А. Саргсян, А. Тоноян, Д. Саркисян*

Институт физических исследований Национальной академии наук Армении 0203, Аштарак, Армения

> Поступила в редакцию 25 января 2021 г., после переработки 18 февраля 2021 г. Принята к публикации 26 февраля 2021 г.

Впервые использованы магнито-индуцированные (MI) переходы атомов ⁸⁵Rb, D_2 -линии, $F_g = 2 \rightarrow F_e = 4$ в случае циркулярно поляризованного σ^+ -излучения для формирования оптических темных резонансов в сильных магнитных полях (вплоть до 1 кГс) в процессе электромагнитно-индуцированной прозрачности (EIT). Используется ячейка толщиной 1.5 мкм, заполненная парами атомов Rb. Вероятности двух из пяти MI-переходов (которые эффективно формируются только при σ^+ -поляризованном излучении) в интервале магнитных полей 0.2–1 кГс превосходят вероятности «обычных» атомных переходов, что делает целесообразным их использование в Λ -системах для формирования темного резонанса (DR). Установлено следующее правило: для формирования темного резонанса в Λ -системе при использовании пробного излучения на частоте MI-переходов в случае σ^+ -поляризованного излучения поляризация излучения связывающего лазера также должна быть σ^+ ; DR не формируется в случае поляризации излучения связывающего лазера σ^- , что подтверждается и расчетной теоретической кривой. Отмечено существенное преимущество использования MI-резонансов для процесса EIT по сравнению с использованием обычных атомных переходов 85 Rb, D_2 -линии. Формирование темных резонансов в сильных магнитных полях, когда имеет место смещение частоты DR на несколько ГГц, имеет практические применения.

DOI: 10.31857/S0044451021070038

1. ВВЕДЕНИЕ

Многочисленные применения оптических процессов, протекающих в парах атомов щелочных металлов (Cs, Rb, K, Na), заключенных в оптические ячейки (в том числе и в миниатюрные ячейки), такие как атомные оптические часы, атомные оптические магнитометры, атомные гироскопы, маркеры частот атомных переходов и т.д., приведены в обзорной работе [1]. Поэтому поведение атомов щелочных металлов, в том числе и в магнитных полях, продолжают представлять научный интерес. В сильных магнитных полях может происходить значительная модификация вероятности (интенсивности) атомных переходов щелочных металлов (Cs, Rb, K, Na) [2–9]. Для разрешенных (в дипольном приближении) переходов между нижними и верхними уровнями сверхтонкой структуры для полного момента атома F в нулевом магнитном поле должны выполняться следующие правила отбора между нижними F_g и верхними F_e уровнями сверхтонкой структуры атомов: $F_e - F_g = \Delta F = 0, \pm 1$ [2]. В последние годы большой интерес вызывают атомные переходы между нижними и верхними уровнями сверхтонкой структуры, для которых выполняются условия $F_e - F_g = \Delta F = \pm 2$ (вероятность таких переходов в нулевом магнитном поле нулевая). Сушественная молификация вероятностей переходов, в частности гигантское возрастание вероятностей магнито-индуцированных (MI) атомных переходов, происходит из-за эффекта «перемешивания» магнитных подуровней для нижнего F_q или верхнего Fe уровней с магнитными подуровнями близлежащего перехода; эффект «перемешивания» индуцируется внешним магнитным полем [2,6,8,10]. Интерес к МІ-переходам обусловлен тем, что в широких интервалах магнитных полей вероятности этих переходов могут значительно превосходить вероятности обычных атомных переходов, разрешенных и в отсутствие магнитного поля. Отметим также, что

^{*} E-mail: sarkdav@gmail.com

величина производной частотных сдвигов по магнитному полю S [МГц/Гс] (в англоязычной литературе Slope) в сильных магнитных полях может достигать 4 МГц/Гс, что примерно в 3 раза больше величины S для обычных атомных переходов [11]. Поэтому в сильных магнитных полях частотный сдвиг МІ-переходов может достигать нескольких десятков ГГц, что представляет практический интерес для освоения новых частотных диапазонов, к примеру, для стабилизации частоты лазеров на частотах, сильно смещенных относительно начальных частот переходов в невозмущенных атомах [12, 13].

В работах [7,8] было установлено следующее правило для вероятностей (интенсивностей) МІ-переходов: вероятности МІ-переходов с $\Delta F = +2$ максимальны (а также максимально число формируемых МІ-переходов) для излучения σ^+ , в то время как вероятности МІ-переходов с $\Delta F = -2$ максимальны (а также максимально их число) для излучения σ^- . Для некоторых МІ-переходов различие в интенсивности при использовании излучений σ^+ и σ^- может достигать нескольких порядков. Отметим, что МІ-переходы могут быть использованы во всех тех же задачах, в которых используются обычные атомные переходы. В настоящей работе впервые продемонстрирована перспективность применения МІ-переходов $^{85}\mathrm{Rb},\,D_2$ -линии, $F_q=2 \to F_e=4$ для процесса электромагнитно-индуцированной прозрачности (EIT) в сильных магнитных полях. Это обусловлено двумя причинами: 1) поскольку вероятность МІ-перехода может существенно превосходить вероятность «обычного» атомного перехода, целесообразным является его использование для перехода на частоте «связывающего» или пробного лазеров в Л-системе; 2) в сильных магнитных полях, наряду с существенным увеличением вероятности МІ-перехода, происходит его значительный частотный сдвиг относительно начального положения, что имеет отмеченное выше практическое применение [12]. Для реализации процесса ЕІТ в микроячейке, заполненной парами атомов Rb, использовалось излучение двух непрерывных узкополосных диодных лазеров с длиной волны 780 нм, которые формировали пробное и связывающие излучения.

2. РАСЧЕТНЫЕ КРИВЫЕ ДЛЯ ВЕРОЯТНОСТЕЙ И ЧАСТОТНЫХ СДВИГОВ МІ-ПЕРЕХОДОВ ⁸⁵Rb

На рис. 1
а показаны магнито-индуцированные переходы $F_g=2 \to F_e=4$ с номерам
и ①–⑤ при использовании излучения с круговой поляризаци-

Рис. 1. *а*) Диаграмма переходов ⁸⁵ Rb, D_2 -линия, переходы 1–5 (указаны в кружках) запрещены при B = 0, однако в магнитном поле происходит гигантское возрастание их вероятностей, переходы для σ^+ -излучения. *б*) Вероятности МІ-переходов и переходов $F_g = 2 \rightarrow F_e = 3'$ для σ^+ -излучения в зависимости от величины B. *б*) Частотные смещения МІ-переходов и переходов $F_g = 2 \rightarrow F_e = 3$ (переходы 1–5) в зависимости от величины B, пунктирная линия показывает зависимость перехода ⁸⁷ Rb от величины B (см. текст)

ей σ^+ . Кривые на рис. 1 (а также на рис. 6) рассчитаны по известной теоретической модели, которая описывает модификацию вероятности атомного перехода в магнитном поле с помощью матрицы гамильтониана с учетом всех переходов внутри сверхтонкой структуры и детально изложена в ряде работ, к примеру [2, 6, 8]. Зависимости вероятностей МІ-переходов (1)–(5) от величины магнитного поля В показаны на рис. 16: видно, что вероятности МІ-переходов с номерами (4) и (5) в интервале B = 0.2 - 1 кГс наибольшие среди всех атомных переходов с нижнего уровня $F_q = 2$, а в интервале B = 1-2 кГс все еще достаточны для их регистрации и применения. Частотные сдвиги МІ-переходов (1-5) и переходов $F_q = 2 \rightarrow F_e = 3$ для излучения σ^+ в зависимости от *B* показаны на рис. 1*e*. Как видно, в интервале 0.6 – 1 кГс МІ-переходы с номерами ④ и ⑤ не имеют частотных пересечений с другими атомными переходами, что делает их удобными для применений. Пунктирной линией показана частотная зависимость перехода атома $^{87}\mathrm{Rb},\ F_g=1,\ m_F=-1$ \rightarrow $F_e=2,\ m_F=0,\ \mathrm{koto-}$ рый при полях, больших 1 кГс, частотно пересекается с МІ-переходом с номером (4). Отметим, что при использовании излучения с круговой поляризацией σ^- формируется только один МІ-переход $F_q = 2$, $m_F = -2 \rightarrow F_e = 4, m_F = -3,$ вероятность которого в 4 раза меньше вероятности МІ-перехода с номером (5).

3. ЭКСПЕРИМЕНТ

3.1. Экспериментальная установка

Схема экспериментальной установки показана на рис. 2. Для формирования конфигурации Л-системы с использованием атомных уровней, приведенных на вставке рис. 2, использовалось излучение двух непрерывных узкополосных диодных лазеров с внешним резонатором с длиной волны 780 нм. Пробное излучение с частотой ν_P формировалось лазером "MOGLabs cateve" и имело спектральную ширину ~ 100 кГц, а его частота сканировалась по МІ-переходам $2 \rightarrow 4'$ (здесь и ниже верхние уровни отмечены штрихами). Связывающее излучение с частотой ν_C имело спектральную ширину ~ 1 МГц (лазер ECDL, выпускаемый под товарной маркой VitaWave [14]). Часть (10%) излучения лазера ν_C направлялась на систему для осуществления стабилизации его частоты методом DAVLL [15], на рис. 2 не показано. Частота ν_C находилась в резонансе с соответствующими перехо-

Рис. 2. Схема экспериментальной установки. Используются два узкополосных лазера с $\lambda \approx 780$ нм. 1 - MЯ с Rb в печке (печка не показана), $2 - \phi$ отодиоды, Ref. — узел формирования частотного репера; $\varphi -$ угол между пучками ν_P и ν_C , $\varphi = 20$ мрад, 3 -цифровой осциллограф, IF — фильтр, BD — преграда для пучка ν_C , PM — сильный магнит. На вставке — используемые для формирования Λ -системы уровни и переходы $^{85}\mathrm{Rb}$, D_2 -линии, для частот пробного ν_P и связывающего ν_C излучений с круговыми поляризациями σ^+

дами $3 \rightarrow 4'$ между нижними и верхними зеемановскими подуровнями. Соответствующие энергетические уровни
 $\Lambda\mathchar`-$ системы $^{85}\mbox{Rb}, D_2\mbox{-линии, кото$ рые участвуют в формировании темного резонанса (DR) при использовании МІ-переходов с номерами ④ и ⑤, показаны на вставке рис. 2. В эксперименте необходимо было выяснить, какую круговую поляризацию σ^+ или σ^- должны иметь связывающее и пробное излучения для наиболее эффективного формирования процесса DR (к примеру, могло произойти так, что максимальная эффективность DR достигается при σ^+ -излучении для пробного излучения, однако связывающее излучение должно иметь σ^{-} -поляризацию), поэтому возникала необходимость иметь возможность независимого варьирования этих поляризаций. Неколлинеарная геометрия, показанная на рис. 2, позволяет это осуществить. В неколлинеарной геометрии (рис. 2) начальное расстояние между пробным и связывающим излучениями до начала схождения в ячейке составляет 2 см и для уменьшения угла схождения приблизительно до 20 мрад в микроячейке она помещалась на расстоянии 120 см. Вследствие расходимости лазерных пучков их диаметры возрастали до 2 мм (прямо на выходе из лазера диаметр 1 мм).

Ранее было показано, что использование сверхтонких ячеек с толщинами $L = \lambda, 2\lambda$ или 3λ , где λ — длина волны резонансного лазерного излучения (в нашем случае $\lambda = 780$ нм), позволяет формировать контрастный DR [16, 17]. Контраст (или «технический контраст») определяется как отношение изменения поглощения из-за эффекта EIT (это показывает величина амплитуды DR) к величине пикового поглощения паров [1, 16, 17]. Кроме того, при использовании ячеек, содержащих пары атомов металлов с толщиной столба паров ~ 1 мкм, могут быть использованы сильные постоянные магниты. Поэтому в эксперименте была использована микроячейка (MЯ) 1, заполненная парами атомов Rb, толщиной $L \approx 2\lambda \approx 1.56$ мкм (для деталей МЯ см. [18]). Поляризаторы Глана (GP) использовались для формирования линейно поляризованного излучения, которое с помощью четвертьволновой пластины преобразовывалось либо в излучение с круговой поляризацией σ^+ (левый круг), либо в излучение с круговой поляризацией σ^- (правый круг). Спектры пропускания регистрировались фотодиодами ФД-24К 2, далее сигнал усиливался и подавался на четырехканальный цифровой осциллограф Tektronix TDS2014B (3). Мошности связывающего и пробного излучений варьировались в интервалах 10–15 мВт (P_c) и 0.1–0.2 мВт (P_n) соответственно с помощью нейтральных фильтров (на рис. 2 не показаны).

Часть излучения пробного лазера направлялась на систему (Ref.) для формирования частотного репера с помощью дополнительной наноячейки Rb толщиной $L = \lambda = 780$ нм [19–21]. В эксперименте регистрировалось пробное излучение и для дополнительной селекции частоты ν_P использовался интерференционный фильтр IF (на длине волны $\lambda = 780$ нм, с шириной пропускания 10 нм). Для формирования магнитных полей использовался откалиброванный с помощью магнитометра Teslameter HT201 сильный постоянный магнит из сплава неодим-железо-бор, который помещался вблизи заднего окна МЯ и имел небольшое отверстие для прохождения лазерного излучения. Варьирование величины В осуществлялось изменением расстояния от магнита до окна МЯ. В работах [20, 22] было показано, что при толщине ячейки $L \approx \lambda$, 2λ , 3λ вследствие оптической накачки в спектре пропускания формируются так называемые селективные по атомным скоростям оптические резонансы (в англ. литературе — velocity selective optical pumping (VSOP)), которые имеют спектральную ширину в 10-20 раз уже доплеровской ширины. VSOP-резонансы демонстрируют уменьшение поглощения и расположены на частоте атомных переходов.

3.2. Экспериментальные результаты: применение МІ-переходов для получения DR

На рис. 3 кривая (1) показывает спектр пропускания пробного излучения, содержащий темный резонанс DR_5 (приложено продольное магнитное поле 770 Гс). При наличии магнитного поля формируются Л-системы с участием разных подуровней m_F , поэтому, используя представление в виде $|F, m_F\rangle$, можно записать: частота ν_P настроена на переход $|2, -2\rangle \rightarrow |4', -1'\rangle$ (это МІ-переход с номером (5)), а частота ν_C настроена на переход $|3,-2\rangle \rightarrow |4',-1'\rangle$ (Л-система для формирования DR₅ приведена на левой вставке). Мощности связывающего и пробного излучений составляют 15 мВт и 0.1-0.2 мВт соответственно. Температура резервуара МЯ (который содержит металлический Rb) примерно 100 °C, что обеспечивает концентрацию атомов $N \approx 5 \cdot 10^{12}$ см⁻³. Ярко выраженный DR₅ имеет контраст приблизительно 30%. На средней вставке показан аппроксимированный гауссовой кривой DR со спектральной шириной 20 МГц (ПШПВ полная ширина на полувысоте). Заметим, что, как показано в работе [23], наличие угла между пучками ν_C и ν_P приводит к дополнительному спектральному уширению DR. На спектре присутствуют также VSOP-резонансы, которые имеют бо́льшую спектральную ширину и меньшую амплитуду. DR₅ формируется только тогда, когда излучение ν_{C} имеет поляризацию σ^+ , а при поляризации σ^- имеет нулевую амплитуду. На рис. 3 кривая (2) показывает спектр пропускания пробного излучения, содержащий темный резонанс DR_4 , когда частота ν_P настроена на переход $|2, -1\rangle \rightarrow |4', 0'\rangle$ (это МІ-переход с номером (4)), а частота ν_C настроена на переход |3,-1
angle
ightarrow |4',0'
angle (Λ -система для этого случая показана на правой вставке). DR₄ формируется, только когда излучение ν_C имеет поляризацию σ^+ , а при поляризации σ^- имеет нулевую амплитуду. На рис. 3 кривая (3) показывает спектр пропускания пробного излучения, когда излучение ν_C отсутствует. В этом случае регистрируются только VSOP-резонансы со спектральной шириной 40-50 МГц, в частности, отмечены VSOP-резонансы на переходах под номерами ④ и ⑤. Кривая (4) показывает расчетный спектр пропускания только пробного излучения: наблюдается хорошее согласие расчетных амплитуд VSOP-резонансов и их частотных положений с экспериментальной кривой (3). Кривая (5) показывает реперный спектр 87 Rb, переходы $1 \to 0', 1', 2'$. Частотные сдвиги атомных переходов

Рис. 3. ⁸⁵Rb, D_2 -линия, B = 770 Гс, кривая (1) — спектр пропускания ν_P , содержащий резонанс DR₅, кривая (2) — спектр пропускания ν_P , содержащий резонанс DR₄, кривая (3) — спектр ν_P , когда нет излучения ν_C , кривая (4) — расчетный спектр пропускания пробного излучения, кривая (5) — реперный спектр ⁸⁷Rb при B = 0, переходы $1 \rightarrow 0', 1', 2'$. Левая и правая вставки — конфигурация частот ν_P и ν_C для формирования соответственно DR₅ и DR₄; на средней вставке показан профиль DR₅, аппроксимированный гауссовой кривой

отсчитываются от перехода $1 \rightarrow 2'$, частота которого принята за нулевую. На рис. 3 спектры смещены по вертикали для удобства читателя. Несмотря на то, что для формирования DR достаточно было мощности 50 мкВт для пробного излучения, использовалась несколько бо́льшая мощность, чтобы формировались VSOP-резонансы, которые позволяли определять частотное положение МІ-переходов с номерами (Д и (5). Отметим, что, как показано в работе [19], интенсивность насыщения при использовании микроячеек (из-за столкновений атомов со стенками) на порядок выше, чем в сантиметровых ячейках.

Интересно сравнить полученные результаты с результатами работы [22], в которой исследовался процесс ЕІТ в Λ -системе атомов Cs с использованием обычных (не MI) атомных уровней. Пары атомов Cs содержались в ячейке толщиной L в интервале λ - 3λ , где $\lambda = 852$ нм. Так же, как и в настоящей работе, в спектрах пропускания для пробного излучения присутствовали VSOP-резонансы, а при наличии связывающего излучения формировались ЕІТ (DR)-резонансы на частотах VSOP-резонансов. Там же приведены теоретические кривые, которые содержат EIT (DR)-резонансы на частотах VSOP-резонансов, на которых отчетливо видно сужение спектральной ширины EIT (DR)-резонанса и увеличение пропускания (рис. 9 и рис. 10 в работе [22]). Отчетливо наблюдается увеличение поглощения справа и слева от DR-резонансов, как это имеет место в нашем случае для DR₅ на рис. 3. Минимальная ширина EIT (DR)-резонанса составила 4 МГц (рис. 3 в работе [22]), что меньше радиационной ширины γ_N уровня атома Cs $6P_{3/2}$, $\gamma_N/2\pi \approx 5.2$ МГц, в то время как спектральная ширина VSOP-резонанса больше γ_N .

На рис. 4 кривая (1) показывает экспериментальный спектр пропускания пробного излучения, содержащий темный резонанс DR₅ в продольном магнитном поле 900 Гс (конфигурация частот ν_P и ν_C такая же, как это показано на левой вставке рис. 2). Для демонстрации того, что сужение темного резонанса DR₅ происходит в результате когерентного процесса в Λ -системе, приведена кривая (2), кото-

Рис. 4. ⁸⁵Rb, D_2 -линия, B = 900 Гс, кривая (1) — спектр пропускания ν_P , содержащий DR₅, кривая (2) — спектр пропускания ν_P , содержащий усиленный VSOP_A-резонанс, когда используется лазер с частотой $\nu_{PUMP} = \nu_P$, кривая (3) — спектр пропускания ν_P , когда нет излучения ν_C , кривая (4) — расчетный спектр пропускания ν_P , кривая (5) реперный спектр ⁸⁷Rb при B = 0, переходы $1 \rightarrow 0', 1', 2'$. Левая верхняя вставка — профили DR₅, VSOP и VSOP_A и их спектральные ширины: 25, 45 и 95 МГц соответственно; правая — конфигурация частот ν_{PUMP} и ν_P для формирования усиленного VSOP_A-резонанса

рая показывает спектр пропускания пробного излучения, содержащий усиленный VSOP_A-резонанс, в случае, когда используется второй (в этом случае связывающее поле правильнее называть накачивающее поле) лазер с частотой ν_{PUMP} , равной частоте ν_P (конфигурация частот ν_{PUMP} и ν_P показана на правой вставке рис. 4). В этом случае происходит дополнительная оптическая накачка, излучением *v*_{PUMP} мощностью 15 мВт, которая переводит часть атомной населенности с уровня $|2, -2\rangle$ на уровень $F_q = 3$. Это обусловливает уменьшение поглощения с уровня $|2,-2\rangle$ и увеличение амплитуды $VSOP_A$ (amplified — усиленный). Оптическая накачка не является когерентным процессом, поэтому, наряду с увеличением амплитуды VSOP_A-резонанса, вместо его спектрального сужения (как это происходит в случае DR в А-системе [22]) происходит значительное спектральное уширение $VSOP_A$, обусловленное, в частности, лазерной интенсивностью (так называемое «полевое» уширение) [19]. На рис. 4 кривая (3) показывает спектр пропускания только пробного излучения: формируются VSOP-резонансы на частоте MI с номером (5) и с номерами 1 и 2 (см. диаграмму на рис. 1a). Кривая (4) показывает расчетный спектр пропускания только пробного излучения: наблюдается хорошее согласие расчетных амплитуд VSOP-резонансов и их частотных положений с экспериментальной кривой (3). На левой вставке приведены профили DR₅, VSOP и VSOP_A и их спектральные ширины 25, 45 и 95 МГц соответственно. Еще раз отметим, что в отличие от когерентного процесса ЕІТ, когда увеличение амплитуды DR происходит с уменьшением его спектральной ширины [22] (см. вставку на рис. 4), увеличение амплитуды VSOP_A-резонанса происходит с существенным увеличением его спектральной ширины. Кривая (5) показывает реперный спектр атома ⁸⁷Rb, переходы $1 \rightarrow 0', 1', 2'$.

На рис. 5 кривая (1) показывает экспериментальный спектр пропускания пробного излучения, содержащий темный резонанс DR₄ со спектральной шириной 20 МГц, при магнитном поле B = 1 кГс. На рис. 5 кривая (2) показывает спектр пропускания только пробного излучения. В этом случае регистрируются только VSOP-резонансы со спектральной шириной 30–40 МГц: отмечены VSOP-резонансы на переходах с номерами (4) и (5) и с номерами 1, 2, 3. Кривая (3) показывает расчетный спектр пропус-

Рис. 5. ⁸⁵Rb, D_2 -линия, B = 1 кГс, кривая (1) — спектр пропускания пробного излучения, содержащий темный резонанс DR₄, кривая (2) — спектр пропускания пробного излучения, когда нет излучения $\nu_{\rm C}$, кривая (3) — расчетный спектр пропускания пробного излучения, кривая (4) — реперный спектр ⁸⁷Rb, переходы $1 \rightarrow 0', 1', 2'$ при B = 0. Вставка профили резонансов DR₄ и VSOP, в их формировании участвует MI с номером 4, указанным в кружке

кания только пробного излучения: наблюдается хорошее согласие расчетных амплитуд и частотных положений VSOP-резонансов с экспериментальной кривой (2). При полях 1 кГс амплитуда VSOP под номером ④ в 1.5 раза меньше амплитуды VSOP под номером ⑤. На вставке рис. 5 приведены профили DR₄ и VSOP-резонанса. Амплитуда DR₄ в 8.5 раза больше амплитуды VSOP-резонанса, в то время как спектральная ширина DR₄ в 1.5 раза меньше, что характерно для когерентного процесса EIT [22]. Кривая (4) показывает реперный спектр атома ⁸⁷Rb.

4. ОБСУЖДЕНИЕ

Кратко напомним, что модификация вероятности атомного перехода в магнитном поле происходит из-за эффекта «перемешивания» магнитных подуровней: возмущение, индуцированное магнитным полем, связывает магнитные подуровни $m_F - m_{F'} =$ $= \Delta m_F = 0$ (штрихом отмечен магнитный подуровень другого, близкого по частоте, перехода); для этих переходов должны выполняться определенные правила отбора (пояснения показаны на рис. 5 в работе [10]). Формулы (1) и (2) для вероятности атомного перехода, приведенные в работе [8], при использовании $\Delta F = +2$ дают значительные величины для вероятности перехода для σ^+ -излучения и малые величины для σ^- -излучения. При использовании $\Delta F = -2$ ситуация прямо противоположная (важно отметить, что эти особенности подтверждаются и экспериментально [7,8]).

Несмотря на некоторую схожесть процессов когерентного пленения населенности (СРТ) и ЕІТ, которая заключается в том, что оба процесса приводят к увеличению пропускания паров атомов на частоте пробного излучения при наличии связывающего излучения, имеются и существенные различия [24–26]. Резонансы, которые формируются в результате процесса СРТ, называют DR (спектральная ширина которого может на многие порядки быть меньше по величине, чем радиационная ширина верхнего уровня Λ -системы), а резонанс, формируемый в результате процесса ЕІТ, называют ЕІТ-резонанс (спектральная ширина которого того же порядка по величине, что и радиационная ширина верхнего уровня

А-системы) [27, 28]. Различие в этих процессах особенно ярко проявляется в резонансной флуоресценции с верхнего уровня Л-системы, которая в случае СРТ может полностью отсутствовать (это объясняет название DR), в случае же ЕІТ из-за сильного связывающего излучения резонансная флуоресценция с верхнего уровня Л-системы не может быть нулевой. В настоящей статье реализован процесс EIT, который формируется в сильном связывающем поле (в отличие от процесса СРТ, где используется слабое связывающее поле), что приводит к расщеплению возбужденного уровня и просветлению на резонансной частоте [24]. С приведенным разъяснением механизма просветления на резонансной частоте называем регистрируемый нами резонанс DR (при этом понимая различие с DR, формируемым в СРТ). При сравнении DR с результатами аналогичных работ, в которых, однако, используется термин EIT-резонанс, мы пользуемся обозначением EIT (DR)-резонанс.

Для качественного описания процесса ЕІТ приведем формулу из работы [26]. Отношение поглощения $\alpha(\Omega_C)$ на частоте пробного излучения ν_P , на которой наблюдается DR (в присутствии излучения ν_C), к поглощению $\alpha(0)$ (когда излучения ν_C нет) в предположении малой интенсивности излучения ν_P и нулевых частотных расстройках описывается выражением

$$\frac{\alpha(\Omega_C)}{\alpha(0)} = \frac{K}{1 + \Omega_C^2 / 4\Gamma_{21}\gamma_N},\tag{1}$$

где K — константа, γ_N — радиационная ширина уровня, в нашем случае уровня атома ⁸⁵Rb, $5P_{3/2}, \gamma_N/2\pi \approx 6$ МГц, $\Delta\omega_D$ — доплеровская ширина, которая входит в константу K, Ω_C — частота Раби для излучения ν_C, Γ_{21} — скорость дефазировки когерентности двух нижних атомных уровней в Λ -системе (см. вставку на рис. 2), которая обусловлена, в частности, столкновениями атомов со стенками МЯ. Случай $\alpha(\Omega_C) = 0$ соответствует полному просветлению и большой величине амплитуды DR, которая, однако, уменьшается при возрастании величины Γ_{21} . Для ширины EIT (DR) приведем простое выражение [27, 28]:

$$\gamma_{DR} \simeq 2\Gamma_{21} + \Omega_C^2 / \gamma_N. \tag{2}$$

Кратко поясним ситуацию с выбором толщины ячейки $L = 2\lambda = 1.56$ мкм. Как показано в работе [20], при толщинах ячейки с парами атомов $L = n\lambda$ (где n — целое число) в спектре пропускания возникают VSOP-резонансы, демонстрирующие уменьшение поглощения (вплоть до n = 10), которые расположены точно на частоте атомных переходов. При формировании DR-резонанса на частоте атомных переходов оба резонанса «работают» на уменьшение поглощения. А при $L = (2n+1)\lambda/2$ VSOP-резонансы, которые также расположены точно на частоте атомных переходов, демонстрируют увеличение поглощения, и при формировании DR-резонанса на той же частоте оба резонанса «работают» в противоположном направлении (рис. 7 в работе [29]). Малая толщина ячейки позволяет использовать сильные постоянные магниты, у которых недостаток в том, что формируются сильно неоднородные магнитные поля и градиент вблизи поверхности магнита может достигать 100–150 Гс/мм, однако при малой толщине столба паров магнитное поле можно считать практически однородным. Малая толщина ячейки приводит к частым столкновениям атомов со стенками ячейки и увеличению Γ_{21} , как следствие, происходит ухудшение контраста DR (см. формулу (1)), а также уширение спектральной ширины DR (см. формулу (2)). Поэтому толщина $L = 2\lambda$ или 3λ оптимальна для формирования DR.

На приведенных выше рис. 3–5 DR формируется на частоте, которая совпадает с частотой VSOP-резонанса (для формирования DR_5 частота ν_C настроена точно на переход $|3, -2\rangle \rightarrow |4', -1'\rangle$), однако при наличии частотной расстройки частоты связывающего излучения ν_C от точного резонанса на $\Delta \sim$ $\sim 20\text{--}30~\mathrm{M}\Gamma$ ц DR формируется уже на смещенной частоте. Как показано в работе [17], в случае, когда используются микроячейки, спектральная ширина DR-резонанса возрастает, а контраст DR ухудшается (поскольку величина Γ_{21} возрастает), и при большой частотной расстройке $\Delta \approx 200 \ \mathrm{MGm}$ DR вовсе не формируется. Заметим, что ухудшение параметров DR даже при небольшом увеличении расстройки Δ частоты излучения ν_C от резонанса соответствующего атомного перехода проявляется только при использовании МЯ (в обычных ячейках сантиметровой длины такого эффекта нет). Влияние расстройки Δ на параметры DR тем сильнее, чем меньше толщина МЯ.

Как отмечалось выше, резонансы DR_5 и DR_4 формируются, только когда связывающее излучения ν_C имеет поляризацию σ^+ (излучение с поляризацией σ^+ также необходимо для формирования MI-переходов с номерами (4) и (5)), а при поляризации σ^- связывающего излучения ν_C DR имеет нулевую амплитуду. На рис. 6*a* в левой и правой частях приведены Λ -системы атома ⁸⁵Rb и возможные конфигурации для поляризации σ^+ и σ^- связывающего

Рис. 6. *a*) В левой и правой частях приведены Λ -системы атома ⁸⁵Rb и возможные конфигурации для поляризации σ^+ и σ^- связывающих излучений ν_{C5} и ν_{C4} для формирования DR₅ и DR₄ соответственно. DR₅ и DR₄ не формируются, когда излучения ν_{C5} и ν_{C4} имеют поляризацию σ^- . *б*) Зависимости от *B* вероятностей для переходов на частотах ν_{C5} и ν_{C4} при поляризации σ^+ — кривые 1 и 2 для DR₅ и DR₄ соответственно. Кривые 1' и 2' показывают зависимости от *B* вероятностей для переходов на частотах ν_{C5} и ν_{C4} при поляризации σ^- для DR₅ и DR₄ соответственно

излучения ν_{C5} и ν_{C4} для формирования DR₅ и DR₄ соответственно. На рис. 66 приведены вероятности для переходов на частотах ν_{C5} и ν_{C4} (для формирования DR₅ и DR₄ соответственно) с поляризациями σ^+ (кривые 1 и 2) и σ^- (кривые 1' и 2') для DR₅ и DR₄ соответственно в зависимости от магнитного поля. Как видно, вероятности переходов на частотах ν_{C5} и ν_{C4} при поляризации σ^+ (кривые 1 и 2) растут с возрастанием магнитного поля, а кривые 1' и 2', показывающие вероятности переходов на частотах ν_{C5} и ν_{C4} при поляризации σ^- , с возрастанием *В* стремятся к нулю, что подтверждает эксперимент по формированию DR.

Варьирование величины магнитного поля на представленных рис. 3–5 проведено с целью показать, что при увеличении магнитного поля амплитуда DR меняется слабо, в то время как при использовании обычных атомных переходов при увеличении магнитного поля до ~ 1000 Гс амплитуда EIT (DR)-резонанса, как правило, начинает быстро уменьшаться [30, 31]. Важно провести сравнение процесса ЕІТ и формирования DR с использованием обычных атомных уровней 85 Rb, D_2 -линии, реализованного в работе [30], с нашим случаем с использованием МІ-переходов. В работе [30] показано, что в продольном магнитном поле в спектре пропускания пробного излучения одновременно формируются пять DR-резонансов, которые расположены эквидистантно по частоте, однако амплитуды достаточно малы и их контраст составляет 1–2%. Интенсивность связывающего излучения составляет 350 мВт/см², что примерно в 2.5 раза больше, чем в работе [30]. Если предположить, что увеличение интенсивности связывающего излучения в работе [30] приведет к увеличению ЕІТ-резонанса в 2-3 раза, тем не менее различие в амплитудах с нашим случаем продолжает оставаться значительным. Что касается различия в величинах магнитного поля ~ 50 Гс в работе [30] и 770–1000 Гс в нашем случае, то мы провели теоретические расчеты для вероятности атомных переходов для пяти связывающих ν_C излучений, используемых в [30], в зависимости от величины магнитного поля. С увеличением магнитного поля B > 800 Гс вероятности для этих переходов начинают быстро уменьшаться (вероятности переходов для пяти пробных ν_P частот слабо меняются в интервале 200–1000 Гс). Частота Раби Ω_C пропорциональна произведению напряженности электрического поля ЕС и матричного элемента дипольного момента перехода на частоте ν_C [26]. Квадрат матричного элемента дипольного момента перехода на частоте ν_C определяет вероятность атомного перехода на частоте ν_C , поэтому уменьшение вероятности приводит к уменьшению Ω_C . Это означает, что приведенные на рис. 8b в работе [30] при 50 Гс амплитуды EIT-резонансов будут такими же малыми и при B > 800 Гс. Также одновременно пять маленьких EIT (DR)-резонансов формируются при использовании ⁸⁵Rb, *D*₁-линии, и магнитного поля $B \sim 1000 \ \Gamma c$ [31]. Следовательно, в таких сильных полях применение MI-переходов для процесса ЕІТ более предпочтительно, чем применение обычных атомных переходов ⁸⁵Rb. Таким образом, преимуществом использования МІ-переходов для формирования DR является наличие одного резонанса (т. е. возможность селективного использования одного МІ-перехода с номером (1)–(5)), а также почти в 10 раз большая амплитуда DR-резонанса. Дополнительного увеличения амплитуды DR можно достичь увеличением частоты Раби Ω_C , однако при этом, как видно из формулы (2), будет происходить дополнительное спектральное уширение.

Отметим, что в магнитном поле в спектре пропускания пробного излучения в парах атомов Cs, D_2 -линии, одновременно формируются семь EIT-резонансов, которые расположены эквидистантно по частоте, однако их амплитуды малы [17]. Ожидается, что использование МІ-переходов $F_g = 3 \rightarrow F_e =$ = 5 Cs, D_2 -линии, существенно улучшит параметры EIT-резонансов.

Вероятности МІ-переходов атомов щелочных металлов на D_2 -линии, сравнимые по величине и даже превышающие вероятности обычных атомных переходов, достигаются в интервале магнитный полей $0.1B_0 < B < 3B_0$, где $B_0 = A_{hfs}/\mu_B$, A_{hfs} — магнитная дипольная константа для основного уровня атома, μ_B — магнетон Бора [32, 33]. Для атома $^{85}{\rm Rb}$ величина $B_0(^{85}{\rm Rb}) = 0.7$ к
Гс, для атома $^{87}{\rm Rb}$ величина $B_0(^{87}{\rm Rb})=2.4$ кГс, для атома Cs величина $B_0(^{133}\text{Cs}) = 1.7$ кГс и для атома ³⁹К величина $B_0(^{39}\text{K}) = 165$ Гс. Максимальные вероятности МІ-переходов достигаются при магнитных полях $B \sim (0.3-0.4)B_0$. При $B \gg B_0$ начинается разрыв связи между полным угловым моментом электрона J и магнитным моментом ядра I и расщепление атомных уровней описывается проекциями m_J и m_I [32]. Это приводит к тому, что число регистрируемых атомных переходов щелочных металлов на D_2 -линии при использовании излучений σ^+ и σ^- сокращается до фиксированного числа (так называемый режим Пашена – Бака на сверхтонкой структуре (ПБС)) [10]. В режиме ПБС вероятности МІ-переходов атомов щелочных металлов на *D*₂-линиях практически равны нулю, следовательно, в режиме ПБС МІ-переходы отсутствуют.

5. ЗАКЛЮЧЕНИЕ

В работе продемонстрирована перспективность применения МІ-переходов ⁸⁵Rb, D_2 -линии, $F_g = 2 \rightarrow \rightarrow F_e = 4$ для формирования темных резонансов DR в процессе ЕІТ в сильных магнитных полях. Это обусловлено следующим: 1) вероятность МІ-перехода в интервале магнитных полей 0.2–1 кГс превосходит вероятность «обычного» атомного перехода, следовательно, целесообразно его использование для перехода на частоте связывающего или пробного лазерных излучений в Λ -системе; 2) продемонстрировано, что при $B \sim 1$ кГс DR-резонансы, фор-

мируемые с использованием МІ-переходов с номерами ④ и ⑤, имеют большой контраст и значительные частотные сдвиги (в несколько ГГц) относительно начального положения при нулевом магнитном поле. Это может быть использовано для формирования частотного репера и стабилизации частоты лазера на сильно смещенной частоте [12,13]. В работе [34] приведен простой метод определения стабильности частоты лазера с использованием DR.

Отмечено существенное преимущество формирования DR-резонансов при использовании MI-переходов вместо обычных атомных переходов 85 Rb, D_2 -линии, в частности, амплитуда DR при использовании MI значительно больше.

Экспериментально продемонстрировано, что для эффективного формирования DR пробное и связывающее излучения должны иметь ту же круговую поляризацию σ^+ ; в случае, когда связывающее излучение имеет поляризацию σ^- , DR не формируется. Это согласуется также с приведенными расчетными кривыми.

Следует отметить, что при использовании когерентно связанных излучений (пробного и связывающего), а также сантиметровой ячейки, заполненной парами Rb, возможно на несколько порядков уменьшить спектральную ширину DR [27, 28, 35]. В работе [36] продемонстрировано, что наличие буферного газа в сантиметровой ячейке с парами атомов Rb в магнитном поле приводит к исчезновению VSOP-резонансов (это может быть удобно в ряде случаев), но поскольку используются два когерентно не связанных излучения, ширина DR составляет 10 МГц, что всего в 2 раза у́же DR в нашем случае, когда используется микроячейка и столкновения атомов со стенками дополнительно уширяют DR.

Отметим, что МІ-переходы D_2 -линий Cs, K и Na также могут быть успешно применены для формирования DR/EIT-резонансов в процессе EIT/CPT. Недавно изготовленные стеклянные наноячейки [37,38], которые дешевле и проще в изготовлении, чем МЯ (из технического сапфира), сделают технику формирования и применения МІ-переходов, в частности для получения DR, доступной широкому кругу исследователей.

Благодарности. Авторы благодарят Г. Ахумяна за некоторые из приведенных расчетных кривых.

Финансирование. Исследование выполнено при финансовой поддержке Комитета по науке Министерства образования, науки, культуры и спорта Республики Армения в рамках научного проекта № 19YR-1C017.

ЛИТЕРАТУРА

- 1. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).
- P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, Phys. Rev. A 42, 2766 (1990).
- A. Sargsyan, A. Tonoyan, G. Hakhumyan, A. Papoyan, E. Mariotti, and D. Sarkisyan, Laser Phys. Lett. 11, 055701 (2014).
- S. Scotto, D. Ciampini, C. Rizzo, and E. Arimondo, Phys. Rev. A 92, 063810 (2015).
- S. Scotto, Rubidium Vapors in High Magnetic Fields, Atomic Physics [physics.atom-ph], Université Paul Sabatier, Toulouse III (2016).
- A. Sargsyan, E. Klinger, G. Hakhumyan, A. Tonoyan, A. Papoyan, C. Leroy, and D. Sarkisyan, J. Opt. Soc. Amer. B 34, 776 (2017).
- А. Саргсян, А. Тоноян, Г. Ахумян, Д. Саркисян, Письма в ЖЭТФ 106, 669 (2017).
- A. Tonoyan, A. Sargsyan, E. Klinger, G. Hakhumyan, C. Leroy, M. Auzinsh, A. Papoyan, and D. Sarkisyan, Europhys. Lett. **121**, 53001(2018).
- A. Sargsyan, A. Amiryan, A. Tonoyan, E. Klinger, and D. Sarkisyan, Phys. Lett. A 390, 127114 (2021).
- А. Саргсян, Б. Глушко, Д. Саркисян, ЖЭТФ 147, 668 (2015).
- **11**. Д. Саркисян, Г. Ахумян, А. Саргсян, ЖЭТФ **158**, 771 (2020).
- A. Sargsyan, A. Tonoyan, R. Mirzoyan, D. Sarkisyan, A. Wojciechowski, and W. Gawlik, Opt. Lett. 39, 2270 (2014).
- R. S. Mathew, F. Ponciano-Ojeda, J. Keaveney, D. J. Whiting, and I. G. Hughes, Opt. Lett. 43, 4204 (2018).
- V. V. Vassiliev, S. A. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006).
- V. V. Yashchuk, D. Budker, and J. R. Davis, Rev. Sci. Instrum. **71**, 341 (2000).
- A. Sargsyan, A. Tonoyan, A. Papoyan, and D. Sarkisyan, Opt. Lett. 44, 1391 (2019).
- A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, S. Cartaleva, and D. Sarkisyan, J. Mod. Opt. 62, 769 (2015).
- J. Keaveney, A. Sargsyan, U. Krohn, I. G. Hughes, D. Sarkisyan, and C. S. Adams, Phys. Rev. Lett. 108, 173601 (2012).

- 19. C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, Phys. Rev. A 76, 013837 (2007).
- A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, Appl. Phys. Lett. 93, 021119 (2008).
- A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett. 37, 1379 (2012).
- 22. A. Sargsyan, C. Leroy, Y. Pashayan-Leroy, D. Sarkisyan, D. Slavov, and S. Cartaleva, Opt. Comm. 285, 2090 (2012).
- 23. P. R. S. Carvalho, L. E. E. de Araujo, and J. W. R. Tabosa, Phys. Rev. A 70, 063818 (2004).
- 24. T. Zanon-Willette, E. De Clercq, and E. Arimondo, Phys. Rev. A 84, 062502 (2011).
- 25. S. Khan, M. P. Kumar, V. Bharti, and V. Natarajan, Eur. Phys. J. D 71, 38 (2017).
- 26. J. Gea Banacloche, Y. Q. Li, S. Z. Jin, and Min Xiao, Phys. Rev. A 51, 576 (1995).
- 27. R. Wynands and A. Nagel, Appl. Phys. B, Lasers Opt. 68, 1(1999).
- 28. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
- **29**. Д. Саркисян, А. Саргсян, Дж. Кевени, Ч. С. Адамс, ЖЭТФ **146**, 13 (2014).
- 30. S. Mitra, S. Dey, M. M. Hossain, P. N. Ghosh, and B. Ray, J. Phys. B: Atom. Mol. Opt. Phys. 46, 075002 (2013).
- 31. А. Саргсян, Р. Мирзоян, Д. Саркисян, Письма в ЖЭТФ 96, 333 (2012).
- 32. B. A. Olsen, B. Patton, Y. Y. Jau, and W. Happer, Phys. Rev. A 84, 063410 (2011).
- 33. M. Zentile, J. Keaveney, L. Weller, D. J. Whiting, C. S. Adams, and I. G. Hughes, Comput. Phys. Commun. 189, 162 (2015).
- 34. A. Sargsyan, A. V. Papoyan, D. Sarkisyan, and A. Weis, Appl. Phys. 48, 20701 (2009).
- 35. L. Ma and G. Raithel, J. Phys. Commun. 4, 095020 (2020).
- 36. H. Cheng, H.-M. Wang, S.-S. Zhang, P.-P. Xin, J. Luo, and H.-P. Liu, J. Phys. B: Atom. Mol. Opt. Phys. 50, 095401(2017).
- 37. T. Peyrot, C. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett. 44, 1940 (2019).
- 38. T. F. Cutler, W. J. Hamlyn, J. Renger, K. A. Whittaker, D. Pizzey, I. G. Hughes, V. Sandoghdar, and C. S. Adams, Phys. Rev. Appl. 14, 034054 (2020).