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1. INTRODUCTION

Rotation and rotating frames have always been a
source of confusion while dealing with the problem of a
uniformly rotating disk and its spatial geometry in the
context of special theory of relativity (STR) [1]. An in-
teresting feature in treating a rotational phenomena is
the Galilean rotational transformation (GRT) between
inertial (laboratory) frames and non-inertial rotating
frames.

This coordinate transformation {xμ} → {x′μ} is
defined by (t → t′, r → r′, φ → φ′ + Ω t′, z → z′)
[2–4], where Ω is the uniform angular speed of the ro-
tating frame measured by an observer in the inertial
frame. They had showed that the axial coordinate is
restricted by 0 ≤ r < c

Ω and others are usual ranges.
Rotating frame of reference for various physical sys-
tems have been investigated in literature, for instance,
on free scalar fields [5], on the Dirac particle [6], on
a neutral particle [7], with quantum states under an
electromagnetic field [8],

on the Dirac oscillator [9–11], on the Dirac par-
ticle subject to a hard-wall confining potential [12],
on massive scalar fields [13], on spin-1 particles [14],
on quantum fermionic fields inside a cylinder [15], on
scalar bosons subject to Coulomb-type potential [16],
on scattering problem of a non-relativistic particle [17],
on spin-zero scalar particles in a space-time with space-
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like and spiral dislocations [18], on spin-zero scalar mas-
sive charged particles subject to Coulomb-type scalar
and vector potentials [19], on spin-1/2 particles with a
field and mixed potential [20], on the Casimir energy
in a space-time with one extra compactified dimension
[21], on spin-zero scalar particles in a space-time with
magnetic screw dislocation [22], on the Dirac particles
in an accelerated reference frame [23], on the Dirac
fields in a space-time with spiral dislocation [24], on
spin-zero scalar particles in a space-time with distor-
tion of a vertical line to a vertical spiral [25], on the
Klein-Gordon oscillator in a topologically non-trivial
space-time [26] and in a cosmic string space-time with
space-like dislocation [27], on spin-zero scalar particles
in a Lorentz symmetry violation environment [28], on
spin-zero scalar particles induced by the topology as-
sociated with a time-like dislocation space-time [29],
on spin-zero scalar massive charged particles subject to
Coulomb-type potential [30], on scalar particles [31,32],
and the Klein–Gordon oscillator with scalar potential
[33] in the context of Kaluza–Klein theory.

We are mainly interest on a space-time that is
produced by a non-trivial topology defined by the
geometry S1 × R3, where R3 represents usual di-
rections and S1 is a compact dimension (see fig.
1). The metric in polar coordinates (t′, r′, φ′, θ′) for
this topologically non-trivial geometry is given by
ds2 = −dt′2 + dr′2 + r′2 dφ′2 +R2 dθ′2 [26].

For S1 rotating frame of reference, we per-
form the coordinate transformation from in-
ertial frame (t, r, φ, θ) to the rotating frame
(t′ = t, r′ = r, φ′ = φ, θ′ = θ + Ω t), one will
have
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ds2 = −
(
1−R2 Ω2

)
dt2 + dr2 + r2 dφ2 +R2 dθ2

+2ΩR2 dt dθ. (1)

The ranges of the coordinate 0 < θ < 2 π and others are
in the usual ranges. Here R is radius of the compact di-
mension S1, and the determinant of the corresponding
metric tensor gμν is det g = −r2 R2. An interesting fea-
ture one can see in contrast to the rotating Minkowski
space-time is that the radius of the compact dimension
S1 satisfies the condition R < 1

Ω [26] such that the
metric component gtt is always negative otherwise this
rotating system is physically unacceptable for R > 1

Ω .

2. GRAVITATIONAL FIELD EFFECTS UNDER
ROTATING FRAME ON SCALAR BOSONS
SUBJECT TO COULOMB-TYPE POTENTIAL

In this section, we study the relativistic quantum
motions of scalar bosons subject to a Coulomb-type
scalar potential in a topologically non-trivial rotating
space-time. There are two ways that one can introduce
a potential into the KG-equation. First one being an
electromagnetic four-vector potential Aμ that can be
introduced through a minimal substitution in momen-
tum four-vector via pμ → (pμ − eAμ) or in the partial
derivative via ∂μ → (∂μ − i e Aμ) [39], where e is the
electric charges. This procedure has been widely used
by several authors in literature [16,19,27,30–33,40–44].
The second procedure is to introduce a scalar poten-
tial S(t, r) by modifying the mass term in the KG-
equation via transformation M2 → (M + S(t, r))2.
This procedure has also been used by several authors
to study the effects of potential in quantum systems
[16, 19, 27, 30–33,39–42].

Fig. 1. Representation of the topologically non-trivial geometry
S1 ×R3 [26]

Thus, the quantum dynamics of scalar bosons sub-
ject to a potential S(r) following the first approach is
described by the wave equation [19,21–23,30–33,39–44]
[
− 1√−g

Dμ

(√−g gμν Dν

)
+
(
M + S(r)

)2]
Ψ = 0,

(2)
where M is the rest mass of the scalar bosons.

In this analysis, we have chosen the electromagnetic
four-vector potential Aμ = (0, �A) [22,27,33,42,44] with
the following components

Ar = 0 = Aθ , Aφ =
ΦB

2 π
, (3)

where ΦB = ΦΦ0 is the Aharnov-Bohm flux which
is a constant, Φ0 = 2 π

e is the amount of quantum
flux, and Φ is the magnetic flux which is a positive
integer. The presence of a magnetic flux in quantum
system shows an analogue of the Aharonov-Bohm eff-
fect [37,38] which is a quantum mechanical phenomena
that has been studied by many researchers in literature
[27, 30–33,41–44].

The Klein-Gordon equation (2) using (3) in the ro-
tating space-time background (1) becomes
[
−
( ∂

∂ t
− Ω

∂

∂ θ

)2
+

1

r

∂

∂ r

(
r
∂

∂r

)
+

1

r2

( ∂

∂φ
− iΦ

)2

+
1

R2

∂2

∂ θ2

]
Ψ =

(
M + S(r)

)2
Ψ. (4)

Several authors have been studied quantum motions of
scalar and spin-half particles using potential of differ-
ent kinds, such as the Cornell-type potential [40,41]. In
this analysis, we are interested on another kind of po-
tential proportional to the inverse of the axial distance.
This type of potential is used for short-range interac-
tions and called the Coulomb-type potential given by

S(r) ∝ 1

r
⇒ S(r) =

η

r
, (5)

where η > 0 is a constant characterizes the potential
parameter. This Coulomb-type potential has widely
been studied in literature [41, 43, 45–57].

The total wave function Ψ(t, r, φ, z) can express in
terms of a radial wave function ψ(r) as follows:

Ψ(t, r, φ, θ) = ei (−E t+l φ+q θ) ψ(r), (6)

where E is energy of the scalar bosons, l = 0,±1,±2, ..

are the eigenvalues of the angular momentum operator
−i ∂̂φ, and q is a constant associated with the operator
−i ∂̂θ. Noted that for S1 compact dimension defined by
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a finite radius R satisfying the condition R < 1
Ω , the

total wave function obeys the following condition

Ψ(θ + 2 πR) = Ψ(θ). (7)

Thereby, substituting the scalar potential (5) and
the total wave function Eq. (6) into the Eq. (4), we
have obtained the following radial wave equation

ψ′′(r) +
1

r
ψ′(r) +

[
− δ2 − j2

r2
− 2 γ

r

]
ψ(r) = 0, (8)

where

δ =

√
M2 +

n2

R2
− (E +Ωn)2, j =

√
(l − Φ)2 + η2,

γ = M η. (9)

Performing a change of variables via ξ = 2 δ r into the
Eq. (8), we have

ψ′′(ξ) +
1

ξ
ψ′(ξ) +

(
− j2

ξ2
− γ

δ

1

ξ
− 1

4

)
ψ(ξ) = 0. (10)

Suppose, a possible solution for the Eq. (10) in
terms of a function F (ξ) as:

ψ(ξ) = ξj e−
ξ
2 F (ξ). (11)

Substituting this solution (11) into the Eq. (10),
we have obtained the following second-order differen-
tial equation:

ξ F ′′(ξ)+
(
1+2 j−ξ

)
F ′(ξ)+

(
−j− γ

δ
− 1

2

)
F (ξ) = 0.

(12)
Equation (12) is the well-known confluent hyperge-
ometric equation form [58, 59]. As state in Refs.
[16, 19, 22, 26, 43, 51, 56, 58, 59], the solution to the
differential equation of the form (12) can be ex-
pressed in terms of a confluent hyper-geometric func-
tion F (ξ) = 1F1

(
j + γ

δ + 1
2 , 2 j + 1; ξ

)
which is well-

behaved for ξ → ∞. Then, in searching for the
bound-state solutions of the wave equation, the func-
tion 1F1 must be a finite degree polynomial in ξ

of degree n, and the quantity
(
j + γ

δ + 1
2

)
= −n

[16, 19, 22, 26, 43, 51,56, 58, 59], where n = 0, 1, 2, ...
After simplifying this condition

(
j + γ

δ + 1
2

)
= −n,

one will have the following expression of the energy
eigenvalues:

En,l,q = −Ω q±

±
[
M2 +

q2

R2
− η2(

n+
√
(l − Φ)2 + η2 + 1

2

)2
]1/2

. (13)

The radial wave function is given by

ψn,l(ξ) = ξ
√

(l−Φ)2+η2
e−

ξ
2×

×1 F1

(
j +

γ

δ
+

1

2
, 2 j + 1; ξ

)
. (14)

Equation (13) is the relativistic energy eigenvalue
and Eq. (14) is the radial wave function of the scalar
bosons in a topologically non-trivial rotating space-
time subject to a Coulomb-type external potential. We
can see that the eigenvalue solution is modified by the
non-trivial topology of the geometry defined by the ra-
dius R, and the Coulomb-type potential. We also see
that the energy levels are shifted by rotating frame of
reference, and hence, these are not equally spaced on
either side about En,l,q = 0 for constant values of l, q.
This effect arises due to the coupling between the quan-
tum number q = 0 and the uniform angular speed Ω of
rotating frame of reference.

In Ref. [26], authors studied the Klein-Gordon os-
cillator in a non-trivial topological space-time geome-
try. They solved the wave equation analytically and ob-
tained the following energy eigenvalue expression (see
Eq. (28) there and we have replaced n → q)

E± = ±
√

M2 +
q2

R2
+ 2M ω (2N ′ + |l|), (15)

where N ′ = N + 1 = 1, 2, 3, ...
One can easily show that the presented energy

eigenvalue (13) is completely different from the re-
sult (15) obtained in Ref. [26]. This is because, we
have considered a non-inertial reference frame which
rotates with constant angular speed Ω, the Coulomb-
type scalar potential characterise by the parameter η

as well as the magnetic flux Φ which shifts the energy
levels and the wave function. Thus, our presented re-
sult in this section is completely new and different from
the previous result given in Ref. [26].

3. GRAVITATIONAL FIELD EFFECTS UNDER
ROTATING FRAME ON KG-OSCILLATOR
SUBJECT TO COULOMB-TYPE SCALAR

POTENTIAL

In this section, we will study the Klein-Gordon os-
cillator [60] subject to an external potential in a topo-
logically non-trivial four-dimensional rotating space-
time. In Ref. [26], authors studied the KG-oscillator in
this topologically non-trivial rotating space-time with-
out any external potential. In this work, we have in-
serted a Coulomb-type external potential and magnetic
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flux as stated earlier and analyze their effects on the
eigenvalue solution of the oscillator fields. The KG-
oscillator analogous to the Dirac oscillator [61] has at-
tracted attention among researchers in current times
(see, Refs. [19, 22, 26, 27, 33, 57, 62]). The KG-oscillator
is examined by the replacements of the radial momen-
tum vector [19, 22, 26, 27, 33, 57, 62]

�p → (�p− iM ω�r), �p† → (�p+ iM ω �r), (16)

where ω is the frequency of the oscillator fields, and r

being distance from the particle to the axis of symme-
try.

Therefore, the Klein-Gordon oscillator equation is
given by

[
− 1√−g

(
Dμ +M ωXμ

)
×

×
{√−g gμν

(
Dν −M ωXν

)}
+

+
(
M + S(r)

)2]
Ψ = 0, (17)

where Xμ = (0, r, 0, 0) = r δrμ is a four-vector.
Explicitly witting the KG-oscillator equation (17)

in the rotating space-time background (1) and using
the electromagnetic potential Eq. (3) and the external
potential Eq. (5), we have
[
−
(

∂

∂t
− Ω

∂

∂θ

)2

+
∂2

∂r2
+

1

r

∂

∂r
−M2 ω2 r2 − 2M ω

+
1

r2

(
∂

∂φ
− iΦ

)2

+
1

R2

∂2

∂θ2

]
Ψ =

(
M +

η

r

)2
Ψ. (18)

Substituting the wave function (6) into the Eq. (18),
we have obtained the following radial wave equation:

ψ′′(r) +
1

r
ψ′(r) +

[
Λ−M2 ω2 r2 − j2

r2
− 2 γ

r

]
ψ(r) = 0,

(19)
where j, γ are defined in Eq. (9) and

Λ = (E +Ω q)2 −M2 − 2M ω −
( q

R

)2
. (20)

Let us now perform a change of variables via
x =

√
M ω r. Then, Eq. (19) can be rewritten as

ψ′′(x)+
1

x
ψ′(x)+

[
Λ

M ω
−x2− ς

x
− j2

x2

]
ψ(x) = 0, (21)

where ς = 2 γ√
M ω

.

As stated earlier the wave function ψ(x) is well-
behaved and regular everywhere. Suppose, a possible
solution to the above radial wave equation Eq. (21) is
given by

ψ(x) = xj e−
x2

2 H(x), (22)

where H(x) is an unknown function.
Thereby, substituting the radial wave function Eq.

(22) into the Eq. (21), we have

H ′′(x) +
[1 + 2 j

x
− 2 x

]
H ′(x) +

[
− ς

x
+ Ξ

]
H(x) = 0,

(23)
where Ξ = Λ

M ω − 2 (1 + j).
Equation (23) is the biconfluent Heun differential

equation form [22, 32, 33, 40, 42] and H(x) is the Heun
function. Substituting a power series expansion

H(x) =

∞∑
i=0

di x
i

[59] into the Eq. (23), we have obtained few coefficients

d1 =

(
ς

1 + 2 j

)
d0, d2 =

1

4 (1 + j)

[
ς d1 − Ξ d0

]

with the following recurrence relation

dm+2 =
1

(m+ 2)(m+ 2+ 2 j)

[
ς dm+1− (Ξ−2m) dm

]
.

(24)
One can see this power series expansion H(x) becomes
a polynomial of finite degree m by imposing the follow-
ing two conditions [22, 32, 33, 40, 42]

Ξ = 2m (m = 1, 2, ...) , dm+1 = 0. (25)

By analyzing the first condition, we have obtained fol-
lowing energy eigenvalue Em,l,q expression:

Em,l,q = −Ω q ±

±
[
M2 + 2M ωm,l ×

×
(
m+

√
(l − Φ)2 + η2 + 2

)
+

q2

R2

]1/2
. (26)

The corresponding radial wave function is given by

ψm,l(x) = x
√

(l−Φ)2+η2
e−

x2

2 H(x), (27)

where H(x) is now a finite degree polynomial of degree
m.

Finding solutions of the quantum system still not
complete because one must analyze the second condi-
tion dm+1 = 0 one by one to get the complete infor-
mation of a quantum state. As example, for the radial
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mode m = 1, we have Ξ = 2 and d2 = 0 which gives
us a constraint on the oscillation frequency ω → ω1,l

given by

ω1,l =

(
M η2√

(l − Φ)2 + η2 + 1
2

)
. (28)

Therefore, the ground state energy level associated
with the radial mode m = 1 is given by

E1,l,q = −Ω q ±

±M

√√√√1 + 2 η2

(√
(l − Φ)2 + η2 + 3√
(l − Φ)2 + η2 + 1

2

)
+
( q

M R

)2
.(29)

And the ground state radial wave function is given by

ψ1,l(x) = x
√

(l−Φ)2+η2
e−

x2

2 ×

×
(
1 +

x√√
(l − Φ)2 + η2 + 1

2

)
d0. (30)

Similarly, for the radial mode m = 2, we have Ξ = 4

and d3 = 0 which gives us another constraint on the os-
cillation frequency ω → ω2,l given by

ω2,l =
1

2

(
M η2√

(l − Φ)2 + η2 + 1

)
, (31)

Therefore, the first excited state energy level of the
bound-states solution defined by the radial modem = 2

is given by

E2,l,q = −Ω q ±

±M

√√√√1 + η2

(√
(l − Φ)2 + η2 + 3√
(l − Φ)2 + η2 + 1

)
+
( q

M R

)2
. (32)

And the corresponding radial wave function is given
by

ψ2,l(x) = x
√

(l−Φ)2+η2
e−

x2

2 (d0 + d1 x+ d2 x
2), (33)

where

d1 = 2

⎛
⎝
√√

(l − Φ)2 + η2 + 3
4√

(l − Φ)2 + η2 + 1
2

⎞
⎠ d0,

d2 =

(
1√

(l − Φ)2 + η2 + 1
2

)
d0. (34)

We can see that the energy eigenvalues and the wave
function are modified by the non-trivial topology of the

space-time geometry, and the Coulomb-type potential.
One can show that the presented energy eigenvalue gets
modified in comparison to those result obtained in [26]
due to the presence of the Coulomb-type external po-
tential and the magnetic quantum flux. This Coulomb-
type external potential is responsible for the bound-
state solutions, and thus, the ground state is defined
by the radial quantum number n = 1 instead of n = 0.

4. CONCLUSIONS

In this analysis, we have determined solutions of
the wave equation under the effects of the gravitational
field produced a topologically non-trivial geometry sub-
ject to a Coulomb-type external potential in a rotating
frame of reference. We have seen that the non-trivial
topology of the geometry defined by the radius R of
the compact dimension, and the Coulomb-type external
potential modified the eigenvalue solutions. Further-
more, the presence of the magnetic flux causes a change
in the angular quantum number l → l0 =

(
l − eΦB

2 π

)
which shows that the energy eigenvalue depends on
the geometric quantum phase. This dependence of the
eigenvalue on the geometric quantum phase gives us
the gravitational analogue to the Aharonov-Bohm ef-
fect [37, 38]. Several authors have been investigated
this quantum mechanical effect in literature (e. g.,
[27, 30, 31, 33]). Also, we have seen a coupling between
the angular quantum number q and the uniform angu-
lar speed Ω of the rotating frame of reference. This
coupling causes asymmetry in the relativistic energy
levels, and hence, are not equally spaced on either side
about En/m,l,q = 0 for constant values of l, q.

We has seen that the presence of Coulomb-type po-
tential allowed the formation of bound-state solutions
and causes difference in results with those obtained in
Ref. [26]. Another point we have noticed is that the ro-
tating frames restricted the radius of compact circle S1

in the range R < 1
Ω , and an analogous to the Sagnac-

type effect [6,10,27,33] is observed due to the coupling
between the quantum number q and uniform angular
speed Ω of rotating frames. This coupling causes asym-
metry in the energy levels and therefore, they are not
equally spaced on either side about En,l,q = 0 for con-
stant values of l, q.

The full text of this paper is published in the English
version of JETP.
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