_ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ _ СВОЙСТВА МАТЕРИАЛОВ

УДК 538.955

ФЕРРИМАГНЕТИЗМ СПИНОВОЙ ЦЕПОЧКИ С КОНКУРИРУЮЩИМИ ОБМЕННЫМИ ВЗАИМОДЕЙСТВИЯМИ

© 2021 г. В. Я. Кривнов^{1*}, Д. В. Дмитриев¹

¹Институт биохимической физики им. Н.М. Эмануэля Российской академии наук, Москва, Россия *E-mail: krivnov@deom.chph.ras.ru Поступила в редакцию 02.07.2020; после доработки 26.08.2020;

принята в печать 21.09.2020

Изучена квантовая спиновая модель дельта-цепочки с обменными взаимодействиями ферро-(F) и антиферромагнитного (AF) типов. Свойства модели существенно зависят от параметра фрустрации α (отношения констант AF- и F-взаимодействий). При $\alpha < 1/2$ основное состояние ферромагнитно, а при $\alpha = 1/2$ происходит квантовый фазовый переход в другую фазу. На основании численных расчетов и анализа модели при больших значениях α сделан вывод о том, что основное состояние при $\alpha > 1/2$ магнитоупорядоченно и полный спин основного состояния равен половине максимально возможного. Сравнение свойств основного состояния классической и квантовой моделей показывает, что рассматриваемая модель есть пример системы, в которой квантовые эффекты ответственны за появление порядка из беспорядка.

Ключевые слова: спиновая дельта-цепочка, фрустрированные спиновые системы, ферро- и ферримагнетизм.

DOI: 10.31857/S0207401X21020102

введение

Низкоразмерные квантовые магнетики на геометрически фрустрированных решетках вызывают значительный интерес как с экспериментальной, так и с теоретической точек зрения [1–3]. Важным классом таких объектов являются соединения, состоящие из треугольных кластеров магнитных ионов. К ним, например, относятся магнетики на двумерных и квазиодномерных решетках кагоме, решетках пирохлора и ряде других. Простейшим и типичным примером такой системы является так называемая дельта-цепочка, представляющая собой линейную цепь треугольников с магнитными ионами со спином 1/2 в их узлах (рис. 1). Магнитные свойства такой системы описываются моделью Гейзенберга, имеющей вид

$$H = J_1 \sum \mathbf{S}_i \mathbf{S}_{i+1} + J_2 \sum \mathbf{S}_{2i-1} \mathbf{S}_{2i+1}.$$
 (1)

Квантовая дельта-цепочка, со спином s = 1/2 с обоими антиферромагнитными (AF) взаимодействиями: $J_1 > 0$, $J_2 > 0$, достаточно хорошо изучена и обладает рядом интересных свойств [2, 4–7]. В частности, при $J_2 = J_1/2$ и магнитном поле, близком к насыщению, кривая намагниченности имеет плато со скачком намагниченности, а теплоемкость наряду с широким высокотемпературным максимумом имеет дополнительный низкотемпературный пик.

В то же время дельта-цепочка с s = 1/2, ферромагнитным взаимодействием J_1 и антиферромагнитным взаимодействием J_2 ($J_1 < 0, J_2 > 0$) (F-AF-модель) также весьма интересна, но до недавнего времени была изучена существенно меньше. Особый интерес вызывает изучение ее магнитных свойств в зависимости от значения параметра фрустрации $\alpha = J_2/|J_1|$. Ранее было лишь известно, что основное состояние F-AFцепочки ферромагнитно, если параметр фрустрации $\alpha < 1/2$, но структура основного состояния при $\alpha > 1/2$ до конца оставалась невыясненной, хотя и предполагалось, что основное состояние магнитоупорядоченно (ферримагнитно) при $\alpha > 1/2$. Критическое значение параметра фрустрации α_{cr} = = 1/2 разделяет эти две фазы.

Дополнительной мотивацией для изучения F—AF-дельта-цепочки стало появление реальных

Рис. 1. Спиновая модель дельта-цепочки.

соединений, описываемых этой моделью. Примером такого рода соединений являются комплексы [CuH₂O] · [Cu(mal)H₂O](ClO₄)₂, содержащие магнитные ионы Cu²⁺ со спином 1/2 [8, 9]. Из анализа экспериментальных данных было установлено, что параметр фрустрации α в этом соединении примерно равен единице.

Другим очень интересным примером соединений, описываемых F–AF-моделью, являются недавно синтезированные циклические комплексы, содержащие магнитные молекулы Fe₁₀Gd₁₀ с рекордным значением спина основного состояния молекулы: S = 60 [10]. Оценка значения параметра фрустрации для этой молекулы показывает, что $\alpha = 0.46$ [10]. Имеются также и другие примеры ферримагнитных молекулярных магнетиков [11].

Как было отмечено выше, при $\alpha < 1/2$ основное состояние s = 1/2 F–AF-цепочки является ферромагнитным, т.е. спин основного состояния S = N/2 (N -число спинов цепочки). Значение параметра фрустрации $\alpha_{cr} = 1/2$ соответствует квантовой критической точке; F-AF-модель при $\alpha = \alpha_{cr}$ была детально исследована в наших работах [12–14]. В частности, подробный анализ этой весьма нетривиальной модели был недавно приведен в работе [15]. Напомним кратко об основных особенностях F–AF-цепочки при $\alpha = \alpha_{cr}$. Точными основными состояниями модели (1) являются как локализованные многомагнонные состояния, так и связанные состояния магнонов специального класса. Основное состояние реализуется при любом значении полного спина, и число всех основных состояний экспоненциально велико. Вследствие этого энтропия, приходящаяся на один спин, при нулевой температуре конечна и равна ln(2)/2. Спектр возбуждений имеет экспоненциально малую щель, что приводит к необычному поведению низкотемпературной термодинамики. Эти свойства модели представляют несомненный интерес. Однако едва ли можно ожидать, что в настоящее время возможен синтез соединений, описываемых F-AF-моделью с параметром фрустрации, в точности равным критическому. (Заметим, тем не менее, что в магнитной молекуле Fe₁₀Gd₁₀ параметр фрустрации близок к критическому значению.) Поэтому возникает вопрос о свойствах модели при произвольных значениях параметра α. Свойства модели в ферромагнитной фазе при α < 1/2 исследованы достаточно подробно. В частности, было изучено низкотемпературное поведение модели в этой фазе [14, 15], и был проведен анализ экспериментально наблюдаемых свойств магнитной молекулы Fe₁₀Gd₁₀, параметр фрустрации которой $\alpha < 1/2$.

В настоящей работе мы остановимся на изучении F–AF-дельта-цепочки при $\alpha > 1/2$. Как мы отмечали выше, вопрос о природе основного состояния в этой фазе остается открытым, хотя есть определенные основания ожидать, что основное состояние при $\alpha > 1/2$ ферримагнитно, т.е. величина магнитного момента, приходящегося на один узел, отлична от нуля, но меньше максимального значения, равного 1/2. Например, в нашей работе [13] по изучению F—AF-дельта-цепочки в случае предельной величины анизотропии обменных взаимодействий показано, что фазовая диаграмма основного состояния состоит из ферромагнитной и ферримагнитной фаз с критической линией между ними, и такая картина может также сохраниться и для изотропной модели (1). Тем не менее, этот вопрос требует дополнительного исследования.

ФЕРРИМАГНИТНАЯ ФАЗА

Для начала интересно рассмотреть этот вопрос для классической версии модели (1). В классическом приближении операторы спина s = 1/2 заменяются векторами с длиной s: $\mathbf{S}_i = s\mathbf{n}_i$ (\mathbf{n}_i — единичный вектор), и квантовый гамильтониан (1) сводится к классическому. Для дальнейшего рассмотрения удобно представить этот гамильтониан в виде суммы гамильтонианов отдельных треугольников:

$$H = s^2 \sum H_i, \tag{2}$$

где H_i – гамильтониан *i*-того треугольника, имеющий вид (с заменой **S** на **n**)

$$H_{i} = -(n_{2i-1} + n_{2i+1})n_{2i} + \alpha n_{2i-1}n_{2i+1}, \qquad (3)$$

где мы приняли, что $J_1 = -1$, а $J_2 = \alpha$.

Легко убедиться, что для $\alpha \le 1/2$ основное состояние гамильтониана (2) является тривиальным ферромагнитным с параллельной ориентацией всех спинов. При $\alpha > 1/2$ минимальная энергия (3) отдельного треугольника соответствует ферримагнитной конфигурации, показанной на рис. 2, в которой все спины треугольника, **n**₁, **n**₂, **n**₃, лежат в одной плоскости и угол между спинами **n**₁, **n**₃ и вершинным спином **n**₂ равен θ_0 , где

$$\cos\theta_0 = \frac{1}{2\alpha}.$$
 (4)

Согласно (4), магнитный момент *m* каждого треугольника равен

$$m = 1 + \frac{1}{\alpha},\tag{5}$$

и параллелен спину \mathbf{n}_2 .

На первый взгляд кажется, что полный магнитный момент цепочки равен *nm*, где *n* — число треугольников. Этот результат был бы справедлив, если бы все треугольники цепочки лежали в одной плоскости и все вершинные спины были бы параллельны. В действительности, конфигурация основного состояния необязательно долж-

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 2 2021

на быть компланарной. Рассмотрим, например, два соседних треугольника со спинами ($\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3$) и (\mathbf{n}_3 , \mathbf{n}_4 , \mathbf{n}_5). Спины треугольника (\mathbf{n}_1 , \mathbf{n}_2 , \mathbf{n}_3) лежат в одной плоскости. и их конфигурация удовлетворяет условию (4). Спины соседнего треугольника (\mathbf{n}_3 , \mathbf{n}_4 , \mathbf{n}_5) также образуют ферримагнитную конфигурацию, но они могут лежать в любой плоскости, полученной в результате вращения этого треугольника вокруг спина **n**₃ на произвольный угол, так что основное состояние второго треугольника вырождено по углу между плоскостями (**n**₁, **n**₂, **n**₃) и (**n**₃, **n**₄, **n**₅). Затем плоскость третьего треугольника — $(\mathbf{n}_5, \mathbf{n}_6, \mathbf{n}_7)$ может быть повернута на произвольный угол вокруг спина **n**₅ и т.д. В результате основное состояние классической дельта-цепочки при α > 1/2 бесконечно вырождено. Все конфигурации основного состояния могут быть описаны как случайные блуждания конечной длины на поверхности сферы. Усреднение по всем конфигурациям основного состояния приводит к нулевой намагниченности, несмотря на конечную намагниченность каждого треугольника. Магнитный момент в слабом магнитном поле ($h \ll T$) растет линейно с увеличением напряженности поля [14]:

$$\frac{m}{n} = \chi h, \quad \chi = \frac{2\alpha + 1}{6T(2\alpha - 1)}.$$
(6)

В отличие от классической модели, которая допускает аналитическое рассмотрение, квантовая F—AF-дельта-цепочка при $\alpha > 1/2$ может быть изучена лишь на основе приближенных методов или численных расчетов конечных цепочек. В проведенных нами численных расчетах спина основного состояния мы использовали как точную диагонализацию (exact diagonalization (ED)) соответствующих матриц, так и высокоэффективные приближенные методы, основанные на ренорм-групповой процедуре (DMRG), позволяющие существенно увеличить размеры цепочки по сравнению с доступными для ED-вычислений.

Оказалось, однако, что результаты расчетов основного состояния зависят от граничных условий (т.е. от того, являются ли цепочки циклическими или открытыми) и от четности числа треугольников в цепочке. Например, спин основного состояния S_{tot} циклической цепочки с четным числом треугольников уменьшается постепенно или скачками от $S_{tot} = (N/4 + 1)$ до $S_{tot} = 0$ при увеличении α от 1/2 до величины α_0 , зависящей от *N*. Согласно численным расчетам, $\alpha_0 \sim 1, \sim 2, \sim 3$ для N = 20, 24 и 36 соответственно. Такая же ситуация наблюдается и для открытых цепочек с нечетным числом треугольников. С другой стороны, для открытых цепочек с четным числом треугольников спин S_{tot} был равен (N + 1)/4 при всех значениях параметра α > 1/2 и для рассчитанных нами цепочек (до $N \sim 60$). (Заметим, что подобное различие в

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 2 2021

Рис. 2. Ферримагнитное состояние классической дельта-цепочки.

поведении спина основного состояния было обнаружено ранее в работе [16].) Как будет обсуждено ниже, это различие в поведении S_{tot} обусловлено эффектом конечномерности, и при $N \gg 1$ полный спин S_{tot} не должен зависеть от типа цепочки. Для решения этого вопроса полезно рассмотреть дельта-цепочку при больших значениях параметра фрустрации. В пределе $\alpha = \infty$ модель распадается на две несвязанные подсистемы: антиферромагнитную цепочку и подсистему невзаимодействующих спинов на вершинах треугольников. При больших, но конечных значениях α взаимодействие между подсистемами можно учесть в рамках теории возмущений по величине 1/α. В этом случае удобно принять $J_2 = 1, J_1 = -1/\alpha$, и гамильтониан (1) будет иметь вид

$$H = H_0 + V, \tag{7}$$

$$V = -\frac{1}{\alpha} \sum \left(S_{2i-1} + S_{2i-1} \right) S_{2i}, \tag{8}$$

где H_0 — гамильтониан антиферромагнитной цепочки спинов основания, а V — их взаимодействие со спинами вершин. Пусть циклическая цепочка содержит *n* треугольников и *n* спинов основания (n = N/2) и *n* четно. Тогда основное состояние H_0 является синглетом, и в силу его симметрии поправка первого порядка равна нулю. При этом вершинная подсистема вырождена по спину. Однако для триплета с $S_{tot} = 1$ поправка первого порядка отлична от нуля. Она равна среднему $\langle V \rangle$ по триплету, которое имеет вид

$$\langle V \rangle = -\frac{1}{\alpha} \sum \left\langle S_{2i-1}^{z} + S_{2i+1}^{z} \right\rangle S_{2i}^{z}.$$
 (9)

Среднее $\langle S_{2i}^{z} + S_{2i+1}^{z} \rangle$ по триплетному состоянию

равно 2/*n*, и минимум (9) достигается при $S_{2i}^z = 1/2$, т.е. подсистема вершинных спинов находится в ферромагнитном состоянии и $S_{tot} = (n/2 + 1)$. (Заметим, что именно такое значение S_{tot} имеют циклические цепочки с $n \sim 10$ при $\alpha \sim 1$.) При этом $\langle V \rangle = -1/\alpha$. Разность энергий ΔE нижайшего триплета и синглета AF-цепочки Гейзенберга, как известно, равна $\Delta E = \pi^2/n$, и переход из состояния с $S_{tot} = 0$ в состояние с $S_{tot} = (n/2 + 1)$ при большом значении α происходит при $n > \pi^2 \alpha$. Для $\alpha = 10$ соответствующее $n \sim 100$ ($N \sim 200$), но численные

расчеты таких больших цепочек пока нельзя провести. Что касается открытых дельта-цепочек с четным числом треугольников, то АF-подсистема имеет нечетное число спинов, ее основное состояние имеет спин 1/2 и вклад первого порядка отличен от нуля. Подсистема вершинных спинов находится в ферромагнитном состоянии, и $S_{tot} =$ = n/2 + 1/2, как и наблюдается в численных расчетах таких цепочек. Таким образом, при больших значениях α спин основного состояния открытых и достаточно больших циклических цепочек равен N/4. Необходимо, однако, отметить, что выше мы рассматривали вклады первого порядка по *V* для состояний антиферромагнитной цепочки с S = 1 и S = 1/2 для циклической и открытой цепочек соответственно. Это правильно, когда число спинов составляет сотни или тысячи. Если, однако, цепочка имеет макроскопические размеры, стартовым является состояние с также макроскопическим спином SAF-цепочки. В этом случае $\langle V \rangle = -S/\alpha$ и полная энергия равна

$$E = E(S) - \frac{S}{\alpha},\tag{10}$$

где E(S) — энергия нижайшего состояния со спином *S* AF-цепочки Гейзенберга, которая при $S \ll n$ равна [17]

$$E(S) = E_0 + \frac{\pi^2 S^2}{2n}.$$
 (11)

Здесь *E*₀ – энергия основного состояния AF-цепочки.

Минимизация (10) по *S* дает оптимальное значение спина AF-подсистемы:

$$S^* = \frac{n}{\pi^2 \alpha},\tag{12}$$

и полный спин *S*_{tot} равен

$$S_{tot} = \left(\frac{1}{2} + \frac{1}{\pi^2 \alpha}\right) n. \tag{13}$$

Таким образом, при больших значениях α спин основного состояния составляет половину от максимального значения, равного *N*/2. При этом магнитные моменты, приходящиеся на один узел антиферромагнитной цепочки и вершинной подсистемы, равны $1/\pi^2 \alpha$ и 1/2 соответственно. Хотя полученный результат относится к области больших значений α , можно ожидать, что спин основного состояния *S*_{tot} будет описываться формулой (13) при всех $\alpha > 1/2$, и это имеет место как для открытых цепочек с четным числом треугольников, так и для достаточно больших циклических цепочек.

ЗАКЛЮЧЕНИЕ

Мы изучили модель дельта-цепочки с ферро-и антиферромагнитными обменными взаимодей-

ствиями. Основное внимание уделено области значений параметра фрустрации α > 1/2. Показано, что некоторые противоречия в результатах численных расчетов обусловлены эффектом конечности рассчитываемых цепочек. На основании анализа модели при больших значениях α сделан вывод о том, что основное состояние при $\alpha > 1/2$ ферримагнитно и его полный спин S_{tot} зависит от α и превышает N/4. Недавние численные расчеты, проведенные в работе [18], подтверждают этот вывод. Таким образом, основное состояние квантовой F–AF-модели при α > 1/2 является магнитоупорядоченным в отличие от классической модели, где оно бесконечно вырождено и разупорядоченно. Таким образом, рассматриваемая модель принадлежит к классу систем, в которых реализуется явление "порядок из беспорядка" ("order by disorder"), когда квантовые флуктуации формируют упорядоченное состояние из разупорядоченного.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Diep H.T.* Frustrated Spin Systems. Singapore: World Scientific, 2013.
- 2. Derzhko O., Richter J., Maksymenko M. // Intern. J. Modern Phys. 2015. V. 29. № 12. P. 1530007.
- 3. *Дмитриев Д.В., Кривнов В.Я.* // Хим. физика. 2009. Т. 28. № 3. С. 24.
- 4. Zhitomirsky M.E., Tsunetsugu H. // Phys. Rev. B. 2004. V. 70. № 10. P. 100403.
- 5. *Schnack J., Schmidt H.-J., Richter J., Schulenberg J. //* Eur. Phys. J. B. 2001. V. 24. № 4. P. 475.
- Richter J., Schulenburg J., Honecker A., Schnack J., Schmidt H.J. // J. Phys.: Condens. Mater. 2004. V. 16. № 11. P. S779.
- Derzhko O., Richter J. // Phys. Rev. B. 2004. V. 70. № 10. P. 104415.
- 8. *Ruiz-Perez C., Hernandez-Molina M., Lorenzo-Luis P. et al.* // Inorg. Chem. 2000. V. 39. № 17. P. 3845.
- 9. Inagaki Y., Narumi Y., Kindo K. et al. // J. Phys.Soc. Jpn. 2005. 2005. V. 74. № 10. P. 2831.
- Baniodeh A., Magnani N., Lan Y. et al. // Npj Quant. Mater. 2018. V. 3.1. P. 10.
- 11. Моргунов Р.Б., Tanimoto Y., Inoue K., Yoshida Y., Кирман М.В. // Хим. физика. 2007. Т. 26. № 5. С. 89.
- Krivnov V.Ya., Dmitriev D.V., Nishimoto S., Drechsler S.-L., Richter J. // Phys. Rev. B. 2014. V. 90. № 1. P. 014441.
- Dmitriev D.V., Krivnov V.Ya. // Phys. Rev. B. 2015. V. 82. № 5. P. 054407.
- 14. Dmitriev D.V., Krivnov V.Ya., Richter J., Schnack J. // Phys. Rev. B. 2019. V. 99. № 9. P. 094410.
- 15. Кривнов В.Я., Дмитриев Д.В., Эрихман Н.С. // Хим. физика. 2019. Т. 28. № 12. С. 24.
- Tonegawa T., Kaburagi M. // J. Magn. Magn. Mater. 2004. V. 272–276. P. 898.
- 17. Griffits R.B. // Phys. Rev. 1964. V. 133. № 3. P. A768.
- 18. Yamaguchi T., Drechsler S.-L., Ohta Y., Nishimoto S. // Phys. Rev. B. 2020. V. 101. № 10. P. 104407.

ХИМИЧЕСКАЯ ФИЗИКА том 40 № 2 2021