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Abstract. Small (but still containing many,
about 102–104, atoms) quantum systems (tradition-
ally termed nano-systems) are dramatically different
from their macroscopic or genuine microscopic (atomic)
cousins. Microscopic molecular systems (with a few
atoms) obey a regular quantum dynamics (described
by time dependent Schrödinger equation), whereas in
macroscopic systems with continuous energy spectra,
one can expect regular dynamic behavior. The topic
of our paper is in-between these limits. Nano-scale
systems are characterized by small (but finite) mean
interlevel spacing. In such a case with recurrence pe-
riods in picosecond range, Loschmidt echo and dou-
ble resonance phenomena come into the game. Sys-
tem behavior becomes non-trivial and manifests a sort
of transitions between regular and chaotic dynamics.
We show that such dynamic transitions occur when the
Loschmidt echo lifetime exceeds the typical recurrence
cycle period. We illustrate this behavior in the frame-
work of a few versions of the exactly solvable quan-
tum problem, proposed long ago by Zwanzig [1]. It is
based on the study of time evolution of the initially
prepared vibrational state coupled to a reservoir with
a dense spectrum of its vibrational states. In the sim-
plest version of the Zwanzig model, the reservoir has
an equidistant spectrum, and the system reservoir cou-
pling matrix elements are independent of the reservoir
states. We generalize the model to include into con-
sideration the coupling of the initially prepared single
state to system phonon excitations. The coupling re-
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sults in the temperature dependent broadening and de-
cay of the echo components. Another generalization is
to replace a single level by two states coupled to the
Zwanzig reservoir. We anticipate that the basic ideas
inspiring our work can be applied to a large variety of
interesting for the applications nano-systems (e. g., dis-
sipative free propagation of excitations along molecular
chains, or as a model for exchange reactions).

Introduction. There are materials which do not
exhibit unusual properties in the nano-scale regime.
For example, simple non-polar hydrocarbon molecules
when aggregated are added merely additively. In other
systems, that are under investigation in this work, the
properties may exhibit anomalous values (or behavior
of a system is unusual) in the nano-regime. Common
wisdom borrowed from textbooks on quantum mechan-
ics teaches that a population of somehow initially pre-
pared state of a macroscopic system monotonically de-
creases in time due to the energy flow from this ini-
tial state into the states of the reservoir (formed by
all continuous states of the macroscopic system under
consideration). In the opposite limit (a small system
with a few degrees of freedom), system behavior is also
well known. The system dynamics is reduced to the
recurrence cycles, with their periods (according to the
famous Poincare theorem) determined by the lowest ra-
tionally independent interlevel spacings. As it is often
the case, an intermediate case (relatively large but not
macroscopically large quantum system) is the most dif-
ficult one for theoretical analysis. However, just such
systems (generically termed as nano-systems) contain-
ing about several hundreds of atoms become more and
more attractive for various applications.
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Fig. 1. Scheme of radiationless transitions {Rn} ← S accom-
panying by the optical transition S ← S0 from the ground to
initial state. Direct optical transitions {Rn} ← S0 are forbid-
den. S is the state obtained by the optical pumping from the
ground state S0, {Rn} are the final (reservoir) states, and ΓS

and ΓR are decay rates for the corresponding states

Our intent in this work is to investigate dynamic
behavior of these intermediate nano-size quantum sys-
tems. In principle, the full information about the sys-
tem (both dynamics and statics) is naturally contained
in quantum mechanical solution of the corresponding
Schrödinger equation. In practice, however, the quan-
tum solution is unfeasible even for not too large (about
102–104 atoms) systems. Therefore, one has to rely
either on heavy ab initio numeric, or to look for ana-
lytically doable approximations. Luckily for us, many
years ago Robert Zwanzig in a remarkable work (al-
though published not in a regular and easy accessi-
ble journal [1]) proposed a simple (but not trivial) ex-
actly solvable model of quantum dynamics. Within
this model, an initially prepared single state of a quan-
tum system evenly couples to the dense but discrete
spectrum of the reservoir levels. Within the Zwanzig
model, the coupling strength is assumed to be a con-
stant independent of the reservoir levels. Surprisingly
enough that in spite of this evidently erroneous as-
sumption, Zwanzig approximation correctly identifies
the dynamic regimes and characteristic time scales in
the problem. Thus, although the Zwanzig model is a
toy model (in the sense of caricaturing some physical
features), when properly interpreted it can yield quite
reasonable values for a variety of essential (and prin-
cipally measured) quantities. That such a simple the-
ory can predict rather complex and subtle features for
nano-size quantum systems is remarkable.
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Fig. 2. The initial state evolution for the bare Zwanzig model:
as is the amplitude of the optically excited state, C is the SR

coupling constant, C2 = 1, γs and γn are the widths of the
corresponding energy levels (in the figure, the both γ = 0).
Time is measured in the inverse interlevel spacing of the reser-
voir states. The upper panel shows the initial cycles with the
regular dynamics. The lower panel demonstrates chaotic-like
long-time dynamics in the case of the overlapping recurrence

cycles

Fig. 3. Crossover from the regular to quasi-random spectrum
of the mixed RS states upon the mixing deformation. I(E) is
the spectral density, and energy E is measured in the units of
the interlevel spacing; K is sublattices spectra regular splitting,
K = 3 in the computations; δ1 and δ2 are parameters which
determine the additional (with respect to regular) sublattices
splittings: δ1 = 0, 0.1, 0.4, 0.7 (from the top to the bottom),

and δ2 = 2δ1; C2 = 0.1
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Fig. 4. Backward evolution of the initial state amplitude a1
s

for the cycle k = 1. The reservoir posses the increasing inter-
level spacings. C2 = 1. The model parameters describing the
spectrum deformations are b = 0 and a = 0, 0.15, 0.25, 0.35

(curves 1–4, respectively)

Fig. 5. Time evolution of the initial state coupled to reservoir
with spectral mixing for the cycle k = 1: C2 = 1, K = 3,
δ2 = 2δ1, δ1 = 0, 0.019, 0.049, 0.079, a = 0, 0.15, 0.25, 0.5

(from the top to the bottom), and b = 0

Here we compile a brief self-contained review that
we wish had existed when we first entered the field
[2]. In what follows in the frame work of generalized
Zwanzig approach, we study a number of nano-size
quantum systems. Since our work is primary about
physics (and only then how it can be modeled theoret-
ically), it is worth to note first what are physical sys-

tems we have in mind. Our topic is nano-size quantum
objects, possessing discrete vibrational energy spectra.
Such objects are carbon nano-tubes, graphene flacks,
metallic clusters, some large organic molecules or their
clusters. Typical feature (relevant for everything what
follows in the paper) of such systems is that their vibra-
tional spectra are discrete and characteristic interlevel
spacing Δ̄ is on the order of 0.1–10 cm−1. This value
of Δ̄ is translated into the picosecond time scale for the
periods of the recurrence cycles

T =
2π

cΔ̄
� 10−10–10−12 s,

where c is the light speed. In turn, experimental stud-
ies of the excited state evolution in large (nano-size)
molecular systems [3–8] have established that the pro-
cesses of vibrational relaxation, energy transfer, and
ultra-fast chemical reactions occur in the same picose-
cond time range as recurrence cycles. Therefore, the re-
currence cycles are essential ingredients to be included
to describe theoretically such features of the quantum
dynamics of nano-systems as irreversibility, chaotic be-
havior and loss-free distant energy transfer. These and
some other high-resolution experiments (which will be
cited and shortly discussed in our paper) demonstrate
that a system initial vibrational state evolution, as a
rule, has a complicated form with irregular oscillations.
The methods of double resonances in the non-linear
femtosecond spectroscopy [9–12] appear to be espe-
cially useful to observe these irregular oscillations of the
initial and final state populations simultaneously. The
phenomenon has been observed for the wide variety of
large-size molecules in liquid and solid solutions and on
interfaces [13–18]. Note to the point that irregular os-
cillations of the population of initially prepared excited
state have been confirmed by the numerous quantum
dynamical calculations [19–23].

The loss-free excitation energy transfer, observed
in linear molecules consisting of 12–26 CH2 fragments
[20, 21], also belongs to a similar class of irregular in
time behavior. In such kind of experiments, the ini-
tial excitation of the molecular terminal group pro-
duces the running wave with approximately constant
speed (about of 2 ps per one fragment). Even more
surprising is that instead of naively expected random
distribution of the excitation energy over the total set of
intra-molecular modes, the wave propagation lasts dur-
ing several passages along the chain before the uniform
distribution is established. The distant energy transfer
occurs between localized vibrations of fragments sepa-
rated by about 1 nm distance during 20–40 ps whereas
the lifetime of these vibration excitations themselves
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Fig. 6. Redistribution of the initial-state population over the
mixed reservoir states with the amplitudes an during the sec-
ond recurrence cycle k = 2 with duration τ2. The numbers of

the reservoir states are shown near the curves

does not exceed 3 ps. The matter is that the excita-
tion energy transfer includes intermediate excitations
of delocalized long-lived vibrations binding the initial
and final fragments [22–25].

These data permit to suggest that the irregular
evolution is the generic property of the systems with
dense discrete spectra. Therefore, the role of the reser-
voir with a discrete spectrum is fundamentally differ-
ent from that with a continuous spectrum typical for
macroscopic systems. In the latter case (with the infi-
nite recurrence period time), the reservoir serves as a
sink for energy flow. Contrary in the case of the discrete
spectrum, repetitive reverse transitions from the reser-
voir to the initial state and in the opposite direction
determine the non-trivial and often irregular long-time
dynamics. The synchronization of these reverse tran-
sitions results in the appearance of a multi-component
Loschmidt echo phenomenon with a partial recovery
of the initial state population (at the frequency corre-
sponding to the initial excited state energy), and double
resonances (at the frequencies of the reservoir states).
Both effects are responsible for non-monotonic time
evolution. The counterpart of such behavior is the peri-
odic energy concentration in one of the vibration mode,
arising as a result of the time-dependent exchange be-
tween reservoir states far from equilibrium.

In a few of previous works of our group [2, 26–32],
we illustrated how such complex behavior might ap-
pear in the frame work of the simple Zwanzig model,
and how the simplest version of the model can be gen-
eralized to relax some unphysical assumptions of the
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Fig. 7. Variation of the average per cycle populations of L0 (�)
and R0 (∗) states and the entire population of the two-level
systems (×) in the recurrence cycles versus the cycle num-
ber k: C2 = 1 and the two-level splitting Δ = 0.4, 1.2, 2.7,

7.4 (from the top to the bottom)

model. In these works, we also proposed a method
which makes it possible to solve the dynamical prob-
lem analytically beyond the bare Zwanzig model ap-
proximations [27–32]. The main ingredient of our new
method (only schematically and briefly described in the
previous papers) is the representation of the partial
amplitudes of recurrence cycles. Unlike the standard
Fourier expansion over eigen-frequencies, this represen-
tation reveals explicitly the time dependent exchange
between intramolecular states in each recurrence cycle.
The fine structure of the Loschmidt echo arises as a
result of the dephasing phenomena associated with the
fact that the exchange of the different reservoir states
with the initial state occurs not at the same instants
of time. The synchronization of the reverse transitions
is destroyed when the Loschmidt echo components of
the different recurrence cycles start to overlap. The cy-
cle overlapping determines the critical recurrence cycle
number. Then at larger time (cycle numbers), the sys-
tem dynamics is expected to be in the stochastic-like
regime.

Since that time, we have realized that the quan-
tum dynamics of nano-size systems is much richer than
that predicted for the systems with continuous spec-
tra, and that non-monotonous in time and irregular
dynamics is a robust and generic feature of almost ar-
bitrary quantum system with 102–104 degrees of free-
dom. Moreover, the regular-stochastic dynamic transi-
tion (crossover) yields to a loss of the expected one-to-
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Fig. 8. Dynamics of the population at the excited impurity cite
located in the middle of the finite N = 49 size chain: a0 is
the amplitude of the initially excited site; C2 = 0.1, 0.25, 0.5,
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kc is marked by the a star (kc = 23 for C2 = 0.5); T is the
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Fig. 9. Impurity site excitation propagated along the chain.
C2 = 0.5, N = 49. The site numbers are indicated on the
panels as the subscripts of corresponding values along the ver-

tical axes

one correspondence between system spectrum and its
long-time dynamics. For all our examples, the spec-
trum remains deterministic, while long-time dynamics
eventually becomes stochastic. This unusual combina-
tion is the specific feature of nano-systems.

Motivated by this new understanding, we decided
to combine altogether our previous works to illustrate

our method on a number of particular physical real-
izations (only partially overlapping with those in the
previous works). The aim to present this review arises
from the conviction that unifying our previous works
supplemented by the new applications of the developed
theoretical approach and by new experimental data and
observations collected in very recent year, yield to a
new stage of development of this field: dynamics of
nano-systems.

Our manuscript is divided into 7 sections. After this
Introduction, in Sec. 2 of the full text of this paper, we
summarize shortly the results on quantum dynamics of
the bare Zwanzig model. A possible physical realiza-
tion most closely satisfying the model assumptions is
also discussed. Section 2 contains also an extended list
of references to compensate partially its brevity. Then,
in Sec. 3 utilizing developed in our works [27–32] the-
oretical approach, we investigate with all details the
evolution of the population of the initially prepared
single state of the system. In Sec. 4, we analyze var-
ious physically motivated generalizations of the bare
Zwanzig model and how our analytical method should
be modified to describe theoretically these generaliza-
tions. In the same section, we show that on the similar
footing we can study dynamics not only for an indi-
vidual (single) nano-system but as well for the ensem-
ble of somehow distributed nano-systems. We investi-
gate the reservoir states evolution in Sec. 5. We collect
some already discussed in literature and new applica-
tions of our approach to physically interesting phenom-
ena in nano-systems, namely, two-level systems coupled
to reservoir, propagation of vibrational excitations in
nano-size chains (Sec. 6). The last Sec. 7 summarizes
the main findings of our work, with a discussion of pos-
sible physical consequences and interpretation of the
results.

The results from the list of Refs. [1–69] are used
or/and discussed in our work.

The figures illustrated our results are presented be-
low.

Conclusion. Understanding all limitations of our
simplified exactly solvable models, nevertheless we
hope that the results collected in this review capture
the essential peculiarities in nano-system dynamics.
Namely, the dense discrete spectra characteristic for
nano-particles and large-size molecules are responsible
for appearance of recurrence cycles. By contrast to
macroscopic systems with the continuous spectra,
where the initial state population decreases mono-
tonically in time, the Loschmidt echo and double
resonances arise in each recurrence cycle. The revivals
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in the time evolution makes it possible the emergence
of new mechanisms of vibration stimulated processes
in single nano-particles and their ensembles as well.
The regular behavior in the initial recurrence cycles
transformed into chaotic-like long-time evolution is
an inherent characteristic of nano-world. The combi-
nation of the deterministic spectra with chaotic-like
long-time dynamics has no analogs in the quantum
dynamics of the macroscopic dissipative systems.
Owing to specific mechanisms of energy transfer and
redistribution within the manifold of intramolecular
modes, the loss-free and distant energy transfer be-
comes possible. The unique property of nano-systems
is the possibility for periodical accumulation of the
energy on the selected vibrational modes. The new
fields for experimental studies and applications of this
unusual effect are opened.

The full text of this paper is published in the English
version of JETP.
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