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The Casimir effect was first discovered [1] for the
electromagnetic field confined between two neutral par-
allel plates at zero temperature. This effect has been
studied for other fields [2–7]. In field of the Bose–Ein-
stein condensate (BEC), the Casimir effect has been
considered in both experiment [8–12] and theory, for
example, [13–18] in the grand canonical ensemble and
[17,19] in the canonical ensemble. In these papers, the
Casimir effect was investigated in the one-loop approxi-
mation within the framework of perturbative theory for
a single dilute BEC. For two-component BEC (BECs),
our previous work [20] pointed out that the Casimir
force is not a simple superposition of the one of two sin-
gle component BEC because of the mutual repulsive in-
teractions. It was also proven to be zero in some cases:
(i) the inter-distance between two plates becomes large
enough; (ii) both the inter- and intraspecies interac-
tions are zero (ideal gases); and an important case (iii)
the interspecies interaction is the full strong segrega-
tion. Even so, the case (iii) result is controversial be-
cause of the interpretation that the original Casimir
force and interspecies interactive force are of the same
order in the full strong separation. As an improvement,
in Ref. [21] the Casimir effect in the BECs was studied
in the improved Hartree–Fock (IHF) approximation,
which based on the Cornwall–Jackiw–Tomboulis (CJT)
effective action formalism [22]. In this approximation
the two-loop diagrams were taken into account and the
Goldstone theory is obeyed. However, the momentum
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integrals were calculated at the lowest-order approxi-
mation, which we call the lowest-order Hartree–Fock
(LIHF) approximation. Therefore, the vanishing of the
Casimir force in the limit of the full strong segregation
did not change.

In this paper, the Casimir effect in the BECs at zero
temperature is researched in the IHF approximation
with the higher-order terms of the momentum integrals
and it is called the higher-order improved Hartree–Fock
(HIHF) approximation. To do so, we start from the
Lagrangian density of the BECs without external field
[23, 24],

L =
∑

j=1,2

ψ∗
j

(
−i~∂t −

~
2

2mj
∇2

)
ψj − V, (1)

with

V =
∑

j=1,2

(
−µj|ψj |2 +

gjj
2

|ψj |4
)
+ g12|ψ1|2|ψ2|2. (2)

Here ~ is the reduced Planck constant, µj and mj are
the chemical potential and atomic mass of component
j, respectively. The coupling constant

gjj = 4π~2ajj/mj > 0

represents the strength of the repulsive intraspecies in-
teraction and

gjj′ = 2π~2
(

1

mj
+

1

mj′

)
ajj′ > 0

is the strength of the repulsive interspecies interaction,
ajj′ being the s-wave scattering length between com-
ponents j and j′. The field operator ψj has the ex-
pectation value ψj0, which plays the role of the order

177



Nguyen Van Thu ЖЭТФ, том 162, вып. 2 (8), 2022

parameter. Recall that for g212 > g11g22 the two com-
ponents are immiscible and a phase-segregated BEC
forms [25], and vice versa. Shifting the field operators

ψj → ψj0 +
1√
2
(ψj1 + iψj2)

one can obtain the CJT effective potential in the
Hartree–Fock approximation. Unfortunately, this CJT
effective potential was proved violating the Goldstone
theorem [26] by finding the dispersion relation from the
request for vanishing of the determinant of the inverse
propagators [27]. To solve this problem, the method
developed in [28] is invoked. After adding the extra
term in the CJT effective potential, one arrives at the
IHF approximation. Minimizing the CJT effective po-
tential with respect to the order parameter one has the
gap equations

−1 + φ21 +Kφ22 +
1

g11n10
Σ

(1)
2 = 0,

−1 + φ22 +Kφ21 +
1

g22n20
Σ

(2)
2 = 0.

(3)

Similarly, the Schwinger–Dyson equations can be
achieved by minimizing the CJT effective potential
with respect to the elements of the propagators

M2
1 = −1 + 3φ21 +Kφ22 +

1

g11n10
Σ

(1)
1 ,

M2
2 = −1 + 3φ22 +Kφ21 +

1

g22n20
Σ

(2)
1 .

(4)

In Eqs. (3) and (4), nj0 is the bulk density of the com-
ponent j, K = g12/

√
g11g22, φj = ψj0/

√
nj0 is the di-

mensionless order parameter, and Mj is dimensionless
effective mass. The self energies are defined as

Σ
(1)
1 =

1

2
(g11P11 + 3g11P22 + g12Q11 + g12Q22),

Σ
(2)
1 =

1

2
(g22Q11 + 3g22Q22 + g12P11 + g12P22),

Σ
(1)
2 =

1

2
(3g11P11 + g11P22 + g12Q11 + g12Q22),

Σ
(2)
2 =

1

2
(3g22Q11 + g22Q22 + g12P11 + g12P22),

(5)

with Paa, Qbb are the momentum integrals.
We now consider a binary mixture of Bose gases

confined between two parallel plates, which perpen-
dicular to the z-axis. This means that the system
is confined to a parallel plate geometry with the size
ℓx, ℓy and distance between the two plates of ℓ = ℓz,
which satisfies condition ℓx, ℓy ≫ ℓ as was discussed in

Fig. 1. (Color online) The effective masses (top panel) and or-

der parameters (bottom panel) as a function of 1/K at L = 1.

The solid red (first component) and solid blue (second com-

ponent) lines are in the HIHF approximation, the dashed red

(first component) and dashed blue (second component) are

the corresponding quantities in the LIHF approximation
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Fig. 2. (Color online) The Casimir force versus 1/K at L = 1 in

the HIHF approximation (red line). The blue line corresponds

to the LIHF and one-loop approximations, respectively

[29]. The periodic boundary condition is imposed at
the plates, which can be realized in experiments by us-
ing toroidal traps [30,31] or optical lattices [32]. Due to
the confinement, the wave vectors are quantized. Us-
ing the Euler–Maclaurin formula [33], the momentum
integrals are calculated in the HIHF approximation at
zero temperature
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P11 = −π
2m1g11n10ξ

2
1

90~2ℓ3M1
,

Q11 = −π
2m2g22n20ξ

2
2

90~2ℓ3M2
,

P22 =
m1g11n10M1

12~2ℓ
− m1g11n10ξ

2
1π

2

90~2M1ℓ3
,

Q22 =
m2g22n20M2

12~2ℓ
− m2g22n20ξ

2
2π

2

90~2M2ℓ3
,

(6)

where ξj = ~/
√
2mjgjjnj0 is the healing length of

jth component.
In order to illustrate these calculations, numeri-

cal computations are performed for a dual-species Bo-
se–Einstein condensates of rubidium 87 (first compo-
nent) and cesium 133 (second component). For this sys-
tem the parameters are in order m1 = 86.909u, a11 =

= 100.4a0 for rubidium 87 and m2 = 132.905u, a22 =

= 280a0 for cesium 133 [34]. Here u = 1.66 · 10−27 kg
and a0 = 0.529 nm are the atomic mass unit and Bohr
radius, respectively. The dimensionless length is cho-
sen as L = ℓ/ξ1 with ξ1 = 4000 nm being the healing
length of rubidium 87. The numerical computations
show a significant difference compared with the corre-

sponding result in the LIHF approximation, that is the
effective masses depend on both the distance ℓ and K.
The comparison of the evolution of the effective masses
(top panel) and order parameters (bottom panel) in
the HIHF approximation (solid lines) with those in the
LIHF approximation (dashed lines) is sketched in Fig. 1
at L = 1. A remarkable difference in regime of the
strong segregated region can be observed. In this re-
gion, at a given value of 1/K, the values of the effective
masses and order parameters in the HIHF approxima-
tion are bigger than the corresponding ones in the LIHF
approximation. At the full strong segregation, both
the effective masses and order parameters are different
from zero whereas they vanish in the LIHF approxi-
mation. This fact confirms that the influence of the
higher-order terms in the momentum integrals is not
negligible. In the regime of the full strong separation,
the HIHF approximation gives

Mj ≃
Mj0

ℓ
,

φj ≃
φj0
ℓ2
,

(7)

in which

Mj0 =

(
mjgjjξ

2
j π

2

45~2

)1/3

,

φj0 =
12 3

√
5π4/3g

2/3
jj m

2/3
j ξ

4/3
j ~

4/3 − (15π)2/3g
4/3
jj m

4/3
j ξ

2/3
j

360 3
√
3~8/3

.

(8)

Formally resemble the momentum integrals, the
Casimir force energy density is found

EC =
∑

j=1,2

−
π2mjgjjξ

2
jMj

360~2ℓ3
. (9)

It is clear that the Casimir energy is negative and, ne-
glecting the ℓ-dependence of Mj , it has the same form
as the one in the LIHF approximation and one-loop
approximation. However, in the LIHF and one-loop
approximations, the effective masses are independent
of the distance so that the Casimir energy density will
be the same as the one in the one-loop approximation.
The Casimir force is defined as the negative derivative
of the Casimir energy with respect to a change in the
distance between two parallel plates. Combining with
(9) one obtains the Casimir force acting on per unit
area of the plates

FC =

=
∑

j=1,2

(
−
π2mjgjjξ

2
jMj

120~2ℓ4
+
π2mjgjjξ

2
j

360~2ℓ3
∂Mj

∂ℓ

)
. (10)

Owing to the ℓ-dependence of the effective masses, the
contribution of the higher-order terms in the momen-
tum integrals is shown by second term in right-hand
side of Eq. (10). The evolution of the Casimir force
versus 1/K is plotted in Fig. 2 at L = 1 and other
parameters are the same as in Fig. 1. The red line
is drawn in the HIHF approximation whereas the blue
line corresponds to the LIHF and one-loop approxi-
mations. This figure shows that the strength of the
Casimir force decreases as the interspecies interaction
increases. This fact is understandable if we note that
the Casimir force is attractive whereas the interspecies
interaction is repulsive. The red line in Fig. 2 show
that the Casimir force is non-zero in the limit of the
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full strong segregation within the HIHF approximation,
whereas it vanishes in the LIHF and one-loop approxi-
mations as shown by the blue line in Fig. 2. This is an
interesting result in comparison with that in [20]. This
result gives us the conclusion that the Casimir force is
always on top of interspecies interaction and this is an
important improvement on the result in our previous
paper [20]. Mathematically, the Casimir force in full
strong separation is

FC = −
∑

j=1,2

(mjgjjπ
2)4/3

90.32/351/3~8/3ℓ5
. (11)

This equation confirms again that the Casimir force is
non-zero in the full strong separation limit.
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