_ ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА МАТЕРИАЛОВ

УДК 539.143.43:539.199

ВЛИЯНИЕ ПОЛЯРИЗАЦИИ ИЗОЛИРОВАННЫХ ТРЕХСПИНОВЫХ ГРУПП НА СПАД СВОБОДНОЙ ИНДУКЦИИ И СОЛИД-ЭХО ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА

© 2020 г. Т. П. Кулагина^{1*}, Г. Е. Карнаух¹, И. Ю. Голубева^{1, 2}

¹Институт проблем химической физики Россиской академии наук, Черноголовка, Россия ²Московский государственный университет им. Н.В. Ломоносова, Москва, Россия *E-mail: tan@icp.ac.ru

Поступила в редакцию 28.06.2019; после доработки 09.09.2019; принята в печать 20.09.2019

В данной работе получено кинетическое уравнение спектров ЯМР в твердых телах, содержащих изолированные трехспиновые группы с произвольной константой диполь-дипольных взаимодействий. Из уравнения для матрицы плотности получены аналитические выражения для сигналов спада свободной индукции и солид-эха в случае системы трех дипольно-связанных спинов.

Ключевые слова: трехспиновые группы, спад свободной индукции, форма линии, диполь-дипольное взаимодействие, поляризация, солид-эхо.

DOI: 10.31857/S0207401X2004010X

1. ВВЕДЕНИЕ

Спектр ЯМР изолированной группы спинов может быть сложным и состоять из большого числа дискретных резонансных линий [1, 2]. Наблюдаемые спектры обычно бывают более простыми вследствие уширения под влиянием окружающих спинов и частичного усреднения, а также содержат информацию о структуре и ориентации группы. Обычно трехспиновые группы рассматриваются в модели эквивалентных ядер, расположенных в вершинах равностороннего треугольника. Однако представляет интерес исследование трехспиновой группы с различными константами диполь-дипольного взаимодействия (ДДВ). В работе [1] были вычислены частоты и вероятности переходов между энергетическими уровнями и получены формулы для вычисления формы линии. Эти результаты позволили провести сравнение с наблюдаемым сигналом в трихлорэтане [3] с учетом быстро вращающихся групп. Уширение формы линии определялось с гауссовым распределением продольных локальных полей. Такое распределение магнитных локальных полей характерно для поликристаллов или аморфных твердых тел. Однако теоретического описания формы линии для веществ с выделенной трехспиновой группой в кристаллическом состоянии до сих пор отсутствует.

Экспериментальное и теоретическое изучение спиновых эхо в твердом теле (солид-эхо (СЭ)) после воздействия двухимпульсной последовательности началось после выхода работ [4, 5]. Было установлено, что амплитуда СЭ зависит от поворота намагниченности на угол В и максимальна при $\beta = 90^{\circ}$ [5, 6]. Сигнал СЭ позволяет точно определить значение второго момента M_2 в форме линии ЯМР в момент времени 2t [7]. Более сложный характер импульсных откликов наблюдается в твердых телах с выделенными трехспиновыми группами [5, 7]. В этом случае эхо обусловлено ДДВ внутри группы, и зависимость амплитуды эха от длительности второго импульса оказалась аналогичной зависимости амплитуды квадрупольного ядра со спином 3/2 от того же параметра.

Спиновое эхо может быть использовано в системах обработки информации в магнитоупорядоченных веществах [8]. При этом первый (информационный) импульс — слабый, ширина спектра меньше ширины линии спектра ЯМР, а второй (управляющий) импульс позволяет регулировать появление сигнала эха при изменении интервала между импульсами. Аналитические выражения для сигнала спада свободной индукции (ССИ) и СЭ в работах [1, 7] не приведены, что затрудняет расчеты и получение информации о структуре и ориентации трехспиновых групп из сигналов ЯМР. В данной работе предложен новый метод расчета ССИ, формы линии и СЭ в системе дипольно-связанных трех спинов 1/2 с произвольными константами ДДВ. В этом методе впервые использованы симметрии, определяемые спиновым обменом и операцией переворота всех спинов вокруг оси начальной поляризации и направления импульсов при формировании солид-эха [9–12]. Использование этих симметрий позволило провести расчеты на двух трехмерных и двух одномерных пространствах.

Влияние остальных спинов системы учитывалось на основе единой теории спиновой динамики ЯМР [13] для расчета ССИ и с помощью спинспиновой релаксации для расчета СЭ.

2. ТЕОРЕТИЧЕСКИЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

2.1. Теория спада свободной индукции в трехспиновой группе

Гамильтониан секулярной части диполь-дипольного взаимодействия для трехспиновой группы, состоящей из ядер со спином 1/2, которые связаны различными константами ДДВ b_{ij} (i, j = 1, 2, 3) имеет вид

$$\begin{aligned} \hat{H}_{d}^{z} &= b_{12} \left(2\hat{S}_{1}^{z}\hat{S}_{2}^{z} - \hat{S}_{1}^{x}\hat{S}_{2}^{x} - \hat{S}_{1}^{y}\hat{S}_{2}^{y} \right) + \\ &+ b_{31} \left(2\hat{S}_{3}^{z}\hat{S}_{1}^{z} - \hat{S}_{3}^{x}\hat{S}_{1}^{x} - \hat{S}_{3}^{y}\hat{S}_{1}^{y} \right) + \\ &+ b_{23} \left(2\hat{S}_{2}^{z}\hat{S}_{3}^{z} - \hat{S}_{2}^{z}\hat{S}_{3}^{x} - \hat{S}_{2}^{y}\hat{S}_{3}^{y} \right), \end{aligned}$$
(1)

где

$$b_{ij} = \frac{\gamma^2 \hbar^2 \left(3\cos^2 \theta_{ij} - 1 \right)}{2r_{ij}^3}, \quad i, j = 1, 2, 3, \tag{2}$$

 θ_{ij} — угол между вектором \mathbf{r}_{ij} , соединяющим спины *i* и *j*, и направлением магнитного поля; r_{ij} длина вектора; \hat{S}_{i}^{k} — операторы проекций моментов *i*-го ядерного спина на оси *x*, *y*, *z*. Используемые обозначения:

$$\sigma_{1} = b_{12} + b_{23} + b_{31}, \quad \sigma_{2} = b_{12}b_{23} + b_{12}b_{31} + b_{23}b_{31},$$

$$\chi = (9\sigma_{1} - 24\sigma_{2})^{1/2}, \quad \cos\beta = \frac{\sigma_{1}}{\chi}.$$
 (3)

Собственные числа гамильтониана взаимодействия есть

$$\lambda_1 = \frac{\sigma_1}{2}, \quad \lambda_2 = \frac{-\sigma_1 - \chi}{4},$$

$$\lambda_3 = \frac{-\sigma_1 + \chi}{4}, \quad \lambda_4 = 0.$$
(4)

Начальная поляризация $\hat{S}^x = \hat{S}_1^x + \hat{S}_2^x + \hat{S}_3^x$.

Для вычисления ССИ были использованы симметрии, порождаемые операциями переворота всех спинов вокруг оси *x* и спинового обмена, которые коммутируют друг с другом. С учетом этих симметрий задача свелась к замене расчета на восьмимерном пространстве состояний *R* на расчеты на двух трехрехмерных и двух одномерных подпространствах:

$$R = R_{es} \oplus R_{os} \oplus R_{ea} \oplus R_{oa} =$$

$$= \hat{P}_e \hat{P}_s R \oplus \hat{P}_o \hat{P}_s R \oplus \hat{P}_e \hat{P}_a R \oplus \hat{P}_o \hat{P}_s R,$$

$$\hat{S}^x = \hat{P}_e \hat{P}_s \hat{S}^x + \hat{P}_o \hat{P}_s \hat{S}^x + \hat{P}_e \hat{P}_a \hat{S}^x + \hat{P}_o \hat{P}_a \hat{S}^x,$$

$$\hat{H}^z_d = \hat{P}_e \hat{P}_s \hat{H}^z_d + \hat{P}_o \hat{P}_s \hat{H}^z_d + \hat{P}_e \hat{P}_a \hat{H}^z_d + \hat{P}_o \hat{P}_a \hat{H}^z_d.$$
(5)

Проекторы, определяемые переворотом всех спинов, равны

 $\hat{P}_{e,o} = \frac{1}{2} \left(1 \pm \hat{I} \right),$

где

$$\hat{I} = \exp\left[i\pi\left(\hat{S}^{x} - 3/2\right)\right] = 8\hat{s}_{1}^{x}\hat{s}_{2}^{x}\hat{s}_{3}^{x}.$$
(6)

Проекторы, определяемые спиновым обменом, как следует из работы [11], равны

$$\hat{P}_{s,a}=\frac{1}{2}(1\pm\hat{E}_x),$$

где

$$\hat{E}x = \frac{(b_{12} - b_{23})(b_{12} - b_{31})\hat{E}_x^{12} + (b_{23} - b_{31})(b_{23} - b_{12})\hat{E}_x^{23} + (b_{31} - b_{12})(b_{31} - b_{23})\hat{E}_x^{31}}{\sigma_1^2 - 3\sigma_2};$$
(7)

здесь $\hat{E}_x^{kl} = \frac{1}{2} + 2\mathbf{S}^k \mathbf{S}^l.$

Матрицы операторов \hat{H}_{d}^{z} и \hat{S}^{x} на подпространствах (3) в собственном базисе гамильто-

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

ниана взаимодействия имеют приведенный ниже вид:

Подпространство *R*_{es}:

$$\begin{pmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{pmatrix};$$

$$\begin{pmatrix} 0 & \sqrt{3}\cos\frac{\beta}{2} & -\sqrt{3}\sin\frac{\beta}{2} \\ \sqrt{3}\cos\frac{\beta}{2} & 3\cos^{2}\frac{\beta}{2} - 1 & -\frac{3}{2}\sin\beta \\ -\sqrt{3}\sin\frac{\beta}{2} & -\frac{3}{2}\sin\beta & 3\sin^{2}\frac{\beta}{2} - 1 \end{pmatrix}.$$
(8)

Подпространство *R*_{os}:

$$\begin{pmatrix} \lambda_{3} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{1} \end{pmatrix};$$

$$\frac{1}{2} \begin{pmatrix} 1 - 3\sin^{2}\frac{\beta}{2} & \frac{3}{2}\sin\beta & -\sqrt{3}\sin\frac{\beta}{2} \\ \frac{3}{2}\sin\beta & 1 - 3\cos^{2}\frac{\beta}{2} & \sqrt{3}\cos\frac{\beta}{2} \\ -\sqrt{3}\sin\frac{\beta}{2} & \sqrt{3}\cos\frac{\beta}{2} & 0 \end{pmatrix}$$

Подпространство R_{ea} : (0); $\left(-\frac{1}{2}\right)$. Подпространство R_{oa} : (0); $\left(\frac{1}{2}\right)$.

Вычислив ССИ на каждом из подпространств, получаем [12], что

$$G_{3}(t) = \frac{\operatorname{Tr}\left(\exp\left(-i\hat{H}_{d}^{z}t\right)\hat{S}^{x}\exp\left(i\hat{H}_{d}^{z}t\right)\hat{S}^{x}\right)}{\operatorname{Tr}\left(\hat{S}^{x}\right)^{2}} = \frac{1}{8}\left(1+3\cos^{2}\beta\right) + \frac{3}{8}\sin^{2}\beta\cos\omega_{23}t + \frac{1}{2}\sin^{2}\frac{\beta}{2}\cos\omega_{13}t + \frac{1}{2}\cos^{2}\frac{\beta}{2}\cos\omega_{12}t,$$
(9)

где $\omega_{12} = \frac{3\sigma_1 + \chi}{4}$, $\omega_{13} = \frac{3\sigma_1 - \chi}{4}$, $\omega_{23} = -\frac{\chi}{2}$ – задействованные в сигналах СИ и СЭ частоты.

Для более детального определения структуры вещества и расположения трехспиновой группы в молекуле необходимо рассчитать ССИ всего образца. Учет влияния остальных спинов системы на форму линии ЯМР проведен с помощью общего кинетического уравнения для парциальных плотностей магнитных диполей [13].

2.2. Общее кинетическое уравнение для парциальных плотностей диполей

В последние годы впервые в теории ЯМР получены кинетические уравнения для плотностей

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

магнитных диполей и спиновых температур, применимые для анализа ЯМР-спектров при произвольной амплитуде ω₁ резонансного поля [13]. Для вывода кинетических уравнений наиболее удобными в качестве переменных являются паршиальные плотности диполей (поляризации слоев) $\sigma^{\beta}(h, t)$, где $\beta = x, y, z$, находящихся в момент времени *t* в одном и том же слое с продольным локальным дипольным полем *h*. Эта теория позволила получить общие кинетические уравнения для плотностей магнитных диполей и спиновых температур зеемановского и дипольного резервуаров и изучать кинетику поляризации магнитных диполей при воздействии произвольного насыщающего поля амплитудой ω_1 в конденсированном вешестве. Гамильтониан взаимолействий во врашаюшейся системе координат (ВСК) имеет вид

$$\hat{H} = \omega \hat{S}^z + \omega_1 \hat{S}^x + \hat{H}_d^z, \qquad (10)$$

где ω — расстройка резонансного магнитного поля, $\hat{S}^{x,z}$ — операторы ядерных спинов, ω_1 — амплитуда резонансного поля, \hat{H}_d^z — секулярная часть гамильтониана ДДВ [1, 5]:

$$\hat{H}_{d}^{z} = \sum_{i>k} b_{ik} (3\hat{S}_{i}^{z}\hat{S}_{k}^{z} - \mathbf{S}_{i}\mathbf{S}_{k}) = 3\hat{H}_{zz} + \hat{H}_{is}; \qquad (11)$$

здесь b_{ik} — коэффициенты ДДВ; \hat{H}_{is} — часть изотропного взаимодействия, которая описывает обмен поляризациями между слоями и вклад в скорости изменения поляризации слоев в локальных

дипольных полях, пропорциональный *h*σ^{*x*,*y*} [13].

При выводе уравнений учитывались как регулярные процессы, определяемые гамильтонианом взаимодействия (11), такие как прецессия диполей во внешних и создаваемых соседними диполями локальных дипольных полях, передача поляризации, так и случайный процесс спектральной диффузии, которая отражает случайное изменение продольного локального поля под влиянием спинового обмена и теплового движения атомов. В уравнениях были введены следующие обозначения:

$$\sigma_{0}^{\beta}(t) = \int_{-\infty}^{\infty} \sigma^{\beta}(h,t)g(h)dh,$$

$$\sigma_{1}^{\beta}(t) = \int_{-\infty}^{\infty} \sigma^{\beta}(h,t)hg(h)dh,$$
(12)

где $\sigma_0^{\beta}(t)$ и $\sigma_1^{\beta}(t)$ – поляризации слоев в зеемановском и дипольном резервуарах, соответственно; g(h) – четная функция распределения продольных локальных полей в спиновой системе, g(h) = g(-h). В этих терминах система кинетических уравнений имеет вид

Рис. 1. Формы линии в модельном веществе CaF₂ при различных значениях α : 1 (*1*), 1.22 (*2*), 1.5 (*3*).

$$\frac{d\sigma^{x}}{dt} = -\left(\omega + \frac{3h}{2}\right)\sigma^{y} - \left(\frac{3}{2} - \alpha\right)\left(h\sigma_{0}^{y} + \sigma_{1}^{y} - h\sigma^{y}\right) + \\
+ \frac{\sigma_{0}^{x} - \sigma^{x}}{\tau_{\perp}} - \frac{\sigma^{x}}{T_{\perp}}, \quad \frac{d\sigma^{y}}{dt} = \left(\omega + \frac{3h}{2}\right)\sigma^{x} + \\
+ \left(\frac{3}{2} - \alpha\right)\left(h\sigma_{0}^{x} + \sigma_{1}^{x} - h\sigma^{x}\right) - \omega_{l}\sigma^{z} + \\
+ \frac{\sigma_{0}^{y} - \sigma^{y}}{\tau_{\perp}} - \frac{\sigma^{y}}{T_{\perp}}, \quad \frac{d\sigma^{z}}{dt} = \omega_{l}\sigma^{y} + \\
+ \frac{1}{\tau_{\parallel}}\left(\sigma_{0}^{z} + \frac{h\sigma_{1}^{z}}{\langle h^{2} \rangle} - \sigma^{z}\right) + \frac{\sigma_{eq}^{z} - \sigma^{z}}{T_{\parallel z}} - \frac{h\sigma_{1}^{z}}{\langle h^{2} \rangle T_{\parallel d}},$$

где $1/\tau_{\perp}$ — скорость изменения поперечной поляризации слоя в процессе спектральной диффузии; $1/\tau_{II}$ — скорость установления равновесия в спиновой системе; $1/T_{\perp}$ — скорость поперечной релаксации, связанная с тепловым движением, приводящим к поглощению квантов $\hbar\omega_0$ на ларморовой частоте ω_0 , $T_{\parallel Z}$ и $T_{\parallel d}$ — времена продольной спин-решеточной релаксации зеемановского и дипольного резервуаров, σ_{eq}^z — продольная равновесная поляризация образца. Параметр $\frac{3}{2}$ — α характеризует неусредненную часть изотропного ДДВ, \hat{H}_{is} , которая зависит от структуры вещества и его ориентации относительно постоянного магнитного поля [13].

Заметим, что кинетические уравнения (13) описывают организацию зеемановского и дипольного резервуаров, которая проявляется при установлении единого для всех диполей среднего ориентационного порядка:

$$\sigma^{\beta} = \sigma_0^{\beta} + \frac{h}{\langle h^2 \rangle} \sigma_1^{\beta}, \quad \beta = x, y, z,$$
(14)

где величина σ_0^{β} определена в (14), $h\sigma_0^{\beta}/\langle h^2 \rangle$ – вклад в поляризацию слоев дипольного резервуара, $\langle h^2 \rangle$ – второй момент *g*(*h*).

В работе [13] было показано, что при соответствующих условиях полученные кинетические уравнения (13) переходят в уравнения Блоха [14], Редфильда [15] и Провоторова [16] в известных областях применения этих уравнений.

Стационарное решение системы уравнений (13) для формы линии $F(\omega)$ имеет вид [13, 17]

$$F(\omega) = \frac{\sigma_0^{\nu}(\omega)}{\sigma_{eq}^z} = \frac{B(\omega)}{C(\omega)},$$
(15)

где σ_{eq}^{z} — продольная равновесная поляризация. Все расчеты проводили для случая, когда g(h) — гауссова функция распределения продольных локальных полей:

$$g(h) = \frac{1}{\left(2\pi \left\langle h^2 \right\rangle\right)^{1/2}} \exp\left(-\frac{h^2}{2\left\langle h^2 \right\rangle}\right), \quad (16)$$

где

$$\left\langle h^{2}\right\rangle =\int_{-\infty}^{\infty}h^{2}g\left(h\right)dh, \quad \left\langle h^{2}\right\rangle =\frac{4}{9}M_{2cr}$$

Единая теория спиновой динамики ЯМР [13] позволяет описать практически все наблюдаемые в твердом теле сигналы формы линии и ССИ. Расчет ССИ в CaF₂ проводили по формуле (15) с функцией распределения локальных полей (16) для трех ориентаций монокристалла.

Из анализа спектров в рамках изложенной выше теории следует, что осциллирующая часть ССП зависит от наблюдаемой части изотропного обменного диполь-дипольного взаимодействия, величина которого характеризуется параметром

 $\frac{3}{2} - \alpha$ и описывает пространственно-однородные

коллективные когерентные колебания диполей, в которых поляризации отдельных диполей одновременно обращаются в нуль. На рис. 1 приведены формы линии, рассчитанные со следующими параметрами: $M_2 = 8.08 \cdot 10^8 \text{ c}^{-2}$, $T_{\parallel d} = 20 \text{ c}$, $T_{\parallel z} = 480 \text{ c}$, $T_{\perp} = 2 \text{ c}$, $\omega_1 = 10^{-6} \text{ c}^{-1}$, $\alpha = 1.25$ при различных значениях α .

Из рис. 1 видно, что форма линии $F(\omega)$ также изменяется при увеличении α : пропадают два экстремума или плоская вершина, связанные с уменьшением обменного ДДВ, и при $\alpha = 3/2$ форма линии становится гауссовой.

В настоящее время единая теория спектров [13] применяется для исследования надмолекулярной структуры гетерогенных полимерных си-

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

И

стем (фторполимеры, хитозан, целлюлоза) в широком температурном интервале [17–19].

2.3. Теория солид-эха в трехспиновой группе

В работе проведен аналитический расчет сигнала СЭ от изолированной группы трех спинов 1/2 с произвольными константами ДДВ. В основе расчета лежат описанные выше симметрии, связанные с переворотом всех спинов вокруг оси x и спиновым обменом.

Сигнал СЭ наблюдается после воздействия на спиновую систему импульсной последовательности:

$$\left(\frac{\pi}{2}\right)_{y}-\tau-\left(\frac{\pi}{2}\right)_{x}-t.$$

Расчетная формула сигнала имеет вид

$$A(\tau,t) = \frac{\operatorname{Tr}\hat{S}^{x}(\tau,t)\hat{S}^{x}}{\operatorname{Tr}(\hat{S}^{x})^{2}} = \frac{\operatorname{Tr}\hat{S}^{x}(\tau,t)\hat{S}^{x}}{6}, \quad (17)$$

где

$$\hat{S}^{x}(\tau,t) = \exp\left(-i\hat{H}_{d}^{z}t\right)\exp\left(-i\frac{\pi}{2}\hat{S}^{x}\right) \times \\ \times \exp\left(-i\hat{H}_{d}^{z}\tau\right)\hat{S}^{x}\exp\left(i\hat{H}_{d}^{z}\tau\right)\exp\left(i\frac{\pi}{2}\hat{S}^{x}\right)\exp\left(i\hat{H}_{d}^{z}t\right).$$

На подпространствах R_{ea} и R_{oa} Tr $\hat{S}^{x}(t)\hat{S}^{x} = 1/4$, следовательно, на них образуются не меняющиеся во времени одинаковые сигналы, равные

$$A_{ea}(t,\tau) = A_{oa}(t,\tau) = \frac{1}{4} \cdot \frac{1}{6} = \frac{1}{24}$$

Тогда вклад в сигнал от этих подпространств равен $A_a(t, \tau) = 1/12$.

Для удобства расчетов операторы импульса на подпространствах R_{es} и R_{os} были заменены соответственно на

$$\hat{P}_e \hat{P}_s \exp\left\{ i \frac{\pi}{2} \left(\hat{S}^x - \frac{3}{2} \right) \right\}$$
и
$$\hat{P}_o \hat{P}_s \exp\left\{ i \frac{\pi}{2} \left(\hat{S}^x - \frac{1}{2} \right) \right\}.$$

Собственные числа оператора \hat{S}^x на подпространстве R_{es} равны $\left(\frac{3}{2}, -\frac{1}{2}, -\frac{1}{2}\right)$, а оператора импульса $\hat{P}_e \hat{P}_s \exp\left\{i\frac{\pi}{2}\left(\hat{S}^x - \frac{3}{2}\right)\right\} - (1, -1, -1)$. Следовательно,

$$\hat{P}_e\hat{P}_s\exp\left[i\frac{\pi}{2}\left(\hat{S}^x-\frac{3}{2}\right)\right] = \hat{P}_e\hat{P}_s\left(\hat{S}^x-\frac{1}{2}\right)$$

Аналогично на подпространстве R_{os} получаем

$$\hat{P}_o\hat{P}_s\exp\left[i\frac{\pi}{2}\left(\hat{S}^x-\frac{1}{2}\right)\right]=\hat{P}_o\hat{P}_s\left(\hat{S}^x+\frac{1}{2}\right).$$

ХИМИЧЕСКАЯ ФИЗИКА том 39 № 4 2020

Тогда матрицы операторов импульсов на подпространствах R_{es} и R_{os} имеют соответственно следующий вид:

$$\frac{1}{2} \begin{pmatrix}
-1 & \sqrt{3}\cos\frac{\beta}{2} & -\sqrt{3}\sin\frac{\beta}{2} \\
\sqrt{3}\cos\frac{\beta}{2} & 3\cos^{2}\frac{\beta}{2} - 2 & -\frac{3}{2}\sin\beta \\
-\sqrt{3}\sin\frac{\beta}{2} & -\frac{3}{2}\sin\beta & 3\sin^{2}\frac{\beta}{2} - 2
\end{pmatrix}$$
(18)
$$\frac{1}{2} \begin{pmatrix}
2 - 3\sin^{2}\frac{\beta}{2} & \frac{3}{2}\sin\beta & -\sqrt{3}\sin\frac{\beta}{2} \\
\frac{3}{2}\sin\beta & 2 - 3\cos^{2}\frac{\beta}{2} & \sqrt{3}\cos\frac{\beta}{2} \\
-\sqrt{3}\sin\frac{\beta}{2} & \sqrt{3}\cos\frac{\beta}{2} & 1
\end{pmatrix}$$

После проведенных расчетов для спиновых систем с произвольными значениями констант ДДВ была получена следующая формула для формирования сигнала солид-эха $A_2(\tau, t)$:

$$A_{2}(\tau,t) = \frac{1}{64} (27 \cos^{4}\beta - 18 \cos^{2}\beta + 7) + + \frac{3}{32} (\cos^{2}\beta + 2 \cos\beta + 1) \cos \omega_{12} (t - \tau) + + \frac{3}{32} (\cos^{2}\beta - 2 \cos\beta + 1) \cos \omega_{13} (t - \tau) + + \frac{27}{128} (\cos^{4}\beta - 2 \cos^{2}\beta + 1) \cos \omega_{23} (t - \tau) + + \frac{1}{32} (-3 \cos^{2}\beta - 2 \cos\beta + 1) \cos \omega_{12} (t + \tau) + + \frac{1}{32} (-3 \cos^{2}\beta + 2 \cos\beta + 1) \cos \omega_{13} (t + \tau) + + \frac{3}{128} (9 \cos^{4}\beta - 10 \cos^{2}\beta + 1) \cos \omega_{23} (t + \tau) + + \frac{1}{32} (9 \cos^{3}\beta + 3 \cos^{2}\beta - 5 \cos\beta + 1) \times$$

$$\times (\cos \omega_{12}t + \cos \omega_{12}\tau) + \frac{1}{32} \times \\ \times (-9\cos^{3}\beta + 3\cos^{2}\beta + 5\cos\beta + 1) \times \\ \times (\cos \omega_{13}t + \cos \omega_{13}\tau) + \frac{3}{64} \times \\ \times (-9\cos^{4}\beta + 10\cos^{2}\beta - 1)(\cos \omega_{23}t + \cos \omega_{23}\tau) + \\ + \frac{3}{32}(-\cos^{2}\beta + 1)[\cos(\omega_{12}t - \omega_{13}\tau) + \\ + \cos(\omega_{13}t - \omega_{12}\tau)] + \frac{3}{64} \times \\ \times (-3\cos^{3}\beta + \cos^{2}\beta + 3\cos\beta - 1) \times \\ \times [\cos(\omega_{12}t - \omega_{23}\tau) + \cos(\omega_{23}t - \omega_{12}\tau)] +$$

Рис. 2. Формы линии при сильном влиянии окружения и различном уширении: *1* – расчет из кинетических уравнений (13), *2* – гауссово уширение [1].

$$+\frac{9}{64}(\cos^{3}\beta - \cos^{2}\beta - \cos\beta + 1) \times \\\times [\cos(\omega_{13}t - \omega_{23}\tau) + \cos(\omega_{23}t - \omega_{13}\tau)] + \\+\frac{3}{32}(\cos^{2}\beta - 1)[\cos(\omega_{12}t + \omega_{13}\tau) + \\+\cos(\omega_{13}t + \omega_{12}\tau)] + \frac{9}{64} \times \\\times (-\cos^{3}\beta - \cos^{2}\beta + \cos\beta + 1) \times \\\times [\cos(\omega_{12}t + \omega_{23}\tau) + \cos(\omega_{23}t + \omega_{12}\tau)] + \\+\frac{3}{64}(3\cos^{3}\beta + \cos^{2}\beta - 3\cos\beta - 1) \times \\\times [\cos(\omega_{13}t + \omega_{23}\tau) + \cos(\omega_{23}t + \omega_{13}\tau)].$$

Из формулы (19) видно, что при $t = \tau$ наблюдается сигнал солид-эха.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Форма линии ЯМР в веществах с выделенной трехспиновой группой

Предложенные выше теории позволяют описать ССИ и форму линии в твердом теле, содержащем выделенные трехспиновые группы. Выражение ССИ для всей спиновой системы имеет вид

$$G(t) = G_3(t)G_r(t),$$
 (20)

где $G_r(t)$ — сигнал ССИ, который связан с релаксационными и диффузионными процессами спиновой системы и вычисляется из общего кинетического уравнения [5]. Форма линии вычисляется с помощью преобразования Фурье:

$$F(\omega) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} G(t) \cos(\omega t) dt.$$
(21)

Рис. 3. Форма линии в модельном веществе CaF_2 при слабом влиянии окружения и различных значениях s_1 и s_2 .

Моделирование ССИ и формы линии проводилось по формуле (20) при сильном и слабом влиянии окружения на трехспиновые группы. Сильное влияние соседних спинов рассчитывалось при значении второго момента формы линии $M_{2r} = 8 \cdot 10^8 \text{ c}^{-2}$, а слабое их влияние – при $M_{2r} = 8 \cdot 10^7 \text{ c}^{-2}$.

На рис. 2 приведены формы линии с эквивалентными спинами и одинаковыми константами ДДВ $b_{ij} = 4.83 \cdot 10^4$ с (кривая *I*). В этом случае для вычисления $G_3(t)$ по формуле (9) значения s₁ и s₂ принимались равными $1.45 \cdot 10^5$ с и $7 \cdot 10^9$ с² соответственно. При таких значениях s₁ и s₂, как это следует из формулы (3), соѕ $\beta \approx 1$. На рис. 2 приведены также результаты расчетов с гауссовым уширением (кривая 2), как это было сделано в работе [1]. В этом случае $G_r(t) = \exp(-M_{2r}t^2/2)$. Из этого рисунка видно, что сигнал $F(\omega)$ состоит из трех линий: в кристаллической решетке линии широкие с плоскими вершинами, а при гауссовом уширении линии сужаются.

Моделирование ССИ и формы линии при различных значениях s_1 и s_2 показало, что в некоторых случаях возможно исчезновение центрального пика вследствие уширения линий, соседних с центральным. На рис. 3 приведена форма линии, рассчитанная при $\sigma_1 = 1.58 \cdot 10^5 c$, $\sigma_2 = 7 \cdot 10^9 c^2$, $\cos \beta = 2/3$.

На рис. 4 приведена форма линии, рассчитанная при $\sigma_1 = 0$. В этом случае, как это следует из формул (3), хотя бы одна из констант ДДВ является отрицательной, $\sigma_2 = -7 \cdot 10^9 \text{ c}^2$, а соѕ $\beta = 0$.

Рис. 4. Форма линии при слабом влиянии окружения и $\sigma_1 = 0$.

Рис. 6. Фурье-преобразование солид-эха при $\sigma_1 = 0$.

Расчеты, проведенные при слабом влиянии окружения на трехспиновую группу, показали, что форма линии содержит от трех до семи ярко выраженных пиков и центральный экстремум всегда присутствует.

Полученные результаты показывают, что анализ наблюдаемых сигналов удобнее проводить по форме линии. Отметим, что существование центрального пика является необходимым признаком наличия в веществе трехспиновых групп и при слабом уширении (рис. 3, 4) центральный пик наблюдается всегда. Однако при сильном уширении возможно исчезновение центрального пика, и в этом случае хотя бы одна из констант ДДВ является отрицательной.

3.2. Сигналы солид-эха ЯМР в веществах с выделенной трехспиновой группой

Сигнал после второго импульса – сигнал СЭ, который определяется формулой (19). Влияние

Рис. 5. Солид-эхо после второго $\pi/2$ -импульса при $\sigma_1 = 0$.

Рис. 7. Фурье-преобразование солид-эха при $\sigma_2 = 0$.

остальных спинов системы $A_r(t)$ на солид-эхо и форму линии ЯМР учтено с помощью спин-спиновой релаксации T_2 :

$$A(t) = A_2(t)A_r(t)$$
(22)

где $A_r(t) = e^{-t/T_2}$. Для получения формы линии используется косинус-преобразование Фурье (21).

Проведены численные расчеты СЭ и фурье-преобразования по формулам (19), (22), (21) при различных константах ДДВ: 1) одна константа ДДВ отрицательна, $\tau = 10^{-5}$ с, $\sigma_1 = 0$, $\sigma_2 = -7 \cdot 10^9$ с⁻², $\cos\beta =$ = 0, $T_2 = 10^{-5}$ с (рис. 5, 6); 2) одна константа ДДВ равна нулю, $\tau = 10^{-5}$ с, $\sigma_1 = 1.45 \cdot 10^5$ с, $\sigma_2 = 0$, $\cos\beta =$ = 1/3, $T_2 = 10^{-5}$ с (рис. 7).

Расчеты, проведенные при слабом влиянии окружения на трехспиновую группу, показали, что сигнал эха смещается влево от 2τ , что, в свою очередь, указывает на значительное влияние окружения. Форма линии содержит два пика, уходящих в отрицательную область, и центральный экстре-

мум. Отметим, что существование центрального экстремума является необходимым признаком наличия в веществе трехспиновых групп, и при слабом влиянии окружения центральный пик наблюдается всегда [4].

4. ЗАКЛЮЧЕНИЕ

Моделирование сигналов ССИ, формы линии и солид-эха в твердом теле показало влияние изолированных трехспиновых групп на наблюдаемые сигналы при различных значениях констант ДДВ. Это позволяет оценивать константы диполь-дипольных взаимодействий b_{ij} (i, j = 1, 2, 3), проводить сравнение с экспериментами и извлекать информацию о положении (ориентации) трехспиновых групп в исследуемом веществе. Предложенный в работе метод расчета СЭ применим для вычисления первичного и стимулированного эха и исследования влияния трехспиновых групп на молекулярную подвижность и диффузию в полимерных сетках [20–22].

Работа выполнена по теме государственного задания Министерства науки и высшего образования № 0089-2014-0021.

СПИСОК ЛИТЕРАТУРЫ

- 1. Andrew E.R., Bersohn R. // J. Chem. Phys. 1950. V. 18. № 2. P. 159.
- 2. *Абрагам А.* Ядерный магнетизм. М.: Изд-во иностр. лит., 1963.
- Gutowsky H.S., Pake G.E. // J. Chem. Phys. 1950. V. 18. P. 162.
- 4. Powles J.G., Mansfield P. // Phys. Lett. 1962. V. 2. P. 58.

- 5. *Allen P. S., Harding W., Mansfield P. //* J. Phys. C: Sol. Stat. Phys. 1972. V. 5. № 8. P. L89.
- 6. Allen P.S. // J. Chem. Phys. 1968. V. 48. P. 3031.
- Moskvich Yu.N., Sergeev N.A., Dotsenko G.I. // Phys. Stat. Sol. (a). 1975. P. 409.
- 8. Квантовая радиофизика / Под ред. Чижика В.И. СПбГУ, 2004.
- Карнаух Г.Е. // Современные методы ЯМР и ЭПР в химии твердого тела. Черноголовка: ИПХФ РАН, 1990. С. 118.
- Голубева И.Ю., Карнаух Г.Е., Кулагина Т.П. // Матер. XXII междунар. науч.-практич. конф. М.: "Cognitio". 2017. С. 74.
- Карнаух Г.Е. // Матер. XXIII Всерос. конф. "Структура и динамика молекулярных систем". М.: ИФХЭ РАН, 2016. С. 177.
- 12. Кулагина Т.П., Карнаух Г.Е., Андрианов С.А. // Бутлеровские сообщ. 2013.Т. 35. №7. С. 1.
- Провоторов Б.Н., Кулагина Т.П., Карнаух Г.Е. // ЖЭЕФ. 1998. Т. 113. Вып. З. С. 967.
- 14. Bloch F. // Phys. Rev. 1956. V. 102. № 1. P. 104.
- 15. Redfield A.G. // Ibid. 1955. V. 98. № 6. P. 1787.
- 16. *Провоторов Б.Н. //* ЖЭЕФ. 1961. Т. 41. Вып. 5 (11). С. 1582.
- 17. Кулагина Т.П., Маникин П.С., Карнаух Г.Е., Смирнов Л.П. // Докл. АН. 2010. Т. 431. № 5. С.639.
- 18. Кулагина Т.П., Маникин П.С., Карнаух Г.Е., Смирнов Л.П. // Хим. физика. 2011. Т. 30. № 8. С. 68.
- 19. Кулагина Т.П., Вяселев О.М., Пугачев Д.В., Столин А.М. // Докл. АН. 2012. Т.443. №4. С. 452.
- 20. Кулагина Т.П., Карнаух Г.Е., Кузина А.Н., Смирнов Л.П. // Хим. физика. 2013. Т. 32. № 3. С. 62.
- 21. *Кулагина Т.П., Варакина В.А., Кузина А.Н. //* Хим. физика. 2014. Т. 33. № 5. С. 75.
- 22. Кулагина Т.П., Карнаух Г.Е., Смирнов Л.П., Кузина А.Н. // Хим. физика. 2014. Т. 33. № 8. С. 59.