J.R.* //Catal. Today. 1994. V. 21. № 2– 3. P. 257; https://doi.org/10.1016/0920-5861(94)80147-9
- Савченко В.И., Никитин А.В., Озерский А.В., Седов И.В., Арутюнов В.С. // Нефтехимия. 2020. Т. 60. № 4. С. 538; https://doi.org/10.31857/S0028242120040139
- Билера И.В., Буравцев Н.Н., Россихин И.В. // ЖПХ. 2020. Т. 93. Вып. 3. С. 446; https://doi.org/10.31857/S0044461820030172
- Борисов А.А., Трошин К.Я., Колбановский Ю.А., Билера И.В. // Горение и взрыв / Под ред. Фролова С.М. Вып. 5. М.: Торус Пресс, 2012. С. 33.
- Борисов А.А., Борунова А.Б., Трошин К.Я., Колбановский Ю.А., Билера И.В. // Горение и взрыв / Под ред. Фролова С.М. Вып. 7. М.: Торус Пресс, 2014. С. 100.

- Ahmed A.M., Mancarella S., Desgroux P. et al. // Inernt. J. Hydrogen Energy. 2016. V. 41. № 16. P. 6929; https://doi.org/10.1016/j.ijhydene.2015.11.148
- 12. Буравцев Н.Н., Колбановский Ю.А., Россихин И.В., Билера И.В. // ЖПХ. 2018. Т. 91. № 10. С. 1404. https://doi.org/10.1134/S0207401X19030026
- Harriott P. Chemical Reactor Design. N.Y., Basel: Marcel Dekker, 2003. P. 106; https://doi.org/10.1134/S0207401X19030026
- 14. Smith G.P., Golden D.M., Frenklach M. et al. GRI-Mech 3.0; http://combustion.berkeley.edu/gri-mech/
- Басевич В.Я., Беляев А.А., Фролов С.М., Фролов Ф.С. // Хим. физика. 2019. Т. 38. № 1. С. 27; https://doi.org/10.1134/S0207401X19010047
- Басевич В.Я., Беляев А.А., Медведев С.Н. Фролов С.М., Фролов Ф.С. // Хим. физика. 2018. Т. 37. № 6. С. 44; https://doi.org/10.7868/S0207401X18060067
- 17. Буравцев Н.Н., Колбановский Ю.А., Россихин И.В., Билера И.В. // Хим. физика. 2019. Т. 38. № 3. С. 30; https://doi.org/10.1134/S0207401X19030026
- COMSOL Multiphysics; https://www.comsol.com/chemical-reaction-engineering-module