К. Б. Циберкин*

Пермский государственный национальный исследовательский университет 614990, Пермь, Россия

> Поступила в редакцию 3 июля 2022 г., после переработки 3 июля 2022 г. Принята к публикации 19 июля 2022 г.

Представлен подход к расчёту энергетического спектра однослойной углеродной нанооболочки — однослойной и многослойной сферы — на основе применения модели Хаббарда и приближения сплошной среды с учетом возможности осаждения на поверхности углерода примесных атомов. Реализуется дискретный спектр уровней энергии в пределе бесконечного радиуса кривизны оболочки, отвечающий структуре энергетических уровней графена. Присутствие на поверхности углерода примесных ионов в высокой концентрации приводит к возникновению запрещенной зоны шириной до нескольких электронвольт. Кулоновское отталкивание электронов на узлах решетки усиливает этот эффект и определяет асимметрию ветвей спектра. В оптическом спектре излучения формируются полосы поглощения в видимой и ультрафиолетовой областях спектра, разделенные широкими интервалами с относительно малым количеством разрешенных переходов. Качественно полученные результаты согласуются с известными данными по спектроскопии фуллеренов С₆₀ и С₇₀, а также их теоретическими моделями.

DOI: 10.31857/S0044451022120161 **EDN:** LEUQUQ

1. ВВЕДЕНИЕ

Технологии, основанные на использовании углеродных наноматериалов, продолжают интенсивно развиваться благодаря перспективности их электрических и электронных свойств, а также многообразию возможных углеродных наноструктур, открывающих возможности их использования в широком спектре приложений [1–3]. Среди модификаций углерода особое место занимают однослойные и многослойные замкнутые структуры — фуллерены различной размерности и сферические углеродные оболочки диаметром порядка нескольких нанометров [1, 4–7]. Рисунок 1 показывает типичную структуру массива таких сферических оболочек. Техника синтеза, элементный анализ и результаты измерений ряда макроскопических свойств исследуемого в настоящей работе композита представлены в рабо- $\max[5, 6].$

Сравнительная простота синтеза и функционализации (осаждения на поверхности атомов других химических элементов) углерода делает эти материалы удобным объектом для экспериментов в области создания быстрых электронных устройств [7, 8], а также накопителей энергии [9–11]. Например, при функционализации углеродных сфер элементами типа водорода, азота или фтора происходит увеличение удельного электросопротивления и ширины запрещенной зоны [3,12–15], что в перспективе позволит контролируемым образом создавать полупроводниковые или диэлектрические композиты.

Для построения цельной картины электронных характеристик углеродной оболочки и возможности надежного предсказания свойств синтезируемых на их основе композитов необходимо знание ключевых особенностей их энергетического спектра и разрешенных переходов между различными состояниями. В работах [16–18] представлен подробный анализ для фуллеренов фиксированной размерности, что не в полной мере отвечает задачам синтеза нанооболочек. Хотя характерный средний размер оболочек успешно контролируется в процессе синтеза, он, как и число образующихся атомов углерода, в целом случайный [5]. Это определяет необходимость

ÉE-mail: kbtsiberkin@psu.ru

построения легко масштабируемой и усредняемой модели для описания энергетического спектра углеродной сферы и определяющих их макроскопических характеристик материала.

В настоящей работе представлен один из возможных подходов к решению сформулированной выше проблемы. Реализовано построение квантовомеханической модели на основе решеточного гамильтониана Хаббарда с усреднением в приближении сплошной среды. Ввиду большого радиуса оболочек относительно длины связей С-С в качестве базовой модели используется гамильтониан идеального графена. Рассчитаны энергетические спектры, качественно подобные энергетическим зонам чистого и функционализированного монослоя углерода. Рост числа состояний по мере увеличения радиуса оболочки и числа формирующих ее узлов приводит к уменьшению расстояния между уровнями, тогда как положение характерных точек спектра не изменяется. Продемонстрировано формирование «запрещенной зоны» в спектре материала при осаждении примеси.

2. МОДЕЛЬ ХАББАРДА ДЛЯ УГЛЕРОДНОЙ ОБОЛОЧКИ

В качестве базовой модели углеродного материала принят гамильтониан Хаббарда для монослоя графена [2,3] в приближении ближайших соседей с учетом кулоновского отталкивания при отсутствии внешних полей. Учтена также возможность перехо-

Рис. 1. Фотография массива углеродных сфер на просвечивающем электронном микроскопе

да электронов с узлов решетки углерода на ионы примеси и обратно:

$$H = -t \sum_{j,\delta,\sigma} \left(a^{\dagger}_{j\sigma} b_{j+\delta,\sigma} + b^{\dagger}_{j\sigma} a_{j-\delta,\sigma} \right) + \\ + \frac{U}{2} \sum_{j} \left(n^{a}_{j\sigma} n^{a}_{j,-\sigma} + n^{b}_{j\sigma} n^{b}_{j,-\sigma} \right) - \\ - \Delta \sum_{j,\sigma} \left(a^{\dagger}_{j\sigma} d_{j\sigma} + d^{\dagger}_{j\sigma} a_{j\sigma} + a^{\dagger}_{j\sigma} d_{j\sigma} + a^{\dagger}_{j\sigma} d_{j\sigma} \right), \\ n^{a}_{j\sigma} = a^{\dagger}_{j\sigma} a_{j,-\sigma}, \quad n^{b}_{j\sigma} = b^{\dagger}_{j\sigma} b_{j,-\sigma}, \quad (1)$$

где a, b — операторы уничтожения и рождения электрона со спином σ на узле решетки с номером j, соответственно относящемся к подрешеткам углерода A и B; d, f — операторы уничтожения и рождения, действующие на ионах примеси, присоединенных к подрешеткам A и $B; \delta$ — радиус-вектор по направлению от узла j к ближайшим соседним узлам; n_j — операторы числа электронов на узле j. Алгебра решеточных операторов a, b, d и f задается стандартными антикоммутационными соотношениями для фермиевских операторов:

$$\{X_{j\sigma}, X_{k\sigma'}^{\dagger}\} = \delta_{jk}\delta_{\sigma\sigma'}.$$

Структура монослоя углерода с указанием основных параметров модели (1) схематично показана на рис. 2. Его свойства определяются следующими энергетическими параметрами: t — матричный элемент перехода электрона между двумя узлами решетки, U — энергия кулоновского отталкивания электронов с различными спинами, находящихся на одном узле решетки, Δ – произведение матричного элемента перехода между примесью и узлами решетки и концентрации примеси. Возможность прямого перехода электронов между отдельными примесными атомами исключается. Типичные значе-

Рис. 2. Элемент решетки монослоя углерода и возможные переходы между узлами подрешеток и между решеткой и атомом примеси

ния перечисленных параметров составляют единицы электронвольт [2,16–18]. Без существенных ограничений описанная модель может быть адаптирована и к другим конфигурациям решеток.

Для простейшего учета кулоновских слагаемых используется приближение среднего поля:

$$n_{j\sigma}^{a} \approx \langle n_{\sigma} \rangle a_{j,-\sigma}^{\dagger} a_{j,-\sigma} + \langle n_{-\sigma} \rangle a_{j\sigma}^{\dagger} a_{j\sigma}$$

где в угловых скобках даны средние значения числа электронов с заданными ориентациями спина на узлах. В отсутствие магнитного поля с высокой степенью точности можно считать, что оба средних в этом выражении равны 1/2.

Для последующего построения использованы эволюционные уравнения Гейзенберга:

$$i\frac{dX}{dt} = [X, H]$$

Благодаря использованию приближения среднего поля все уравнения получаются линейными, а электронные подсистемы с противоположной ориентацией спинов становятся полностью независимыми друг от друга:

$$i\frac{da_{j\sigma}}{dt} = -t\sum_{\delta} b_{j+\delta,\sigma} - \Delta d_{j\sigma} + U \langle n_{-\sigma} \rangle a_{j\sigma},$$

$$i\frac{db_{j\sigma}}{dt} = -t\sum_{\delta} a_{j-\delta,\sigma} - \Delta f_{j\sigma} + U \langle n_{-\sigma} \rangle b_{j\sigma}, \quad (2)$$

$$i\frac{dd_{j\sigma}}{dt} = -\Delta a_{j\sigma}, \quad i\frac{df_{j\sigma}}{dt} = -\Delta b_{j\sigma}.$$

3. ПРИБЛИЖЕНИЕ СПЛОШНОЙ СРЕДЫ

Система уравнений (2) записана для общего случая, и геометрия конкретной решетки в рамках сделанных ранее приближений определяется только векторами б. Если на регулярной кристаллической решетки для анализа задачи применимо разложение операторов по плоским волнам с периодом решетки [19], то при замыкании структуры в трубку или сферу движение электронов становится финитным по одной или нескольким координатам. Поэтому спектр плоских волн должен быть заменен на набор дискретных волновых функций, симметрия которых отвечает геометрии структуры. С другой стороны, построение базиса волновых функций на дискретной решетке большой размерности является нетривиальной задачей, которая, по-видимому, не имеет аналитического решения в общем случае. В известных работах рассмотрены частные случаи с заранее заданной размерностью [16-18] и обобщение

этих результатов на системы произвольного размера не осуществлялось. В то же время построение теоретической модели углеродной сферы, диаметр которой в ходе синтеза, как правило, является случайным (см. рис. 1), требует простой масштабируемости на различные размерности.

Определенные результаты в этом направлении может дать описание поведения электронов в приближении сплошной среды. Для крупных сферических оболочек (диаметром несколько нм и более) возможно также пренебречь нарушением гексагональной структуры, полагая решетку всюду локально плоской, но с большим радиусом кривизны. Соответственно, решетка по-прежнему содержит две вложенные треугольные подрешетки, свойства которых — вероятность перехода между узлами, кулоновский параметр и координационные числа предполагаются такими же, как у идеального монослоя углерода.

Для перехода к пределу сплошной среды решеточные операторы рассматриваются как непрерывные функции координат:

$$a_{j\sigma} \to a_{\sigma}(\mathbf{r}_j), \ldots$$

Это позволяет использовать разложение в ряд Тейлора в членах уравнений, описывающих переходы на соседние узлы решетки [20]:

$$a_{j+\delta,\sigma} \to a_{\sigma}(\mathbf{r}_{j}+\delta) \approx$$
$$\approx a_{\sigma}(\mathbf{r}_{j}) + \delta \nabla a_{\sigma}(\mathbf{r}_{j}) + \frac{1}{2} \frac{\partial^{2} a_{\sigma}(\mathbf{r}_{j})}{\partial x^{\mu} \partial x^{\nu}} \delta^{\mu} \delta^{\nu}, \quad (3)$$

здесь по индексам μ , μ , обозначающим компоненты векторов, проводится суммирование.

Подстановка разложения (3) в систему (2) с учетом произвольности ориентации векторов δ в решетке с большим числом узлов дает следующие преобразования сумм операторов:

$$\sum_{\delta} a_{j-\delta,\sigma} \approx Z \left(a_{\sigma}(\mathbf{r}_{j}) + \frac{a_{0}^{2}}{2} \nabla^{2} a_{\sigma}(\mathbf{r}_{j}) \right),$$

$$\sum_{\delta} b_{j+\delta,\sigma} \approx Z \left(b_{\sigma}(\mathbf{r}_{j}) + \frac{a_{0}^{2}}{2} \nabla^{2} b_{\sigma}(\mathbf{r}_{j}) \right),$$
(4)

где a_0 — средняя длина связи между атомами углерода (0.14 нм для монослоя), Z — первое координационное число (в рассматриваемой задаче оно равно трем, см. рис. 2). Выполненное преобразование отвечает приближению изотропной среды и не содержит никакой информации о структуре решетки, кроме Z и длины связи. Градиентное слагаемое при реализованном усреднении исключается. Модификация мо-

дели для учета анизотропии системы требует дополнительного анализа с использованием функции распределения векторов δ , и потенциально может быть описано как возмущение изотропной модели. Такое же преобразование сумм реализуется во всех кристаллических решетках, допускающих преобразование инверсии [19].

В результате уравнения эволюции решеточных операторов (2) в первом приближении аппроксимируются следующей системой уравнений в частных производных:

$$i\frac{da_{\sigma}}{dt} = -tZ\left(1 + \frac{a_0^2}{2}\nabla^2\right)b_{\sigma} - \Delta d_{\sigma} + U\left\langle n_{-\sigma}\right\rangle a_{\sigma},$$

$$i\frac{db_{\sigma}}{dt} = -tZ\left(1 + \frac{a_0^2}{2}\nabla^2\right)a_{\sigma} - \Delta f_{\sigma} + U\left\langle n_{-\sigma}\right\rangle b_{\sigma},$$

$$i\frac{dd_{\sigma}}{dt} = -\Delta a_{\sigma}, \quad i\frac{df_{\sigma}}{dt} = -\Delta b_{\sigma}.$$
(5)

Полученная система по-прежнему является достаточно общей, поскольку не несет информации о конкретной атомной структуре. Используя различные пространственные разложения амплитудных функций, можно получить описания разнообразных систем.

Для сферического монослоя углерода координата электрона определяется полярным ϑ и азимутальным углом ϕ . Поэтому операторы электронных амплитуд в (5) могут быть представлены в виде суммы сферических гармоник $Y_{lm}(\vartheta, \phi)$:

$$a_{\sigma}(\mathbf{r}_{j},t) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{\sigma,lm}(t) Y_{lm}(\vartheta,\phi),$$

$$a_{0}^{2} \nabla^{2} a_{\sigma}(\mathbf{r}_{j},t) = (6)$$

$$- \frac{a_{0}^{2}}{R^{2}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} l(l+1) a_{\sigma,lm}(t) Y_{lm}(\vartheta,\phi),$$

а задача, таким образом, сведена к системе линейных ОДУ:

$$i\frac{da_{\sigma,lm}}{dt} = tZ\left(\frac{a_0^2l(l+1)}{2} - 1\right)b_{\sigma,lm} - \Delta d_{\sigma,lm} + U\langle n_{-\sigma}\rangle a_{\sigma,lm},$$

$$i\frac{db_{\sigma,lm}}{dt} = tZ\left(\frac{a_0^2l(l+1)}{2} - 1\right)a_{\sigma,lm} - (7)$$

$$-\Delta f_{\sigma,lm} + U\langle n_{-\sigma}\rangle b_{\sigma,lm},$$

$$i\frac{dd_{\sigma,lm}}{dt} = -\Delta a_{\sigma,lm}, \quad i\frac{df_{\sigma,lm}}{dt} = -\Delta b_{\sigma,lm}.$$

Собственные частоты ее решений определяют энергетический спектр электронов в углеродной оболочке.

4. РАСЧЕТ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА

Непосредственное нахождение корней характеристического уравнения системы (7) дает следующие энергетические уровни электронов в углеродной сфере:

$$E_{l,\sigma} = \frac{1}{2} \left(U \left\langle n_{-\sigma} \right\rangle \pm \gamma \right) \pm \\ \pm \frac{1}{2} \sqrt{\left(U \left\langle n_{-\sigma} \right\rangle \pm \gamma \right)^2 + 4\Delta^2}, \qquad (8)$$
$$\gamma = tZ \left(1 - \frac{a_0^2 l(l+1)}{2} \right),$$

где знаки \pm внутри скобок и между слагаемыми могут принимать различные значения независимо друг от друга (всего имеются четыре значения энергии для каждого значения l и σ). Уровни энергии двукратно вырождены по спиновой переменной σ (при отсутствии магнитного поля) и 2l + 1-кратно — по азимутальному квантовому числу m.

В пределе отсутствия примеси спектр (8) приобретает простой вид:

$$E_{l,\sigma} = \pm \gamma = \pm tZ \left(1 - \frac{a_0^2 l(l+1)}{2} \right). \tag{9}$$

Число атомов N, составляющих сферу, конечно, и поэтому орбитальное квантовое число l ограничено сверху значением L_{max} . Решетка, составляющая сферу, содержит приблизительно N/2 элементарных ячеек, откуда следует, что каждый электрон может пребывать в одном из N/2 состояний. С другой стороны, набор сферических гармоник с l, изменяющимся от нуля до l_{max} , определяет $(l_{max} + 1)^2$ состояний. Сопоставляя эти значения, можно оценить предельное значение l как

$$l_{max} \approx \sqrt{\frac{N}{2}} - 1.$$

Оценить N возможно из соотношения средней длины связи a_0 и радиуса сферы R. С учетом средней площади элементарной ячейки S_0 оно составляет

 $N \approx 2 \frac{4\pi R^2}{S_0} \approx \frac{32R^2}{3a_0^2},$

откуда

$$l_m ax \approx \sqrt{\frac{16}{3}} \frac{R}{a_0} - 1.$$
 (10)

Для синтезируемых в экспериментах нанооболочек с преобладающим радиусом 2–3 нм число узлов составляет $N \approx 9 \cdot 10^2 - 2 \cdot 10^3$ и соответствующее $l_{max} \approx 29$ –45. С увеличением размера оболочки оба параметра быстро возрастают.

Следуя этому результату, легко найти частоты

разрешенных переходов и ожидаемые линии погло-

щения в спектре сферической углеродной оболоч-

ки. Они показаны на рис. 4 для двух значений кон-

центрации примесных ионов. Наличие запрещенной

зоны приводит к формированию широких полос по-

глощения, положения которых смещаются в ультра-

фиолетовую область спектра по мере увеличения

концентрации примеси. В частности, на рис. 46 они

локализованы вблизи длин волн около 300 и 150 нм.

Рост ширины запрещенной зоны, связанный с увели-

чением энергии перехода на примесные атомы или

кулоновского отталкивания, может привести к фор-

мированию полосы ослабленного поглощения меж-

ду двумя пиками вплоть до полной прозрачности

Для получения конкретных численных результатов приняты приближенные значения параметров $t \approx 3$ эВ и $\Delta \approx 5\rho$ эВ, где плотность примеси ρ варьируется от нуля до единицы и задает среднее число примесных атомов, приходящихся на узел основной решетки. На рис. 3 показаны спектры энергии (8), соответствующие различным l, ρ и U. Тесно расположенные уровни фактически образуют четыре энергетические зоны. При отсутствии примесных ионов и их низкой концентрации отдельные ветви спектра сливаются (рис. 3σ), а при высокой концентрации примесн (рис. 3σ) формируется запрещенная зона, ширина которой пропорциональна Δ и может достигать единиц электронвольт.

Заметной особенностью вычисленных спектров является их самоподобие относительно *l*. При увеличении l_{max} возрастает только плотность уровней, но структура энергетических зон не изменяется. Асимметрия ветвей спектра на рис. За, б обусловлена кулоновским отталкиванием. В пренебрежении им реализуется симметричный спектр, который при отсутствии примеси (рис. 36) качественно совпадает со спектром графена. Наблюдается также реализация аналога точки Дирака [2]. Внедрение примесных ионов даже в малой концентрации приведет к появлению примесного уровня между основными энергетическими зонами. Рост ρ обеспечивает расщепление этого уровня на два сперва в окрестности аналога точки Дирака, а затем и при других значениях *l*. Высокая концентрация примеси приводит к формированию запрещенной зоны (рис. 3г), как и при учете кулоновской энергии (рис. 36).

5. МОДЕЛЬ ОПТИЧЕСКОГО СПЕКТРА

Полученные спектры позволяют найти разрешенные переходы электронов под влиянием внешних возмущений и вычислить соответствующие им частоты. В качестве примера ниже рассмотрены дипольные переходы в поле плоской электромагнитной волны:

$$\mathbf{E}(\mathbf{r},t) = E_0 \operatorname{Re}\left(e^{i(kz-\omega t)}\right)$$

Матричные элементы переходов под влиянием такого поля в дипольном приближении равны

$$\langle f | \mathbf{E} | i \rangle = \frac{eE_0}{2} \langle f | \cos \vartheta | i \rangle,$$

где соз ϑ задает *z*-координату электрона на поверхности оболочки. Условия ортогональности сферических гармоник, по которым раскладываются волновые функции (6), определяют правила отбора для разрешенных переходов: $\Delta l = \pm 1$.

(рис. 4*6*,*г*). Все показанные частоты отвечают осесимметричным волновым функциям электронов, что обусловлено структурой рассматриваемого возмущения и отсутствием магнитного поля. Здесь также не учитывается возможность запретов на переходы между состояниями с различной пространственной симметрией. В то же время полученные спектры энергетических уровней и частот переходов качественно отвечают известным теоретическим и экспериментальным результатам для фуллеренов типа C₆₀, C₇₀, у которых наблюдаются характерные полосы поглощения в ультрафиолетовой области [1,21].

6. ЗАКЛЮЧЕНИЕ

В работе представлено применение предела сплошной среды в модели Хаббарда для описания электронного спектра сферической оболочки большого радиуса, состоящей из монослоя углерода и содержащей на поверхности ионы примеси. В приближении сплошной среды энергетический спектр углеродного монослоя, замкнутого в сферическую оболочку, сохраняет основные фундаментальные особенности, характерные для графита и графена. Благодаря совместному влиянию примесных ионов и кулоновского отталкивания электронов на узлах решетки происходит формирование запрещенной зоны в энергетическом спектре. Рассчитаны также длины волн разрешенных переходов. Структура спектра поглощения электромагнитного поля в дипольном приближении включает широкиеполосы поглощения, характерные для спектров фуллеренов. Увеличение ширины запрещенной зоны приводит к разделению пиков поглощения полосами прозрачности материала.

Рис. 3. Рассчитанные энергетические спектры для однослойной углеродной оболочки радиусом 20a₀ при значении кулоновского отталкивания U = 10 эВ, концентрации примесных ионов: a − ρ = 0.1, б − ρ = 0.8, а также для системы в отсутствие кулоновского отталкивания при концентрации примеси: в − ρ = 0.1, ε − ρ = 0.8. Орбитальное квантовое число нормировано на предельное значение lmax, определяемое радиусом оболочки; для указанных параметров оно равно 45. На панели в сплошной и штриховой линиями показаны также энергетические спектры, расчитанные по дисперсионному соотношению для чистого графена, при двух различных направлениях импульса электрона

Рис. 4. Длины волн, соответствующие разрешенным по орбитальному квантовому числу переходам для однослойной углеродной оболочки радиусом $R = 20a_0$, при значении кулоновского отталкивания U = 10 эВ и концентрации примесных ионов: $a - \rho = 0.1$; $\delta - \rho = 0.8$. Показан также пример реализации полосы прозрачности в области жесткого ультрафиолетового излучения при высокой энергии перехода на примесный узел $\Delta = 20$ эВ: $e - \rho = 0.1$; $e - \rho = 0.8$

Полученные результаты могут быть верифицированы посредством проведения измерений оптического поглощения взвеси синтезируемых углеродных сфер в жидкой среде. Кроме того, получение сравнительно простой модели энергетического спектра электронов в оболочке открывает возможность теоретического анализа различных равновесных и неравновесных свойств синтезируемого в экспериментах углеродного композита, прежде всего — его проводимости, диэлектрической проницаемости и магнитной восприимчивости.

ЛИТЕРАТУРА

- А. В. Елецкий, Б. М. Смирнов, УФН 165, 977 (1995) [A. V. Eletskii and B. M. Smirnov, Phys Usp 38, 935 (1995)].
- A. H. Castro Neto, F. Guiena, N. M. R. Peres et al., Rev. Mod. Phys. 81, 109 (2009).
- P. Esquinazi, Basic physics of functionalized graphite, Springer, New-York (2016).
- 4. X. Wang, Z. Tan, M. Zeng et al., Sci. Rep. 4, 4437 (2014).
- G. A. Rudakov, K. B. Tsiberkin, R. S. Ponomarev et al. J. Magn. Magn. Mater. 427, 34 (2019).
- A. V. Sosunov, D. A. Ziolkowska, R. S. Ponomarev et al., New. J. Chem. 43, 12892 (2019).
- Q. Wu, L. Yang, X. Wang et al. Adv. Mater. 32, 1904177 (2020).
- J. N. Tiwari, R. N. Tiwari and K. S. Kim, Progr. Mater. Sci. 57, 724 (2012).

- D. Wang, L. Xu, Y. Wang et al., J. Electroanal. Chem. 815, 166 (2018).
- 10. G. Li, L. Xu, Q. Hao et al., RSC Adv. 2, 284 (2012).
- S. Kumar, G. Saeed, L. Zhu et al., Chem. Eng. J. 403, 126352 (2021).
- J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).
- 13. R. Zhao, R. Jayasingha, A. Shereniy et al., J. Phys. Chem. C 119, 20150 (2015).
- 14. T. Kato, L. Jiao, H. Wang et al. Small 7, 574 (2011).
- А. В. Сосунов, К. Б. Циберкин, В. К. Хеннер, Вестник Пермского университета. Физика 2, 63 (2019)
 [A. .V. Sosunov, K. B. Tsiberkin and V. K. Henner, Bulletin of Perm University. Physics 2, 63 (2019)].
- Γ. И. Миронов, А. И. Мурзашев, ΦΤΤ 53, 2273 (2011) [G. I. Mironov, A. I. Murzashev, Physics of the Solid State 53, 2393 (2011)].
- А. В. Силантьев, Оптика и спектроскопия 124, 159 (2018) [A. V. Silant'ev, Optics and Spectroscopy 124, 155 (2018)].
- А. В. Силантьев, Физика металлов и металловедение 121, 227 (2020) [A. V. Silant'ev, Physics of Metals and Metallography 121, 195 (2020)].
- Ч. Киттель, Квантовая теория твердых тел, Наука, Москва (1967) [Ch. Kittel, Quantum theory of solids, Wiley, New-York (1963)].
- **20**. М. И. Рабинович, Д. И. Трубецков, *Введение в теорию колебаний и волн*, Регулярная и хаотическая динамика, Ижевск (2000).
- 21. H. Ajie, M. M. Alvarez, S. J. Anz et al., J. Phys. Chem. 94, 8630 (1990).