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The process of quantum tunneling of macroscopic
objects is well known in condensed matter physics,
where the collective variables are used, which describe
the collective dynamics of a macroscopic body [1–3].
This approach allows estimating the semiclassical tun-
neling exponent without consideration of the details of
the object structure on the microscopic (atomic) level.

One of the applications of the macroscopic quantum
tunneling is the calculation of the quantum creation of
the topological objects. Examples are the nucleation
quantized vortices in moving superfluids [4], nucleation
of Abrikosov vortices in superconductors in the pres-
ence of supercurrent [5], and the instanton — the pro-
cess of creation of the topological charge in quantum
field theories [6]. In the process of quantum nucle-
ation of the vortex ring with radius R (a vortex in-
stanton) the collective (macroscopic) dynamically con-
jugate variables are represented by the area A = πR2

of the created vortex ring and (with some factor) its
coordinate z along the normal to the ring.

It looks reasonable to apply the approach of macro-
scopic quantum tunneling also to such macroscopic ob-
jects as a black hole. In this case the corresponding
collective variables [7] are the area of the event horizon
A = 4πR2 and its dynamically conjugate variable —
the gravitational coupling K (we use the gravitational
coupling K = 1/(4G), where G is the Newton “con-
stant”).

* E-mail: grigori.volovik@aalto.fi

Since in both cases one of the collective variables
is represented by the corresponding area, this suggests
that there can be some thermodynamic analogy be-
tween the vortex ring and the black hole. It was shown
in Ref. [8] that quantized vortices in Fermi superfluids
have many common properties with the black holes.
In particular, there is an analog of the Hawking tem-
perature for the moving vortex ring, see Eq. (4.1.9) in
Ref. [8]:

TH =
�vF
4πR

ln
R

rc
, (1)

where vF is Fermi velocity, and rc is the radius of the
singularity — the vortex core radius. In Fermi supe-
fluids, the core size is the analog of the Planck length,
which determines singularity inside the black hole.

The temperature in Eq. (1) looks similar to the
Hawking temperature of black holes:

TH =
�c

4πR
. (2)

The analogy with black holes is supported by the be-
havior of fermionic quasiparticles living in the vortex
core. They occupy bound states: the Caroli – de Gen-
nes –Matricon states [9]. Due to the motion of the vor-
tex ring, the fermions are excited from the bound states
to the continuous spectrum by the process of quan-
tum tunneling. The tunneling exponent reproduces the
thermal nucleation with the analog of Hawking temper-
ature in Eq. (1). If to extend this analogy to the black
hole, then the Hawking radiation from the black hole
can be considered as the quantum tunneling of particles
from the bound state inside the black hole singularity
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to the continuous spectrum outside the event horizon.
The Hawking radiation as semiclassical tunneling was
considered in Refs. [10–14] and in many following pa-
pers.

The analogy between the vortex rings in Fermi su-
perfluids with their fermion zero modes in the vortex
core and the black hole concerns both the individual
processes of the particle creation by quantum tunnel-
ing from the object to the external world and the re-
lated process of macroscopic quantum tunneling of the
whole macroscopic object. In this paper, we discuss
the processes of microscopic and macroscopic quantum
tunneling related to the black hole and de Sitter Uni-
verse using experience with the objects in condensed
matter, where we know physics both on macro and mi-
cro scales. The plan of the paper is the following.

In Sec. II of the full text, we consider the macro-
scopic quantum tunneling of the Schwarzschild black
hole to the Schwarzschild white hole of the same mass
using inverse Newton constant K = 1/4G as dynamic
and thermodynamic variable. Introduction of the
variying K modifies the first law for the Schwarzschild
black hole thermodynamics:

dSBH = −AdK +
dM

TBH
,

whereM is the black hole mass, A = 4πR2 is the area of
horizon, and TBH is Hawking temperature in Eq. (2).
From this first law, it follows that the dimensionless
quantity M2/K is the adiabatic invariant, which in
principle can be quantized if to follow the Bekenstein
conjecture [15].

As in the case of the semiclassical consideration of
the Hawking radiation in terms of the quantum tunnel-
ing, we shall use the Painlevé –Gull strand coordinate
system [16,17] with the metric

ds2 = −dt2(1− v2)− 2dt dr · v + dr2. (3)

Here the vector vi(r) = g0i(r) is the shift velocity —
the velocity of the free-falling observer, who crosses the
horizon. In condensed matter, the analog of this metric
is the so-called acoustic metric [18] emerging for quasi-
particles in moving superfluids, where the shift veloc-
ity vi is played by superfluid velocity. The analogs of
the black hole and white hole horizons described by this
metric can be also reproduced in the Dirac and Weyl
topological semimetals, where the horizon takes place
on the boundary between different types of Dirac or
Weyl materials [19–21]. For the Schwartzschild black
hole one has

v(r) = ∓r̂

√
M

2rK
= ∓r̂

√
2MG

r
, (4)

where sign “−” is for a black hole (flow in), and sign
“+” is for a white hole (flow out). For the fully static
black hole, v = 0 (no flow).

From the Euclidean action for the black hole, it fol-
lows that K and A serve as dynamically conjugate vari-
ables. The quantum tunneling exponent is usually de-
termined by the imaginary part of the action on the
classical trajectory A(K), which transforms the black
hole to white hole at fixed M = const:

p ∝ exp(−IBH→WH ),

IBH→WH =

∫
C

A(K ′) dK ′. (5)

Along this trajectory, the variable K ′ changes from K

to the branch point at K ′ = ∞, and then from K ′ = ∞
to K ′ = K along the other branch, where the area
A(K ′) < 0. The integral gives the tunneling exponent
of the transition from the black hole to the white hole
with the same mass M :

IBH→WH = 2πM2

∞∫
K

dK ′

K ′2 = 2π
M2

K
. (6)

The tunneling exponent in Eq. (6) can be expressed in
terms of the black hole entropy SBH = A/4G, and it
is twice the black hole entropy, which enters the prob-
ability of transition:

p ∝ exp(−2πM2/K) = exp(−2SBH). (7)

The factor 2 has the important consequence. The
quantum tunneling can be considered as random ther-
modynamic fluctuation, and the latter can be ex-
pressed in terms of the difference in entropy be-
fore and after transition [22]. This suggests that
p ∝ exp(SWH − SBH), and thus from Eq. (7) one
has SWH − SBH = −2SBH , i. e., the entropy of the
white hole is with minus sign the entropy of the black
hole:

SWH(M) = −SBH(M) = − A

4G
. (8)

Then one obtains that the temperature of the white
hole is also negative.

While the negative temperatures is the well known
phenomenon, the negative entropy looks strange. Any-
way, the black hole states with negative entropy have
been considered in Ref. [23], where it has been sug-
gested that appearance of negative entropy may indi-
cate a new type instability, see also Ref. [24]. Such
super-low entropy of white hole can be also seen as an
example of a memory effect discussed in Ref. [25], i. e.
the entropy of the white hole is negative, since this state
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remembers that it is formed from the black hole by the
quantum tunneling.

Here we show that there are different ways to cal-
culate the entropy of the white hole, and all of them
support its negative sign.

In Sec. III of the full text, we use the following way
of calculations. We consider three different types of
the hole objects: black hole, white hole, and the fully
static intermediate state. The probability of tunneling
transitions between these three macroscopic states is
found using singularities in the coordinate transforma-
tions between these objects. The black and white holes
are described by the Painlevé –Gull strand coordinates
with opposite shift vectors in Eq. (4), while the inter-
mediate state is described by the static Schwarzschild
coordinates with v = 0. The singularities in the coordi-
nate transformations lead to the imaginary part in the
action, which determines the tunneling exponent. For
the white hole the same negative entropy is obtained,
while the intermediate state — the fully static hole —
has zero entropy.

In Sec. IV of the full text, we consider the elec-
trically charged black hole, the Reissner –Nordström
(RN) black hole with two horizons, inner and outer.
We calculated the entropy of RN black hole and the
corresponding temperature of the thermal Hawking ra-
diation using several different approaches. These are:

(i) The method of semiclassical tunneling, which is
used for calculation of the Hawking temperature.

(ii) The cotunneling mechanism — the coherent se-
quence of tunneling at two horizons, each determined
by the corresponding Hawking temperature.

(iii) The calculation of the macroscopic quantum
tunneling from the RN black hole to the RN white hole
using the method of singular coordinate transforma-
tions.

(iv) The adiabatic change of the fine structure con-
stant α to zero. This adiabatic process transforms the
RN black hole to the Schwarzschild black hole, which
does not contradict to the conservation of the chargeQ.
When α slowly decreases to zero, the two horizons move
slowly with conservation of the charge number Q and
mass M . Finally, the inner horizon disappears and the
black hole at α = 0 becomes neutral. In such slow pro-
cess, the entropy does not change and is the same as
the entropy of the neutral black hole. Since the states
with different Q can be obtained by the adiabatic trans-
formations, this suggests that entropy of the RN black
hole does not depend on charge Q. This is supported
by the other approaches, which give the same result.

So, the correlations between the inner and outer
horizons lead to the total entropy and to the tem-

perature of Hawking radiation, which depend only on
mass M of the black hole and do not depend on the
black hole charge Q:

SBH(Q,M) = SBH(Q = 0,M). (9)

This deviation from the conventional area law can be
ascribed to the correlated contributions of both hori-
zons to entropy.

The full agreement between the results of different
approaches confirms the validity of the methods used
in this paper. In particular, this demonstrates that
some singular coordinate transformations violate the
general covariance in general relativity: they transform
the initial state to the physically (thermodynamically)
different state. This corresponds to the spontaneously
broken symmetry with respect to the general coordi-
nate transformations, which leads to the existence of
the non-equivalent degenerate states with the same en-
ergy (black hole and white hole). While the physical
laws are invariant under the singular coordinate trans-
formations, the degenerate states are not: they trans-
form into each other under these transformations.

All this also supports the statement that the
(anti)symmetry between the black and white holes
can be extended to their entropy and temperature.
The Schwarzschild black hole and the Schwarzschild
white whole are described by the metrics with oppo-
site shift vectors. The shift vector changes sign un-
der time reversal, which transforms a black hole into
a white hole. The absence of the time reversal invari-
ance for each of these holes makes these states non-
static, but still the metric is stationary (time indepen-
dent), and thus the entropy and temperature can be
well defined. The Schwarzschild black hole and the
Schwarzschild white hole have the opposite entropies,
SWH(M) = −SBH(M), and the opposite Hawking
temperatures, TWH(M) = −TBH(M). For the inter-
mediate static hole with v = 0 the time reversal sym-
metry is not violated, and this object has zero temper-
ature and zero entropy, Sstatic = Tstatic = 0.

It is interesting to consider the other objects in-
cluding the Kerr black and white holes, where time
reversal symmetry is violated by rotation. In this case,
the coordinate transformations produces the singular-
ity in action not only in

∫
M dt, but also in

∫
J dφ,

where J is angular momentum and φ is the polar coor-
dinate. The proper coordinate system can be found in
Refs. [26, 27]. The recent discussion of the Painlevé –
Gull strand forms and their extensions can be found
in Refs. [28, 29]. In Ref. [30], the entropy of the Kerr
black hole was obtained using the method of the adia-
batic transformation. The result is similar to that for
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the RN black hole: the entropy depends only on the
mass M of the black hole:

SBH(J,M) = SBH(J = 0,M). (10)

The consideration can be extended to the other
black holes with several horizons [31–33], in particular
to the Reissner –Nordström–de Sitter black hole with
the cosmological event horizon. In Ref. [32], the en-
tropy of the Reissner –Nordström black hole in Eq. (9)
is reproduced in the asymptotic limit of infinite cosmo-
logical horizon.

In Sec. V of the full text, the entropy and tempera-
ture of the expanding de Sitter Universe are considered.
We show that as distinct from the black hole physics,
the de Sitter thermodynamics is not determined by the
cosmological horizon. The effective temperature of the
de Sitter spacetime differs from the conventional Hawk-
ing temperature TH = H/2π, which follows from the
formal semicalssical calculation of the tunneling rate
across the cosmological horizon (H is the Hubble pa-
rameter). In particular, atoms in the de Sitter Uni-
verse experience thermal activation corresponding to
the local temperature, which is twice larger than the
Hawking temperature, Tloc = 2TH = H/π [34]. The
same double Hawking temperature describes the decay
of massive scalar field in the de Sitter Universe [35–37].

The quantum tunneling process, which leads to the
decay of the composite particle in the de Sitter vac-
uum, occurs fully inside the cosmological horizon and
is fully determined by the local temperature Tloc. The
unconventional thermodynamics of the de Sitter vac-
uum follows from the specific geometry of the de Sitter
expansion and is not related to the existence of the cos-
mological horizon. The weakening of the role of the cos-
mological horizon in the de Sitter Universe is confirmed
by the proper consideration of the Hawking radiation,
and macroscopic quantum tunneling. The free energy
of the fluctuations of the matter fields also corresponds
to the local temperature Tloc. It is not restricted by the
region inside the horizon, i. e., it is also not related to
the existence of the cosmological horizon. All this raises
the question of the role of the cosmological horizon and
Hawking temperature in the pure de Sitter vacuum.

The decay of the composite particles, which are ex-
citations above the de Sitter vacuum, does not directly
lead to the decay of the vacuum itself. However, it is
instructive to consider the de Sitter state as the ther-
modynamic state, which contains the thermal matter
with the local temperature Tloc. Then the interaction
between the thermal matter and the dark energy dur-
ing the evolution of the Universe leads to the decay of

the vacuum energy density ρV and of the Hubble pa-
rameter H according to the following power law [38]:

H ∼ EPl

( tPl

t

)1/3
, (11)

ρV ∼ E4
Pl

( tPl

t

)2/3
. (12)

Here the Planck time tPl = G1/2 and Planck en-
ergy EPl = 1/tPl are introduced. Such power law de-
cay is discussed in different approaches. It is similar to
that in Eq. (192) in Ref. [39] (see also Ref. [40]) and in
Eq. (109) in Ref. [41]. The time scale of the decay of
the de Sitter expansion, which follows from Eq. (12),
tQ = E2

Pl/H
3, corresponds to the time at which de Sit-

ter state looses coherence [42].
On the other hand, the possibility of the decay of

the pure de Sitter vacuum due to Hawking radiation
remains unclear and requires the further considera-
tion [43]. This does not mean that the de Sitter vacuum
is stable: this only means that the Hawking radiation
alone does not lead to instability, i. e. the de Sitter vac-
uum is stable with respect to the decay via the Hawking
radiation. The Hawking radiation does not lead to the
change of the vacuum energy density, which generates
the de Sitter expansion. This means that even if the
pair creation takes place, the de Sitter expansion imme-
diately dilutes the produced particles, and thus there
is no vacuum decay in the de Sitter spacetime.

There are many other mechanisms, not related to
the Hawking radiation, which could lead to the decay
of the de Sitter spacetime [44–51], including the in-
frared instability, instability due to the dynamic effects
of a certain type of quantum fields, instability towards
spontaneous breaking of the symmetry of the de Sit-
ter spacetime or the instability towards the first order
phase transition in the vacuum, etc. But in most cases,
either the de Sitter vacuum is not perfect, i. e., there
are deviations from the exact de Sitter and the de Sitter
symmetry is lost, or the vacuum energy is fine-tuned,
i. e., the cosmological constant problem is ignored. The
de Sitter instability, which avoids fine tuning, but uses
the special vector field in Dolgov scenario [52], is in
Ref. [53].

The problem of the dynamical stability of the de Sit-
ter vacuum is directly related to the cosmological con-
stant problem. The q-theory [54] demonstrates the so-
lution of the problem in thermodynamics: in the equi-
librium Minkowski vacuum the cosmological constant is
nullified due to thermodynamics. However, it remains
unclear whether the de Sitter state relaxes to the equi-
librium. This depends on the stability of the de Sitter
vacuum. If the de Sitter attractor is not excluded in dy-
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namics, then the only possibility to solve the dynamical
cosmological problem within the q-theory is to assume
that the Big Bang occurred in the part of the Uni-
verse, which is surrounded by the equilibrium environ-
ment [55]. In this case, any perturbation of the vacuum
energy by the Big Bang, even of the Planck scale order,
will inevitably relax to the equilibrium Minkowski vac-
uum with zero cosmological constant. This relaxation
does not require any fine-tuning, since it is dictated by
the equilibrium environment.

In conclusion, the macroscopic quantum tunnel-
ing elaborated in the early works by S. V. Iordan-
sky, A. M. Finkel’shtein, and E. I. Rashba in Lan-
dau Institute allows studying similar processes in cos-
mology. The probability of the processes of macro-
scopic quantum tunneling of cosmological objects is ex-
tremely small. However, the theoretical consideration
of these processes allows making conclusions on entropy
and temperature of the cosmological objects, which are
rather unexpected.
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