ХИМИЧЕСКАЯ ФИЗИКА, 2021, том 40, № 2, с. 3–10

_ СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ

УЛК 539.21:547.97:547.96

ПОЛИМЕТИНОВЫЕ КРАСИТЕЛИ КАК ЗОНДЫ ДЛЯ ОБНАРУЖЕНИЯ КОРОНАВИРУСА SARS-COV-2: ИССЛЕДОВАНИЕ IN SILICO МЕТОДОМ МОЛЕКУЛЯРНОГО ДОКИНГА

© 2021 г. П. Г. Пронкин^{1*}, А. С. Татиколов¹

¹Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, Москва, Россия

*E-mail: pronkinp@gmail.com Поступила в редакцию 02.07.2020: после доработки 02.07.2020; принята в печать 21.09.2020

С целью разработки эффективных зондов для обнаружения коронавируса SARS-CoV-2 методом моделирования in silico (молекулярный докинг) исследовано нековалентное взаимодействие полиметиновых красителей различных классов (всего 45 соединений) с одним из основных структурных компонентов вируса – спайк-протеином (S). Определены энергии взаимодействия и пространственные конфигурации комплексов молекул красителей с S. Показано, что катионные полиметиновые красители (а также нейтральные скварилиевые красители) не образуют устойчивых комплексов с S. Некоторые анионные красители, демонстрирующие отрицательные значения общей энергии Е₁₀₁, могут быть рекомендованы для практических исследований.

Ключевые слова: коронавирус SARS-CoV-2, спайк-протеин, полиметиновые красители, нековалентное взаимодействие, молекулярный докинг. DOI: 10.31857/S0207401X2102014X

ВВЕДЕНИЕ

Пандемия нового коронавируса SARS-CoV-2, начавшаяся в 2019 году и продолжающаяся в настоящее время, поставила перед исследователями всего мира актуальные задачи по поиску подходов к диагностике коронавирусной инфекции и лечению заболевших пациентов. С этой точки зрения важной является разработка эффективных экспресс-методов анализа на коронавирусную инфекцию. Одним из таких методов может служить метод спектрально-флуоресцентных зондов, а в качестве зондов можно использовать полиметиновые (цианиновые и скварилиевые) красители. Они обладают высокими коэффициентами экстинкции, поглошением и излучением в длинноволновой области спектра, охватывающей оптическое окно прозрачности биологических образцов и тканей, и их фотофизические и фотохимические свойства зависят от молекулярного окружения [1]. Цианиновые и скварилиевые красители могут взаимодействовать с биомолекулами. образуя нековалентные комплексы, сопровождаемые усилением флуоресценции, что также создает предпосылки для их использования в качестве зондов в системах, содержащих биомолекулы [2, 3]. Использование красителей (в том числе цианиновых) в качестве спектрально-флуоресцентных зондов при исследовании вирусов различных типов активно изучается [4]. На актуальность проблемы указывает, в частности, недавно появившаяся работа по изучению ассоциации некоторых цианиновых красителей с малым вирусом — бактериофагом MS2 с целью его обнаружения и охарактеризования; при этом, наряду с другими методами, применялся метод молекулярного докинга [5]. Разработка зондов для обнаружения коронавируса должна включать в себя изучение нековалентного взаимодействия красителей с его молекулярными компонентами. Разнообразие структур и свойств полиметиновых красителей (отличающихся длиной полиметиновой цепи, концевыми гетероциклами, заместителями в цепи и гетероциклах) потребовало использования моделирования in silico при отборе эффективных соединений — кандидатов для дальнейших исследований их взаимодействия с вирусом *in vitro*. Моделирование с помощью молекулярного докинга широко применяется при изучении взаимодействия различных терапевтических средств с белковыми компонентами SARS-CoV-2, что дает ценную информацию об энергии взаимодействия (или сродстве) молекулы субстрата с выбранными белковыми компонентами и центрах связывания субстрата с данными белками [6-8].

В настоящей работе методом молекулярного докинга in silico проведено исследование нековалентного взаимодействия различных классов полиметиновых и скварилиевых красителей (всего 45 соединений) с одним из важнейших структурных компонентов коронавируса SARS-CoV-2 – спайк-протеином (Spike protein, S), образующим "шипы" на поверхности вирусной частицы. Для выявления влияния заряда на это взаимодействие изучались как катионные, так и анионные красители.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Эксперименты по молекулярному докингу проводились с использованием веб-сайта Dock-Thor [9, 10] через веб-интерфейс. Структура белка-мишени S взята на сайте DockThor. Она также доступна на сайте Protein Data Bank (PDB ID 7BZ5) [11].

В PDB-файле структуры спайк-белка были добавлены атомы водорода и оптимизированы водородные связи (pH 7), антитела и небелковые молекулы удалены, остатки селенометионина (Se–Met) в структуре заменены на метиониновые остатки (Met) (DockThor). Предложенная структура белка-мишени использована как есть, дополнительная настройка протонирования остатков аминокислот не проводилась. Эксперименты выполняли в режиме "слепого" докинга (blind docking), размер решетки аппроксимации – 40 Å, центр x = -30.68, y = 30.43, z = 22.38, с шагом дискретизации, равным 0.42 Å. При анализе результатов брались в расчет шесть наилучших конфигураций.

Для создания PDB-структур красителей-лигандов и оптимизации их геометрии (силовое поле MMFF94) применяли молекулярный редактор Avogadro [12, 13]. Пакет UCSF Chimera ([14, 15] использовался для 3D-визуализации и анализа результатов докинга.

Исследовались симметричные монометин-, триметин-, пентаметин- и гептаменцианины (катионные и анионные) с различными гетероциклами (бензимидазолил, бензтиазолил, бензоксазолил) и заместителями в гетероциклах. Триметинцианины (карбоцианины) имели также различные заместители в *мезо*-положении полиметиновой цепи (CH₃, C_2H_5 , CH₃O, CH₃S, Cl), поскольку *мезо*-замещенные тиакарбоцианины ранее были охарактеризованы как эффективные зонды для биомакромолекул [16]. Структуры цианиновых красителей изображены на рис. 1. Исследовали также скварилиевые красители, в том числе скварилиевые индо- и тиацианины, имеющие анионные сульфогруппы (см. рис. 2).

В качестве исходных конформаций в случаях моно-, пента- и гептаметинцианинов брали *транс*изомеры красителей [17]. О стабильности возможных комплексов краситель—белок судили по знаку и величине общей энергии системы E_{tot} , по-

лученной в результате докинга: образование стабильных комплексов возможно при достаточно низких (т.е. больших по абсолютной величине) отрицательных значениях энергии.

РЕЗУЛЬТАТЫ

Докинг катионных цианиновых красителей

Исследовано взаимодействие с S десяти катионных тиа- и оксатриметинцианиновых красителей, отличающихся заместителями в мезо-положении полиметиновой цепи и концевых гетероциклов (структуры К1–К10, см. рис. 1). Исходные структуры мезо-замещенных триметинцианинов соответствовали их цис-конфигурации как наиболее устойчивой для этих красителей в водном растворе [18]. Исследование показало, что нековалентное взаимодействие с белком может приводить к изменению изомерной конфигурации молекул красителей. В частности, для тиакарбоцианинов К1-К4 оказываются характерными искаженные *транс*-конфигурации, а для оксакарбоцианина **К8** – сильно скрученная *цис*-форма. Молекулы красителей располагаются на расстоянии 7-10 Å от остатков Leu184, Glu183, Phe131, Phe96.

Для всех красителей характерны положительные значения общей энергии E_{tot} , которая в среднем составляет 31.24 ± 6.0 ккал · моль⁻¹; наименьшее значение E_{tot} получено для оксакарбоцианина **K8** (22.85 ± 1.07 ккал · моль⁻¹). Высокие положительные значения E_{tot} говорят о нестабильности комплексов катионных полиметиновых красителей с S. Вследствие этого наше исследование в дальнейшем было сконцентрировано главным образом на анионных полиметиновых красителях.

Докинг анионных цианиновых красителей

Монометинцианины. Был проведен докинг с S ряда из шести анионных монометинцианинов, имеющих бензоксазольные и бензтиазольные концевые гетероциклы и отличающихся заместителями в гетероциклических остатках (рис. 1, структуры 1.1–1.6). Молекулы красителей имеют отрицательный заряд благодаря двум сульфопропильным группам в положениях 3 и 3'. Для большинства исследованных красителей (за исключением 1.4) получены отрицательные значения E_{tot} (см. табл. 1), что указывает на способность этих красителей образовывать стабильные комплексы с S. Монометинцианины располагаются на расстоянии 6-8 Å от остатков As95, Phe131, Leu185; конфигурации тиацианиновых красителей соответствуют скрученным *транс*-изомерам, в случае оксацианинов — более плоским *транс*-конфигурациям. Пространственная иллюстрация докинга комплекса красителя **1.5** с S приведена на рис. 3*а*.

1 X = S, R = $-CH_3$, R₁ = $-C_2H_5$, R₂ = R₃ = R₄ = H X = S, $R = -C_2H_5$, $R_1 = -C_2H_5$, $R_2 = R_3 = R_4 = H$ X = S, $R = -OCH_3$, $R_1 = -C_2H_5$, $R_2 = R_3 = R_4 = H$ X = S, $R = -SCH_3$, $R_1 = -C_2H_5$, $R_2 = R_3 = R_4 = H$ X = S, R = -C1, $R_1 = -C_2H_5$, $R_2 = R_3 = R_4 = H$ X = S, $R = -C_2H_5$, $R_1 = -C_2H_5$, $R_2 = -OCH_3$, $R_3 = R_4 = H$ X = S, $R = R_2 = -OCH_3$, $R_1 = -C_2H_5$, $R_3 = R_4 = H$ X = O, $R = -C_2H_5$, $R_1 = -CH_3$, $R_2 = R_3 = R_4 = H$ X = O, $R = -C_2H_5$, $R_1 = -C_2H_5$, $R_2 = R_4 = H$, $R_3 = -CH_3$ X = O, $R = -C_2H_5$, $R_1 = -C_2H_5$, $R_2 = -OCH_3$, $R_3 = R_4 = H$

2.2 X = S, $R = -CH_3$, $R_1 = R_2 = R_4 = H$, $R_3 = -OCH_3$ **3.1** X = S, $R_1 = R_2 = R_3 = R_4 = H$ **2.3** X = S, $R = -CH_3$, $R_1 = R_2 = R_4 = H$, $R_3 = -CI$ **2.4** X = S, $R = -CH_3$, $R_1 = R_2 = R_4 = H$, $R_3 = -C_6H_5$ **2.5** X = S, $R = -C_2H_5$, $R_1 = R_3 = R_4 = H$, $R_2 = -OCH_3$ **3.4** X = S, $R_1 = R_4 = H$, $R_{2,3} = -OCH_2O-DH_2O-$ **2.6** X = S, $R = -C_2H_5$, $R_1 = R_2 = H$, $R_{3,4} = -C_4H_4$ -**2.7** X = S, $R = -CH_3$, $R_1 = R_2 = H$, $R_{3,4} = -C_4H_4$ -**2.8** X = S, $R = -CH_3$, $R_{1,2} = -C_4H_4$, $R_3 = R_4 = H$ **2.9** X = S, $R = -C_2H_5$, $R_1 = R_4 = H$, $R_2 = -OCH_2O-$ **2.10** X = O, $R = -CH_3$, $R_1 = R_2 = R_4 = H$ **2.11** X = O, $R = -CH_3$, $R_1 = R_2 = R_4 = H$, $R_3 = -CH_3$ **2.12** X = O, $R = -CH_3$, $R_1 = R_2 = R_4 = H$, $R_3 = -OCH_3$ **4.3** X = S, $R_1 = R_2 = H$, $R_{3,4} = -C_4H_4$ -**2.13** X = O, $R = -C_2H_5$, $R_1 = R_2 = R_4 = H$, $R_3 = -C_6H_5$ **2.14** X = O, $R = -CH_3$, $R_1 = R_2 = H$, $R_{3,4} = -C_4H_4$ -**2.15** X = O, $R = -CH_3$, $R_{1,2} = -C_4H_4$, $R_3 = R_4 = H$

3.2 X = S, $R_1 = R_2 = H$, $R_{2,3} = -C_4H_4 -$ **3.3** X = S, $R_1 = R_2 = R_4 = H$, $R_3 = -OCH_3$ **3.5** X = O, $R_1 = R_2 = R_4 = H$, $R_3 = -OCH_3$ **3.6** X = O, $R_1 = R_2 = R_3 = R_4 = H$

$n = 3 R = -(CH_2)_4 SO_3^-$

 $n = 2 R = -(CH_2)_3 SO_3^-$

4.1 $X = -C(CH_3)_2$, $R_{1,2} = -C_4H_4$, $R_3 = R_4 = H_4$ **4.2** X = S, $R_{1,2} = -C_4H_4$, $R_3 = R_4 = H$ **4.4** X = S, $R_1 = R_2 = R_4 = H$, $R_3 = -OCH_3$ **4.5** X = S, $R_1 = R_2 = R_3 = R_4 = H$ **4.6** X = O, $R_1 = R_4 = H$, $R_{2,3} = -OCH_2O-$ **4.7** X = O, $R_{1,2} = -C_4H_4$, $R_3 = R_4 = H$ **4.8** X = O, $R_1 = R_2 = H$, $R_{3,4} = -C_4H_4 - C_4H_4$ **4.9** X = O, $R_1 = R_2 = R_4 = H$, $R_3 = -OCH_3$ **4.10** X = O, $R_1 = R_2 = R_3 = R_4 = H$

Рис. 1. Структурные формулы изученных катионных и анионных моно-, три-, пента- и гептаметинцианиновых красителей.

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 2 2021

Рис. 2. Структурные формулы изученных скварилиевых красителей.

Рис. 3. Пространственные иллюстрации докинга красителей с S (структура PDB ID 7BZ5): a – окса-монометинцианина 1.5, δ – тиакарбоцианина 2.1 и e – скварилиевого красителя CK1.3.

Триметинцианины. Изучено взаимодействие с S ряда из 15 *мезо*-замещенных анионных тиа- и оксатриметинцианиновых (карбоцианиновых) красителей, отрицательный заряд молекулам которых придает наличие двух сульфогрупп (см. рис. 1, структуры 2.1–2.15). Исходные структуры красителей соответствовали их цис-конфигурации как наиболее устойчивой для мезо-замещенных анионных карбоцианинов в водном растворе [19]. В эксперименте in silico получены результаты, указывающие на способность некоторых красителей ряда образовывать энергетически устойчивые комплексы с S. В частности, для соединений 2.1-2.3, 2.9-2.11, 2.13, 2.15 получены отрицательные значения общей энергии ($E_{tot} < 0$, см. табл. 1), причем наименьшие значения E_{tot} – для оксакарбоцианинов 2.10 и 2.11. Наличие объемистых фенильных заместителей, а также конденсированных бензольных циклов в концевых гетерогруппах красителей может приводить к повышению величины E_{tot} до положительных значений (для красителей **2.4–2.8**, **2.14**). Высокие положительные значения E_{tot} говорят о нестабильности комплексов красителей **2.4–2.8**, **2.12**, **2.14** с S. В связанном с S состоянии пространственные структуры оксакарбоцианиновых красителей соответствуют в основном скрученным *цис-* и перпланарным конфигурациям, для тиа-красителей могут быть также характерны перпланарные структуры и искаженные (неплоские) *транс*-изомеры. В связанных с S формах триметинцианины расположены на расстоянии 5–8 Å от Glu183 и на расстоянии 10–12 Å от остатков Phe96, Phe131. Пространственное изображение комплекса красителя **2.1** с S приведено на рис. *36*.

Пентаметинцианины. Молекулярный докинг ряда из шести тиа- и оксапентаметинцианиновых красителей (дикарбоцианинов; структуры 3.1–3.6 на рис. 1) показал, что такие соединения потенциально могут образовывать стабильные комплексы с

ПОЛИМЕТИНОВЫЕ КРАСИТЕЛИ КАК ЗОНДЫ

Краситель	X	E_{tot} , ккал/моль	<i>Е_{vdW}</i> , ккал/моль	<i>E_{el}, ккал/моль</i>		
Монометинцианины						
1.1	S (тиа-)	-41.5 ± 2.5	-8.2 ± 2.3	-38.6 ± 5.7		
1.2		-13.1 ± 0.7	-11.8 ± 6.6	-33.1 ± 6.2		
1.3		-29.3 ± 0.9	-10.0 ± 6.0	35.0 ± 5.3		
1.4		35.8 ± 1.4	-12.5 ± 3.0	-33.2 ± 3.1		
1.5	О (окса-)	-58.6 ± 3.2	-11.7 ± 5.8	-34.4 ± 7.6		
1.6		-52.3 ± 2.8	-12.5 ± 5.7	-35.5 ± 5.4		
Триметинцианины						
2.1	S (тиа-)	-13.7 ± 1.6	-5.9 ± 4.8	-38.6 ± 5.9		
2.2		-24.2 ± 0.95	-18.5 ± 1.2	-32.4 ± 1.5		
2.3		-19.1 ± 1.6	-5.2 ± 1.2	-41.7 ± 4.1		
2.4		18.8 ± 0.47	-14.9 ± 6.2	-41.9 ± 9.1		
2.5		0.38 ± 1.02	-6.89 ± 4.2	-41.4 ± 5.0		
2.6		7.06 ± 2.8	-16.5 ± 6.7	-30.2 ± 8.0		
2.7		48.3 ± 1.3	-12.7 ± 8.1	-37.1 ± 5.0		
2.8		84.5 ± 1.0	-18.0 ± 4.7	-31.6 ± 5.0		
2.9		-18.2 ± 0.97	-10.2 ± 7.0	-38.0 ± 6.2		
2.10	О (окса-)	-32.4 ± 0.46	-10.4 ± 7.9	-33.6 ± 8.7		
2.11		-30.0 ± 0.50	-10.6 ± 6.3	-37.3 ± 6.4		
2.12		63.5 ± 2.1	-6.9 ± 5.1	-40.6 ± 5.7		
2.13		-1.05 ± 0.78	-17.6 ± 2.7	-34.9 ± 5.0		
2.14		51.9 ± 0.71	-11.6 ± 3.7	-35.4 ± 4.13		
2.15]	-9.5 ± 1.3	-15.8 ± 4.8	-32.3 ± 7.2		

Таблица 1. Результаты молекулярного докинга анионных моно- и триметинцианиновых красителей с S: общая энергия взаимодействия E_{tot} , энергия ван-дер-ваальсовых взаимодействий E_{vdW} и электростатическая энергия E_{el}

S (см. табл. 2). Для пентаметинцианинов характерны отрицательные значения общей энергии (за исключением красителя **3.2**), при этом, как и в случае триметинцианинов, наименьшие значения E_{tot} получены для окса-красителей (**3.6** и **3.5**, см. табл. 2).

В связанном с белком состоянии конфигурации тиа-красителей (структуры **3.1–3.4**) соответствуют искаженным *транс*-изомерам и скрученным перпланарным конфигурациям. Для окса-красителей **3.5** и **3.6** моделирование дает более плоские *транс*-конфигурации.

Гептаметинцианины. Докинг с S ряда анионных тиа- 4.2–4.6 и оксагептаметинцианинов 4.7– 4.10 (трикарбоцианинов) показал для красителей без заместителей в концевых гетероциклических

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 2 2021

ядрах молекул **4.5** и **4.10** отрицательные значения E_{tot} (см. табл. 2). Введение метокси-заместителей в концевые группы (красители **4.4**, **4.9**) еще снижает значение E_{tot} для тиацианина и мало влияет на E_{tot} окса-красителя. В то же время введение дополнительных конденсированных бензольных циклов в гетероциклические ядра молекул резко повышает величину E_{tot} и делает ее положительной для красителей **4.2**, **4.3** и **4.8**. Аналогично для индоцианина **4.1** с конденсированными бензольными циклами (индоцианинового зеленого) получено положительное значение E_{tot} (см. табл. 2). Молекулы гептаметинцианинов в комплексе с S располагаются на расстоянии 6–13 Å от остатков Pro93, AS94, Phe131, Glu183; конфигурации моле-

ПРОНКИН, ТАТИКОЛОВ

Краситель	Х	<i>Е_{tot}</i> , ккал/моль	<i>Е_{vdW}</i> , ккал/моль	<i>E_{el}, ккал/моль</i>		
Пентаметинцианины						
3.1	S (тиа-)	-30.8 ± 2.0	-10.5 ± 5.6	-39.8 ± 7.0		
3.2		58.3 ± 1.14	-22.4 ± 3.4	-33.5 ± 2.6		
3.3		-34.6 ± 2.1	-11.8 ± 3.4	-40.5 ± 4.8		
3.4		-11.4 ± 0.89	-10.4 ± 5.3	-45.3 ± 4.6		
3.5	0	-39.2 ± 3.2	-5.3 ± 7.6	-47.9 ± 4.9		
3.6	(окса-)	-53.4 ± 1.42	-13.3 ± 6.0	-37.7 ± 6.4		
Гептаметинцианины						
4.1	С(CH ₃) ₂ (индо-)	15.9 ± 0.77	-20.6 ± 5.9	-35.7 ± 5.3		
4.2	S (тиа-)	10.3 ± 1.24	-16.3 ± 2.46	-39.4 ± 4.3		
4.3		60.7 ± 2.6	-17.3 ± 6.7	-41.0 ± 8.5		
4.4		-45.0 ± 2.0	-18.7 ± 3.8	-30.1 ± 6.1		
4.5		-21.7 ± 1.1	-16.0 ± 5.8	-36.3 ± 6.4		
4.6		-20.0 ± 0.72	-10.9 ± 9.0	-45.2 ± 11.9		
4.7	О (окса-)	-12.7 ± 3.3	-17.2 ± 3.7	-35.4 ± 6.0		
4.8		59.1 ± 0.95	-15.6 ± 7.2	-36.9 ± 7.9		
4.9		-32.8 ± 1.04	-13.0 ± 5.4	-38.8 ± 4.3		
4.10		-38.4 ± 1.65	-8.3 ± 4.0	-45.1 ± 6.3		
Скварилиевые красители						
CK1.1	C(CH ₃) ₂	19.6 ± 1.89	-12.9 ± 3.5	-33.4 ± 4.6		
СК1.2		22.7 ± 0.86	-2.83 ± 3.8	-49.1 ± 5.6		
СК1.3	S	-63.0 ± 3.7	-7.84 ± 5.1	-50.5 ± 7.9		
CK1.4		39.2 ± 6.7	-2.18 ± 2.1	-54.8 ± 4.9		
CK1.5		39.2 ± 2.6	-0.91 ± 5.6	-57.9 ± 4.8		
CK1.6		3.31 ± 1.73	-13.87 ± 5.8	-45.1 ± 9.0		
CK1.7		-60.7 ± 2.2	-7.1 ± 1.30	-46.0 ± 2.4		

Таблица 2. Результаты молекулярного докинга анионных пента-, гептаметинцианиновых и скварилиевых красителей с S: общая энергия взаимодействия E_{tot} , энергия ван-дер-ваальсовых взаимодействий E_{udv} и электростатическая энергия E_{ud}

кул красителей соответствуют в основном *транс*-изомерам.

Докинг скварилиевых красителей

Наряду с классическими полиметиновыми красителями было исследовано взаимодействие с S их родственных соединений — скварилиевых красителей. Проведен молекулярный докинг с S 13 скварилиевых красителей, имеющих различную структуру и заряды молекул (нейтральные СК1–СК6 и анионные СК1.1–СК1.7 с сульфогруппами, см. рис. 2). Исходными структурами красителей СК1.1–СК1.7 служили цис-изомеры. Для всех нейтральных соединений (СК1–СК6)

получены положительные значения E_{tot} . Так, для **СКЗ**, имеющего ОН-группы в концевых циклах, $E_{tot} = 45.7 \pm 1.69$ ккал · моль⁻¹, тогда как докинг не имеющего таких заместителей красителя **СК1** дал значение E_{tot} почти в 11 раз меньше ($E_{tot} = 4.1 \pm \pm 0.36$ ккал · моль⁻¹). Довольно высокие положительные значения E_{tot} говорят о нестабильности комплексов таких красителей с S.

В результате докинга с S скварилиевых красителей, имеющих индольные и бензтиазольные гетерогруппы (рис. 2, **СК1.1–СК1.7**) и обладающих отрицательным зарядом за счет наличия двух сульфогрупп, для тиа-красителей **СК1.3** и **СК1.7** получены близкие, довольно низкие значения *E*_{tot} (табл. 2). В комплексе структура красителя **СК1.3** соответствует плоской конформации, краситель **СК1.7** скручен и концевые гетерогруппы депланированы. Молекулы красителей **СК1.3** и **СК1.7** располагаются на расстоянии 5–10 Å от остатков Pro130, Pro93, Glu132, Glu183. Для остальных скварилиевых красителей получены положительные значения E_{tot} . Пространственное строение комплекса красителя **СК1.3** с S, полученное в результате докинга, изображено на рис. 3*в*.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты показывают, что основное влияние на стабильность нековалентных комплексов краситель—Ѕ оказывает общий заряд молекулы красителя. Для катионных (или нейтральных в случае скварилиевых красителей) молекул красителя величина E_{tot} положительна, что указывает на неустойчивость комплексов с S. B то же время отрицательные значения Е_{tot}, указывающие на возможную устойчивость соответствующих комплексов, получены только для анионных красителей. Все это свидетельствует о существенной роли кулоновских взаимодействий при связывании красителя с S. К тому же, для всех изученных анионных красителей величина Eel, характеризующая кулоновские взаимодействия, отрицательна и по абсолютной величине превышает величину Е_{vdW}, характеризующую ван-дер-ваальсовы взаимодействия в комплексе (табл. 1 и 2), что также указывает на ведущую роль кулоновских сил при образовании комплекса.

Наряду с зарядом большое влияние на устойчивость комплексов с S оказывают структурные различия. В частности, большую роль играет наличие или отсутствие дополнительных конденсированных бензольных или диоксиметиленовых циклов в концевых гетероядрах молекулы. Как можно видеть, многие красители, не имеющие таких циклов (красители 1.1, 1.5, 2.1, 2.10, 3.1, 3.6, 4.5, 4.10, СК1.3), демонстрируют отрицательные величины E_{tot} , что указывает на устойчивость соответствующих комплексов. В то же время введение конденсированных циклов или объемистых заместителей (например, $-C_6H_5$) часто приводит к нестабильности комплексов, что выражается в положительных значениях E_{tot} (красители 1.4, 2.4, 2.7, 2.8, 2.14, 3.2, 4.1-4.3, 4.8). Это, возможно, обусловлено меньшей компактностью последних и большими стерическими препятствиями для образования комплекса, чем в случае красителей без дополнительных циклов. Кроме того, во многих случаях можно отметить более отрицательные значения E_{tot} для окса-красителей по сравнению с соответствующими тиа- (и индо-) аналогами (ср. пары красителей 1.5–1.1, 2.10–2.1, 2.15–2.8, 3.6– 3.1, 3.5-3.3, 4.10-4.5, 4.7-4.2 и 4.1, хотя из этого

правила есть и исключения — пары **2.12–2.2** и **4.9–4.4**). Возможно, это также связано с более компактной структурой окса-красителей по сравнению с тиа- и индо-аналогами.

По критерию устойчивости комплексов с S – существенно отрицательной величине E_{tot} – можно отобрать в качестве возможных зондов следующие красители: монометинцианины 1.1–1.3, 1.5, 1.6; триметинцианины 2.1–2.3, 2.9–2.11, 2.15; пентаметинцианины 3.1, 3.3–3.6; гептаметинцианины 4.4–4.7, 4.9, 4.10; скварилиевые красители СК1.3 и СК1.7.

Если красители используются в качестве спектрально-флуоресцентных зондов, тогда наряду с устойчивостью комплексов большую роль играет то, насколько резко изменяются спектральнофлуоресцентные свойства красителей при комплексообразовании. При нековалентном связывании с биомакромолекулами для полиметиновых красителей характерны спектральные сдвиги и усиление флуоресценции [2]. Особенно резкий рост интенсивности флуоресценции наблюдается для мезо-замещенных карбоцианинов (триметинцианинов) вследствие сдвига подвижного цис-трансравновесия, что позволяет обнаруживать очень малые концентрации биомолекул при их использовании в качестве флуоресцентных зондов [20]. С этой точки зрения весьма перспективными для дальнейших практических исследований могут быть тиакарбоцианины 2.2, 2.3 и 2.9 и оксакарбоцианины 2.10 и 2.11.

Для использования в биологических объектах важно, чтобы красители поглощали и флуоресцировали в "окне прозрачности" биологических тканей (в области длин волн >600-650 нм [21, 22]). Этим условиям удовлетворяют красители с более длинной полиметиновой цепочкой – пента-, гептаметинцианины, скварилиевые красители. К перспективным здесь можно отнести почти все исследованные нами пентаметинцианины (кроме 3.2), а также гептаметинцианины 4.4-4.7, 4.9, 4.10 и скварилиевые красители СК1.3 и СК1.7.

спектрально-флуоресцентными Наряду co свойствами при связывании с биомолекулами могут изменяться и фотохимические свойства полиметиновых красителей. В частности, для триметинцианинов наблюдается рост квантового выхода в триплетное состояние [23, 24]. Это свойство в перспективе может быть использовано для фотодинамической терапии - повреждения под действием света биомолекулы-мишени. например компонента вируса, с которым связывается краситель, и, таким образом, инактивации самого вируса. В настоящее время для фотохимической инактивации коронавирусов MERS-CoV и SARS-CoV-2 в сыворотке крови используется рибофлавин в сочетании с облучением УФ-светом [25, 26]. Настоящая работа открывает перспективу применения

для этой же цели триметинцианинов, образующих комплексы с биокомпонентами вирусов; при этом можно было бы использовать видимый свет, глубже проникающий в биоткани, чем ультрафиолетовое излучение. Триметинцианины в триплетном состоянии могли бы инициировать повреждение биомолекулы в таком комплексе.

ЗАКЛЮЧЕНИЕ

Путем моделирования с помощью метода молекулярного докинга предпринято исследование нековалентного взаимодействия различных классов полиметиновых (цианиновых и скварилиевых) красителей с одним из структурных белков коронавируса SARS-CoV-2 – спайк-протеином (S). Показано, что катионные или нейтральные красители не образуют устойчивых комплексов с данным белком, но обнаружен ряд анионных красителей, которые потенциально могли бы образовывать такие комплексы. Это позволило провести отбор красителей для дальнейших практических исследований с целью разработки спектрально-флуоресцентных зондов для обнаружения SARS-CoV-2. Показана также перспектива использования триметинцианиновых красителей для фотодинамической терапии — инактивации коронавируса.

Работа выполнена в рамках госзадания № 001201253314 (ИБХФ РАН).

СПИСОК ЛИТЕРАТУРЫ

- Shindy H.A. // Dyes Pigm. 2017. V. 145. P. 505; https://doi.org/10.1016/j.dyepig.2017.06.029
- 2. *Tatikolov A.S.* // J. Photochem. Photobiol. C: Photochem. Rev. 2012. V. 13. № 1. P. 55; https://doi.org/10.1016/j.jphotochemrev.2011.11.001
- 3. Татиколов А.С., Пронкин П.Г., Шведова Л.А., Панова И.Г. // Хим. физика. 2019. Т. 38. № 12. С. 11; https://doi.org/10.1134/S0207401X19120185
- Sivaraman D., Biswas P., Cella L.N., Yates M.V., Chen W. // Trends Biotechnol. 2011. V. 29. № 7. P. 307; https://doi.org/10.1016/j.tibtech.2011.02.006
- Vus K., Tarabara U., Balklava Z. et al. // J. Mol. Liq. 2020. V. 302. P. 112569; https://doi.org/10.1016/j.molliq.2020.112569
- 6. *Beg M.A., Athar F.* // Pharm. Pharmacol. Intern. J. 2020. V. 8. № 3. P. 163;
- https://doi.org/10.15406/ppij.2020.08.00292 7. Tazikeh-Lemeski E., Moradi S., Raoufi R. et al. //
- J. Biomol. Struct. Dyn. 2020. P. 0739; https://doi.org/10.15406/ppij.2020.08.00292
- Al-Masoudi N.A., Elias R.S., Saeed B. // Biointerface Res. Appl. Chem. 2020. V. 10. № 5. P. 6444; https://doi.org/10.33263/BRIAC105.64446459

- De Magalhães C.S., Barbosa H.J.C., Dardenne L.E. Genetic and Evolutionary Computation (GECCO 2004). Lecture Notes in Computer Science. V. 3102. Berlin– Heidelberg: Springer, 2004; https://doi.org/10.1007/978-3-540-24854-5 382004
- De Magalhães C.S., Almeida D.M., Barbosa H.J.C., Dardenne L.E. // Inf. Sci. 2014. V. 289. P. 206; https://doi.org/0.1016/j.ins.2014.08.002
- Wu Y., Wang F., Shen C. et al. // Science. 2020. V. 368. № 6496. P. 1274; https://doi.org/10.1126/science.abc2241
- Hanwell M.D., Curtis D.E., Lonie D.C. et al. // J. Cheminformatics. 2012. V. 4. P. 17; https://doi.org/10.1186/1758-2946-4-17
- Аvogadro: инструмент для построения молекул и визуализации с открытым исходным кодом. Версия 1.2.0; http://avogadro.cc (дата обращения: 11.08.2020).
- 14. Yang Z., Lasker K., Schneidman-Duhovny D. et al. // J. Struct. Biol. 2012. V. 179. P. 269; https://doi.org/10.1016/j.jsb.2011.09.006
- UCSF Chimera: система визуализации для поисковых исследований и анализа. Версия 1.13.1; http://www.rbvi.ucsf.edu/chimera (дата обращения: 11.08.2020).
- Татиколов А.С., Акимкин Т.М., Кашин А.С., Панова И.Г. // Химия высоких энергий. 2010. Т. 44. № 3. С. 252.
- 17. Колесников А.М., Михайленко Ф.А. // Успехи химии. 1987. Т. 56. С. 466.
- 18. Акимкин Т.М., Татиколов А.С., Ярмолюк С.М. // Химия высоких энергий. 2011. Т. 45. № 3. С. 252.
- Khimenko V., Chibisov A.K., Görner H. // J. Phys. Chem. A. 1997. V. 101. P. 7304; https://doi.org/10.1021/jp971472b
- Pronkin P.G., Shvedova L.A., Tatikolov A.S. // Biophys. Chem. 2020. V. 261. P. 106378; https://doi.org/10.1016/j.bpc.2020.106378
- Красников И.В., Привалов В.Е., Сетейкин А.Ю., Фотиади А.Э. // Вестн. СПбГУ. 2013. Сер. 11. Вып. 4. С. 202.
- 22. Patterson M.S., Wilson B.C., Wyman D.R. // Lasers Med. Sci. 1991. V. 6. P. 379; https://doi.org/10.1007/bf02042460
- Пронкин П.Г., Татиколов А.С., Скляренко В.И., Кузьмин В.А. // Химия высоких энергий. 2006. Т. 40. № 4. С. 295.
- 24. Пронкин П.Г., Татиколов А.С., Скляренко В.И., Кузьмин В.А. // Там же. № 6. С. 451.
- Keil S.D., Bowen R., Marschner S. // Transfusion. 2016.
 V. 56. P. 2948; https://doi.org/10.1111/trf.13860
- 26. Keil S.D., Ragan I., Yonemura S. et al. // Vox Sang. 2020. V. 115. P. 495; https://doi.org/10.1111/vox.12937