ЭЛЕМЕНТАРНЫЕ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССЫ

УДК 539.186

ДИССОЦИАТИВНОЕ ВОЗБУЖДЕНИЕ НЕЧЕТНЫХ СЕКСТЕТНЫХ УРОВНЕЙ АТОМА КОБАЛЬТА В СТОЛКНОВЕНИЯХ ЭЛЕКТРОНОВ С МОЛЕКУЛАМИ ДИБРОМИДА КОБАЛЬТА

© 2020 г. Ю. М. Смирнов*

Национальный исследовательский университет "МЭИ", Москва, Россия

**E-mail: SmirnovYM@mpei.ru* Поступила в редакцию 20.05.2019; после доработки 20.05.2019; принята в печать 22.07.2019

Экспериментально изучено диссоциативное возбуждение нечетных секстетных уровней атома кобальта при столкновениях электронов с молекулами дибромида кобальта. При энергии налетающих электронов 100 эВ измерены 53 сечения диссоциативного возбуждения; в пяти случаях имеют место бленды. В диапазоне энергий электронов 0–100 эВ зарегистрированы оптические функции возбуждения для переходов с десяти секстетных уровней CoI. Главной особенностью изученных уровней является большое время жизни, вследствие чего часть возбужденных атомов покидает поле зрения оптической системы, не излучая.

Ключевые слова: диссоциативное возбуждение, дибромид кобальта, сечение, энергетический уровень, время жизни.

DOI: 10.31857/S0207401X20040159

введение

В связи с интенсивным развитием физики плазмы и плазменных технологий существенно возрастает значение моделирования плазмы как эффективного метода плазменных исследований. Возможности этого метода быстро возрастают вследствие постоянного увеличения производительности ЭВМ. Однако успешное проведение таких исследований в значительной мере зависит от того, насколько создаваемые компьютерные программы обеспечены достоверной базой данных о физических и химических характеристиках объектов, входящих в состав плазмы. Основными из таких характеристик являются радиационные (силы осцилляторов, вероятности переходов, времена жизни) и столкновительные (сечения различных типов столкновений).

В обзорной работе [1] была подробно проанализирована ситуация с информационным обеспечением математических моделей, применяемых для создания и совершенствования технологий полупроводниковых производств, базирующихся на использовании различных видов плазмы. Поскольку в современных плазменных устройствах, обеспечивающих создание элементной базы микроэлектроники, широко используются галогенсодержащие молекулы, главным образом содержащие фтор и хлор, основное внимание в [1] уделено сечениям столкновений электронов с молекулами этих классов. В обширной сводке [1, табл. 1] содержится как экспериментальная, так и теоретическая информация о шести типах процессов столкновений электронов с 37 молекулами, в основе которой лежат материалы 112 публикаций.

Появление столь обширных данных вызвано потребностями развития полупроводниковых технологий. Однако развитие других возможных практических приложений, а также потребности фундаментальной науки требуют проведения аналогичных исследований характеристик других молекул и других процессов. В частности, в последние три десятилетия выполняется цикл работ по систематическому изучению диссоциативного возбуждения молекул галогенидов металлов (следует отметить, что в обзорном материале [1, табл. 1] диссоциативное возбуждение полностью отсутствует).

Между тем уже во время публикации работы [1] и в последующие годы все более широкое применение находит пучковая плазма, в которой энергия электронов задается параметрами внешнего источника питания и может быть весьма высокой, вплоть до формирования релятивистских пучков. В пучковой плазме диссоциативное возбуждение может осуществляться не только первичными электронами пучка, но и электронами каскада. Этот процесс чрезвычайно мало изучен теоретически: в единственной теоретической ра-

состояний атома кобальта
секстетных
и нечетных
возбуждения
циативного н
ечения диссоі
2
Таблица 1

	λ, нм	Переход	$J_{low}-J_{up}$	$E_{low} { m cm}^{-1}$	$E_{up},{ m cm}^{-1}$	$Q_{100},10^{-18}{ m cm}^2$	$Q_{max}, 10^{-18} { m cm}^2$	$E(Q_{max}), \Im B$	OEF
	(381.105	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	9/2-7/2	0	26232)		<u> 174</u>	36	8
	381.107	$3d^84s a^2F - 3d^84p y^4G^\circ$	7/2-5/2	7442	33674	. 660.0	17170	Ι	Ι
	385.431	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	9/2-9/2	0	25937	0.181*	0.193	37	9
	385.680	$3d^84s b^4P - 3d^74s4p \ ^6P^{\circ}$	5/2-5/2	15184	41104	0.15	I	Ι	Ι
	389.998	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	7/2-5/2	816	26449	0.185^{*}	0.20	83	7
	390.993	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	9/2-11/2	0	25568	3.88*	4.21	58	10
	(393.341)	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	7/2-7/2	816	26232)	0.31^{*}	0.39	36	8
	395.627	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}D^{\circ}$	9/2-7/2	0	25269	0.46	0.74	27	I
		$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	5/2-3/2	1406	26597				
	000.040	$3a^{8}4s a^{2}D - 3d^{8}4p z^{4}P^{\circ}$	5/2-5/2	16778	41968	J00.002			I
	397.952	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	7/2-9/2	816	25937	3.12*	3.32	37	9
	401.109	$3d^{7}4s^{2} a^{4}F - 3d^{7}4s4p \ ^{6}D^{\circ}$	7/2-5/2	816	25739	0.26	I	Ι	Ι
	402.703	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	5/2-7/2	1406	26232	2.25*	2.80	36	8
	403.302	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	3/2-3/2	1809	26597	0.22	I	Ι	Ι
	405.461	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}D^{\circ}$	5/2-3/2	1406	26063	0.20	I	Ι	Ι
XI	405.720	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}G^{\circ}$	3/2-5/2	1809	26449	2.11*	2.30	83	7
4MI	405.932	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}D^{\circ}$	9/2-9/2	0	24627	1.86^{*}	2.49	53	7
ИЧЕ	408.829	$3d^74s^2 a^4F - 3d^74s4p z^6D^\circ$	7/2-7/2	816	25269	0.24	0.38	27	I
ЕСК	410.849	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}D^{\circ}$	5/2-5/2	1406	25739	0.135	I	Ι	Ι
АЯ	410.966	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}F^{9}$	9/2-7/2	0	24326	0.145*	0.173	70	4
ФИ	419.071	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}F^{\circ}$	9/2-9/2	0	23855	4.61*	5.03	44	5
зиі	419.843	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}D^{\circ}$	7/2-9/2	816	24627	0.61^{*}	0.82	53	2
KA	422.995	$3d^{7}4s^{2} a^{4}F - 3d^{7}4s4p z^{6}F^{9}$	5/2-3/2	1406	25041	0.057	I	Ι	Ι
т	423.400	$3d^{7}4s^{2} a^{4}F - 3d^{7}4s4p z^{6}F^{0}$	9/2-11/2	0	23611	3.35*	3.98	72	9
эм З	425.230	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}F^{\circ}$	7/2-7/2	816	24326	2.20*	2.58	70	4
9	426.803	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}F^{\circ}$	3/2-1/2	1809	25232	0.185	I	Ι	Ι
N⁰	428.578	$3d^{7}4s^{2} a^{4}F - 3d^{7}4s4p z^{6}F^{9}$	5/2-5/2	1406	24733	2.33*	2.95	70	ŝ
4	430.323	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}F^{\circ}$	3/2-3/2	1809	25041	0.24	I	I	Ι
20	436.103	$3d^74s^2 a^4F - 3d^74s4p z^6F^{\circ}$	3/2-5/2	1809	24733	0.21^{*}	0.27	70	ŝ
20	436.192	$3d^{7}4s^{2} a^{4}F-3d^{7}4s4p z^{6}F^{0}$	5/2-7/2	1406	24326	0.23*	0.27	70	4

4

СМИРНОВ

		Ta	блица І. Оконча	ние				
λ, нм	Переход	$J_{low}-J_{up}$	$E_{low}~{ m cm}^{-1}$	E_{up}, cm^{-1}	$ec{O}_{100},10^{-18}{ m cm}^2$	$Q_{max}, 10^{-18} { m cm}^2$	$E(Q_{max}), \Im B$	OEF
445.214	$3d^84s \ b^4F-3d^74s4p \ z^6G^\circ$	9/2-9/2	3482	25937	0.14^{*}	0.15	37	9
448.159	$3d^84s \ b^4F-3d^74s4p \ z^6G^{\circ}$	7/2-5/2	4142	26449	0.14^{*}	0.155	83	7
452.579	$3d^84s \ b^4F-3d^74s4p \ z^6G^{\circ}$	7/2-7/2	4142	26232) 22E 0	36	8
452.652	$3d^84s \ b^4F-3d^74s4p \ z^6G^{\circ}$	9/2-11/2	3482	25568) 	C12.0	58	10
456.338	$3d^84s \ b^4F-3d^74s4p \ z^6G^{\circ}$	5/2-3/2	4690	26597	0.078	I	I	I
458.694	$3d^{8}4s \ b^{4}F-3d^{7}4s4p \ z^{6}G^{\circ}$	7/2-9/2	4142	25937	0.305*	0.33	37	9
458.873	$3d^{8}4s \ b^{4}F-3d^{7}4s4p \ z^{6}D^{\circ}$	9/2-7/2	3482	25269	0.22	0.35	27	Ι
459.435	$3d^84s \ b^4F-3d^74s4p \ z^6G^{\circ}$	5/2-5/2	4690	26449	*200		83	7
459.463	$3d^{7}4s4p \ z^{4} D^{\circ} - 3d^{8}4d \ e^{4} D$	7/2-7/2	29294	51052	-000	}6C.U	I	I
462.892	$3d^{8}4s \ b^{4}F-3d^{7}4s4p \ z^{6}D^{\circ}$	7/2-5/2	4142	25739	0.16	I	I	I
464.082	$3d^84s \ b^4F-3d^74s4p \ z^6G^{\circ}$	5/2-7/2	4690	26232	0.185*	0.23	36	8
464.515	$3d^84s \ b^4F-3d^74s4p \ z^6G^{\circ}$	3/2-3/2	5075	26597	0.088	I	I	I
467.725	$3d^{8}4s \ b^{4}F-3d^{7}4s4p \ z^{6}G^{\circ}$	3/2-5/2	5075	26449] * C 1	83	7
467.749	$3d^{8}4s \ b^{4}F-3d^{7}4s4p \ z^{6}D^{\circ}$	5/2-3/2	4690	26063) 1.14°	1.24	I	Ι
472.794	$3d^84s \ b^4F-3d^74s4p \ z^6D^{\circ}$	9/2-9/2	3482	24627	3.04^{*}	4.08	53	2
473.205	$3d^{8}4s \ b^{4}F-3d^{7}4s4p \ z^{6}D^{\circ}$	7/2-7/2	4142	25269	0.40	0.64	27	Ι
479.637	$3d^{8}4s b^{4}F - 3d^{7}4s4p z^{6}F^{9}$	9/2-7/2	3482	24326	0.24^{*}	0.29	70	4
485.197	$3d^{7}4s^{2} b^{2}P - 3d^{7}4s4p \ ^{6}P^{\circ}$	3/2-5/2	20500	41104	0.21	I	Ι	Ι
490.713	$3d^84s \ b^4F-3d^74s4p \ z^6F^{\circ}$	9/2-9/2	3482	23855	0.23*	0.245	44	5
491.240	$3d^{8}4s b^{4}F - 3d^{7}4s4p z^{6}F^{9}$	5/2-3/2	4690	25041	0.093	I	Ι	Ι
495.318	$3d^{8}4s b^{4}F - 3d^{7}4s4p z^{6}F^{9}$	7/2-7/2	4142	24326	0.52^{*}	0.62	70	4
495.968	$3d^{8}4s b^{4}F - 3d^{7}4s4p z^{6}F^{9}$	3/2-1/2	5075	25232	0.23	I	Ι	Ι
496.659	$3d^84s \ b^4F-3d^74s4p \ z^6F^{\circ}$	9/2-11/2	3482	23611	1.31^{*}	1.55	72	6
498.785	$3d^84s \ b^4F-3d^74s4p \ z^6F^{\circ}$	5/2-5/2	4690	24733	.06%	1.22	70	c
500.729	$3d^84s \ b^4F-3d^74s4p \ z^6F^{\circ}$	3/2-3/2	5075	25041	0.23	I	I	I
508.571	$3d^84s \ b^4F-3d^74s4p \ z^6F^{\circ}$	3/2-5/2	5075	24733	0.57*	0.72	70	c
509.129	$3d^{8}4s \ b^{4}F - 3d^{7}4s4p \ z^{6}F^{9}$	5/2-7/2	4690	24326	0.37*	0.44	70	4
559.848	$3d^{8}4s \ b^{2}G - 3d^{7}4s4p \ ^{6}P^{\circ}$	9/2-7/2	23184	41041	0.16	I	I	Ι

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

ДИССОЦИАТИВНОЕ ВОЗБУЖДЕНИЕ НЕЧЕТНЫХ СЕКСТЕТНЫХ УРОВНЕЙ АТОМА

5

боте [2] весьма подробно изучено диссоциативное возбуждение молекул H_2 и D_2 . В то же время экспериментально изучено диссоциативное возбуждение для значительного числа молекул галогенидов металлов, в частности для дигалогенидов металлов группы железа. Диссоциативное возбуждение хлоридов железа, кобальта, никеля изучено довольно подробно, тогда как этот процесс для бромидов значительно менее исследован. Конкретно, в случае дибромида кобальта изучено диссоциативное возбуждение четных секстетных состояний [3], а также нечетных дублетных *S*-, *P*-, *D*-уровней [4].

В настоящей работе метод протяженных пересекающихся пучков с регистрацией оптического излучения возбужденных частиц использован для изучения диссоциативного возбуждения нечетных секстетных состояний атома кобальта в столкновениях электронов с молекулами дибромида кобальта. Аппаратурная реализация и методика проведения эксперимента с использованием метода протяженных пересекающихся пучков подробно изложены в недавних работах [5, 6] и их повторение в излагаемой работе излишне. Укажем здесь лишь основные условия проведения эксперимента непосредственно с дибромидом кобальта.

ОСНОВНЫЕ УСЛОВИЯ ЭКСПЕРИМЕНТА

В отличие от многих других молекул дибромид кобальта мало гигроскопичен и поэтому не нуждается в процедуре предварительного обезвоживания. При помещении CoBr₂ в танталовый тигель и нагреве внешней поверхности тигля электронным лучом до температуры T = 1000 K концентрация молекул в зоне пересечения молекулярного и электронного пучков достигала $n = 6.8 \cdot 10^{10} \text{ см}^{-3}$. Электронный луч расфокусировался до диаметра ~40 мм с целью получения более однородного температурного поля и исключения локальных перегревов. Плотность тока электронного пучка во всем рабочем диапазоне энергий электронов 0-100 эВ не превосходила 0.8 мА/см². Спектральное разрешение установки было около 0.1 нм в исследованном диапазоне длин волн $\lambda = 230-570$ нм.

По данным справочника [7] молекула CoBr₂, как и родственные ей молекулы FeBr₂ и NiBr₂, соответствует точечной группе симметрии ($D_{\infty h}$) с межъядерным расстоянием $r_{\text{Co-Br}} = (2.32)$ Å (характеристики, помещенные в круглые скобки, являются предположительными или оцененными для молекул FeBr₂ и CoBr₂, тогда как для молекулы NiBr₂ они установлены достоверно).

В процессе испарения молекул из тигля имеет место их термическое возбуждение, вследствие чего последующее диссоциативное возбуждение происходит не только из наинизшего колебательно-вращательного уровня основного электронного состояния, но и из других низколежащих колебательно-вращательных уровней. Согласно данным работы [2], сечения диссоциативного возбуждения существенно зависят от колебательного квантового числа v' исходного состояния молекулы. Особенно значительно эта зависимость проявляется для наиболее низко расположенных колебательных уровней с v' = 0-3, и этот факт должен учитываться при сравнении экспериментальных результатов с теоретическими (при появлении последних).

Фундаментальные частоты характеристических колебаний молекулы $CoBr_2$ составляют $v_1 =$ = (206) cm^{-1} , $v_2 = (40) \text{ cm}^{-1}$, $v_3 = 396 \pm 10 \text{ cm}^{-1}$ [7]; колебание с частотой V₂ является двукратно вырожденным. Очевидно, при температуре испарения 1000 К для колебания v₃ заселенность при увеличении v' убывает наиболее быстро; согласно оценке, слеланной в прелположении справелливости распределения Больцмана, отношение заселенностей двух соседних уровней в этом случае составляет 0.567. При столь быстром убывании заселенности с увеличением v' на самых нижних уровнях с v' = 0-3 находятся 94.2% от полного числа молекул в пучке: v' = 0 - 45.5%. 1 - 25.8. 2 - 25.814.6, 3 – 8.3. Именно перераспределение молекул по этим уровням при изменении температуры наиболее существенно влияет на парциальный вклад возбуждения с каждого из исходных уровней в экспериментально определяемое сечение диссоциативного возбуждения.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эмиссионный оптический спектр, возникающий при столкновениях молекул дибромида кобальта с электронами, имеющими энергию 100 эВ, зарегистрирован в диапазоне длин волн $\lambda = 230$ — 570 нм. Наряду с наиболее интенсивными спектральными линиями атома и однозарядного иона кобальта, на этом же участке спектра расположены спектральные полосы монобромида кобальта, относящиеся к системам *A*, *B*, *C*, *D* ($\lambda = 433-461$ нм) [8] и *E*, *F*, *G*, *H*, *I* (λ = 467–560 нм) [9]; в условиях нашего эксперимента как спектральные линии CoII, так и спектральные полосы CoBr не обнаружены. Далее представлены результаты, относящиеся к возбуждению нечетных секстетных термов ${}^{6}P^{\circ}, z^{6}D^{\circ}, z^{6}F^{\circ}, z^{6}G^{\circ}$. Зависимость сечений от энергии возбуждающих электронов (оптические функции возбуждения, (ОФВ)) зарегистрирована для переходов с десяти уровней. Для переходов с

уровней ⁶*P*°, $z^6 D_{3/2, 5/2}^{\circ}$, $z^6 F_{1/2, 3/2}^{\circ}$, $z^6 G_{3/2}^{\circ}$, т.е. для переходов с наименьшими значениями *L* и *J*, достаточно надежная регистрация ОФВ оказалась невозможной.

Полученные результаты измерений с добавлением необходимой спектроскопической инфор-

Рис. 1. Оптические функции диссоциативного возбуждения атома кобальта в столкновениях е-СоВг₂.

мации представлены в табл. 1, где указаны длины волн λ ; переходы; квантовые числа полного момента электронной оболочки для нижнего, J_{low} , и верхнего, J_{up} , уровней; энергии нижнего, E_{low} , и верхнего, E_{up} , уровней; значения сечений при энергии налетающих электронов 100 эВ, Q_{100} ; значения сечений в максимуме ОФВ, Q_{max} ; положение максимума $E(Q_{max})$. Числа в столбце ОЕF соответствуют нумерации кривых на рис. 1. Справочные спектроскопические данные приведены согласно работе [10], содержащей наиболее точные и надежные спектроскопические характеристики СоI на начало 2019 года. Однако в ней отсутствуют две линии, расположенные в ближнем ультрафиолете.

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

В настоящей работе они классифицированы с использованием данных об уровнях атома кобальта из работы [10] как происходящие с общего уровня E = 26232 см⁻¹; при этом рассчитаны точные значения длин волн $\lambda = 381.105$ и 393.341 нм. Полученные таким образом характеристики в столбцах 1–5 табл. 1 заключены в круглые скобки.

В табл. 1 присутствуют пять наборов смешанных состояний. В двух случаях верхние уровни обоих компонентов являются секстетами, еще в трех случаях верхний уровень одной из компонент является квартетом. К сожалению, информация об интенсивностях линий, приведенная в [10], не может быть использована для разделения компонент, поскольку условия возбуждения ато-

СМИРНОВ

			,	• · ·			•		
Терм	J	E, cm^{-1}			τ_{L} MKC	n			
			[15]	[14]	[16]	ветвл.	ΣA_{ki}	\mathbf{v}_k , where	1'
$z^6 D^\circ$	1/2	26250							
	3/2	26063							
	5/2	25739							
	7/2	25269							
	9/2	24627		0.21		0.28	0.0135	74	4.23
$z^6 F^\circ$	1/2	25232							
	3/2	25041							
	5/2	24733		0.28		0.305	0.0147	68	4.02
	7/2	24326		0.62		0.70	0.034	29.4	2.16
	9/2	23855		0.86		0.88	0.0425	23.4	1.90
	11/2	23611		0.20		Blend.	0.0097	103	5.50
z^6G°	1/2	26597							
	3/2	26449		0.52		0.60	0.029	34.5	2.42
	5/2	26232		1.2		1.46	0.071	14.1	1.48
	7/2	25937	0.24	1.8	0.088	2.16	0.105	9.5	1.31
	9/2	25568	0.19	2.3	0.11	Blend.	0.111	9.1	1.28
	11/2	25138							

Таблица 2. Определение поправочного множителя η

мов в настоящей работе и в [10] существенно различаются.

Атом кобальта не имеет четных секстетных уровней, расположенных ниже E = 45000 см⁻¹. Все переходы, представленные в табл. 1, кроме трех переходов с уровней ${}^{6}P^{\circ}$, оканчиваются на квартетных уровнях основного состояния $3d^74s^2 a^4F$ или на квартетных уровнях низколежащего метастабильного состояния $3d^8({}^3F)4s b^4F$. Поэтому все переходы с уровней $z^6 D^\circ$, $z^6 F^\circ$, $z^6 G^\circ$ оказываются интеркомбинационными и вследствие этого долгоживущими, так что времена жизни этих уровней близки к времени пролета атомов кобальта сквозь пространство столкновений. В результате этого часть атомов, возбужденных электронным ударом, проходит сквозь пространство столкновений не излучая и теряет энергию возбуждения на поверхности коллектора атомов.

Такая ситуация впервые возникла в наших экспериментах при изучении возбуждения нечетных октетных уровней атома марганца [11]. В этой работе мной впервые был введен поправочный множитель для сечения возбуждения, учитывающий безызлучательное девозбуждение части атомов на поверхности коллектора:

$$\eta = \frac{Q}{Q^*} = \frac{1}{1 - (v\tau/L)(1 - e^{-L/v\tau})}.$$
(1)

Здесь Q – истинное значение сечения, учитывающее уход части возбужденных атомов на коллектор; Q^* – сечение возбуждения, измеренное по числу квантов, излучаемых возбужденными атомами в пределах поля зрения оптической системы; v — средняя скорость атомов; τ — время жизни возбужденного уровня; L — пролетное расстояние для атомов в поле зрения оптической системы. Предполагается, что скорость атомов после диссоциации не отличается от скорости исходной молекулы.

Радиационные времена жизни уровней атома кобальта измерены во многих работах (см., например, работы [12, 13]). Однако в этих работах рассматривались уровни, расположенные выше $E = 28345 \text{ см}^{-1}$. В качестве альтернативы для определения τ нечетных секстетных уровней могут быть использованы сведения о вероятностях переходов A_{ki} , поскольку

$$\tau_k = \frac{1}{\sum_i A_{ki}}.$$
 (2)

Хотя данные об A_{ki} для нечетных секстетных уровней CoI весьма ограниченны, поправочный множитель η может быть рассчитан для обсуждаемых секстетных уровней, имеющих значения J > 3(кроме терма $z^6 D^\circ$).

Соответствующие материалы представлены в табл. 2. Наиболее ранние значения A_{ki} для нечетных секстетных уровней атома кобальта получены в монографии [14]; хотя точность определения абсолютных значений A_{ki} в работе [14] признается довольно низкой, погрешность относительных значений в ней сравнительно невелика. Позднее в компиляции [15] приведены два значения A_{ki} со ссылкой на частное сообщение (Cardon B.L. and

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

Рис. 2. Парциальная диаграмма состояний атома кобальта с исследованными переходами.

Smith P.L., 1978). Кроме того, в настоящее время в базу данных NIST [16] включены данные из компиляции [17] для тех же двух линий, которые приведены в [15].

Как видно из табл. 2, относительные значения A_{ki} в [15] и в [17] существенно различаются, тогда как в [14] и в [17] их различие весьма мало. При этом абсолютные значения A_{ki} в [14] и в [17] различаются в 20.7 раза. В [14] измерены A_{ki} лишь для наиболее интенсивных переходов с каждого из секстетных уровней, тогда как в настоящей работе для большинства уровней зарегистрировано ветвление. В столбце "ветвл." в табл. 2 представлены значения A_{ki} из [14] с учетом поправки на ветвление. В столбце ΣA_{ki} даны окончательные

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

значения полных вероятностей переходов, учитывающие как ветвление, так и вышеупомянутое различие масштабов в [14] и в [17] в 20.7 раза. В предпоследнем столбце приведены значения τ_k , рассчитанные по соотношению (2), а в последнем значения поправочного коэффициента η . Сечения, данные с учетом этого коэффициента, отмечены в табл. 1 звездочками.

Парциальная диаграмма состояний атома кобальта с исследованными переходами представлена на рис. 2. Для упрощения рисунка секстетные (верхние) термы показаны блоками без расщепления по *J*, тогда как нижние (квартетные) изображены с расщеплением; значения *J* даны на поле рисунка рядом с уровнями. Вертикальные штриховые линии разделяют состояния, различающиеся по четности. Все обозначения конфигураций и большинство обозначений термов расположены под осью абсцисс.

Как видно в табл. 1 и на рис. 2, все зарегистрированные переходы с исследованных уровней являются интеркомбинационными; они оканчиваются на наиболее низко расположенных квартетных уровнях $3d^74s^2 a^4F$ и $3d^8(^3F)4s b^4F$. Появление интеркомбинационных переходов с изученных в данной работе секстетных уровней не имеет альтернативы, поскольку у атома кобальта отсутствуют четные секстетные уровни, расположенные ниже нечетных секстетов.

ЗАКЛЮЧЕНИЕ

Процессы диссоциации с одновременным образованием возбужденных продуктов диссоциации (диссоциативное возбуждение) до недавнего времени могли быть объектом рассмотрения лишь для фундаментальной науки; в традиционных видах разряда их роль была ничтожно мала из-за низкого значения средней энергии электронов. В настояшее время существенно возрастает применение разрядов, в которых средняя энергия электронов значительно выше, чем в дуговом разряде (плазма с возбуждением пучком быстрых электронов, магнетронный разряд и др.). Хотя теоретические исследования диссоциативного возбуждения крайне малочисленны. в современном эксперименте созданы техника и методика, позволяющие проводить систематические исследования этого процесса и получать значительные массивы данных о сечениях.

СПИСОК ЛИТЕРАТУРЫ

1. *Huo W.M. and Kim Y.-K.* // IEEE Transactions in Plasma Science. 1999. V. 27. № 5. P. 1225.

- Celiberto R., Lamanna U.T., Capitelli M. // Phys. Rev. A. 1994. V. 50. № 6. P. 4778.
- 3. *Смирнов Ю.М.* // Хим. физика. 2014. Т. 33. № 11. С. 3.
- 4. *Смирнов Ю.М.* // Хим. физика. 2016. Т. 35. № 12. С. 15.
- 5. *Smirnov Yu.M.* // J. Phys. B: At. Mol. Opt. Phys. 2015. V. 48. № 16. 165204.
- 6. *Smirnov Yu.M.* // J. Phys. B: At. Mol. Opt. Phys. 2016. V. 49. № 17. 175204.
- Краснов К.С., Филиппенко Н.В., Бобкова В.А. и др. // Молекулярные постоянные неорганических соединений. Справочник. Л.: Химия, 1979. С. 140.
- 8. *Rao S.V.K., Rao P.T.* // Indian J. Phys. 1962. V. 36. № 12. P. 609.
- 9. *Rao N.V.K., Reddy Y.P., Rao P.T.* // Indian J. Pure & Appl. Phys. 1972. V. 10. № 5. P. 389.
- 10. *Pickering J.C., Thorne A.P.* // Astrophys. J. Suppl. Ser. 1996. V. 107. № 2. P. 761.
- 11. *Мельников В.В., Смирнов Ю.М., Шаронов Ю.Д. //* Оптика и спектроскопия. 1981. Т. 51. № 5. С. 762.
- Wang X.-H., Qi Yu, Li Q., Gao Y., Dai Z.-W. // Monthly Notices Roy. Astronom. Soc. 2018. V. 475. № 2. P. 1881.
- 13. Nitz D.E., Kunau A.E., Wilson K.L., Lentz L.R. // Astrophys. J. Suppl. Ser. 1999. V. 122. P. 557.
- 14. Корлисс Ч., Бозман У. Вероятности переходов и силы осцилляторов 70 элементов. М.: Мир, 1968. С. 48.
- Fuhr J.R., Martin G.A., Wiese W.L., Younger S.M. // J. Phys. Chem. Ref. Data. 1981. V. 10. № 2. P. 305.
- Kramida A., Ralchenko Yu., Reader J. and NIST ASD Team (2018). NIST Atomic Spectra Database (ver. 5.6.1). Available: https://physics.nist.gov/asd [2019, March 19]. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F
- 17. Fuhr J.R., Martin G.A., Wiese W.L. // J. Phys. Chem. Ref. Data. 1988. V. 17. Suppl. 4. P. 1.