МАГНИТОПОЛЕВАЯ ЭВОЛЮЦИЯ ЛИНЕЙНОЙ И НЕЛИНЕЙНОЙ ПРОВОДИМОСТИ В ПЕРФОРИРОВАННЫХ ПЛЕНКАХ TiN

А. Ю. Миронов^{а,b*}, С. В. Постолова^а, Д. А. Насимов^а

^а Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^b Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 11 декабря 2019 г., после переработки 14 января 2020 г. Принята к публикации 30 января 2020 г.

Представлены результаты экспериментального исследования низкотемпературного линейного и нелинейного транспорта в наноперфорированных пленках нитрида титана. Показано, что в данной системе возникает бозе-металлическое состояние при низких температурах, переходящее в металлическое в магнитном поле. Обнаружены осцилляции линейного и дифференциального магнитосопротивления. Получены свидетельства наблюдения индуцированного постоянным током перехода вихревого изолятора Мотта в металлическое состояние.

DOI: 10.31857/S0044451020080106

1. ВВЕДЕНИЕ

Известно, что в наноструктурированных системах, таких как регулярные решетки сверхпроводящих островков на несверхпроводящей подложке или регулярные решетки отверстий в сверхпроводящей пленке, наблюдаются осцилляции в зависимостях сопротивления от магнитного поля B с периодом B_0 , соответствующим кванту магнитного потока h/2eна площадь ячейки [1-5]. В работе [6] было обнаружено, что пропускание постоянного тока через двумерную сетку джозефсоновских переходов приводит к кардинальному изменению вида осцилляций дифференциального магнитосопротивления dV/dI(f) минимумы при дробном числе квантов магнитного потока $f = B/B_0$ на ячейку сменяются максимумами при достижении некоторого порогового тока, что соответствовало осциллирующему поведению критического тока в магнитном поле. Недавно аналогичное поведение dV/dI(f) было обнаружено в квадратных решетках сверхпроводящих островков Nb на золотой подложке [7,8]. Авторы показали изменение минимумов на максимумы с изменением тока не только при дробном f, но также и при целых значениях f. Такое поведение системы авторы [7,8] связывают с динамическим переходом вихревой решетки из состояния вихревого моттовского изолятора в металлическое, т. е. состояние вихревой жидкости. Как показано в работе [9], в вихревом изоляторе Мотта вид дифференциального сопротивления dV/dI свидетельствует о плотности состояний вихрей, т.е. наблюдается провал при I = 0, который при переходе в металлическое состояние при увеличении *I* превращается в пик. Аналогично, в электронном изоляторе Мотта плотность состояний электронов определяется из дифференциальной проводимости dI/dV [10], при этом в изолирующем состоянии плотность состояний имеет провал при V = 0, который при переходе в металлическое состояние при увеличении V превращается в пик.

2. МЕТОДИКА ЭКСПЕРИМЕНТА И ОБРАЗЦЫ

В данной работе представлены результаты экспериментального исследования линейного и нелинейного магнитотранспорта в наноструктурированных сверхпроводящих разупорядоченных пленках. В качестве базового материала выступала сверхпроводящая пленка TiN толщиной 5 нм, выращенная методом атомарно-слоевого осаждения при температу-

^{*} E-mail: mironov@isp.nsc.ru

Рис. 1. Изображение участка перфорированной пленки в высокоразрешающем электронном микроскопе. Период перфорации составлял 80 нм, диаметр отверстий 30 нм

ре 350 °C. Интерес к пленкам именно нитрида титана вызван обнаружением в таких пленках перехода сверхпроводник-изолятор как при изменении сопротивления системы в нормальном состоянии, так и во внешнем магнитном поле [11, 12]. Образец представлял собой мезаструктуру в виде холловского мостика с набором потенциометрических контактов, позволяющих измерять разные участки мостика. На одном из таких участков с помощью электронной литографии и последующего плазмохимического травления была сформирована наноструктура, представляющая собой квадратную решетку отверстий диаметром 30 нм с периодом 80 нм (см. рис. 1). Низкотемпературные эксперименты проводились в криостате растворения ³He/⁴He. Исследования вольт-амперных зависимостей проводились по стандартной четырехточечной схеме на постоянном токе, сопротивление в линейном режиме измерялось по стандартной четырехточечной схеме на переменном токе I низкой частоты $f \approx 3.33$ Гц.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Линейный транспорт

На рис. 2 представлены результаты низкотемпературного исследования линейных транспортных свойств перфорированной пленки TiN. При понижении температуры сначала наблюдается рост сопротивления, далее сопротивление достигает мак-

Рис. 2. Результаты низкотемпературного исследования линейных транспортных свойств перфорированной пленки TiN: a — температурная зависимость сопротивления исходной и перфорированной пленок, δ — магнитополевые зависимости сопротивления, e — скейлинговое представление магнитополевых зависимостей проводимости G = 1/R в единицах e^2/h при различных температурах. Линейный наклон, величина которого не зависит от температуры, соответствует полю $B^* = 7.6$ Тл и коэффициенту $\beta \approx 2e^2/h$

симума и затем быстро уменьшается в 30 раз (см. рис. 2a). Такое поведение указывает на формирование системы сверхпроводящих островков, связанных слабыми связями. Максимальная скорость уменьшения сопротивления $(dR/dT = \max)$ достигается при T = 0.86 K, что близко к критической температуре исходной пленки ($T_c = 1$ K). Обращает на себя внимание насыщение сопротивления, что указывает на образование некоего металлоподобного состояния с куперовскими парами. Такое состояние можно назвать бозе-металлическим состоянием, впервые предсказанным в работе [13] и подробно описанным в работах [14, 15]. Заметим, что обычно появление состояния с конечным сопротивлением ниже критической температуры сверхпроводящего перехода в сплошных или перфорированных пленках является предвестником магнитоиндуцированного перехода сверхпроводник-изолятор [16, 17].

Проанализируем поведение исследуемой нами системы в магнитном поле. Увеличение магнитного поля сначала приводит к появлению осцилляций сопротивления, затем к быстрому увеличению сопротивления, далее сопротивление достигает максимума и затем начинает уменьшаться (см. рис. 2*б*). Увеличение проводимости в сильных магнитных полях хорошо описывается выражением

$$G(T, B) = 1/R_{sat}(T) - \beta(T) \exp(-B/B^*),$$
 (1)

где $B^* = 7.6$ Тл, коэффициент $\beta(T) = (1.8 \div 2.3)e^2/h$, $R_{sat}(T) = 16 \div 22$ кОм. На рис. 26 этот факт проявляется в виде линеаризации экспериментальных магнитополевых зависимостей проводимости в скейлинговых координатах ($\ln(1/R_{sat} - G)$ в зависимости от магнитного поля). Впервые данное выражение было предложено для описания разрушения сильным магнитным полем магнитоиндуцированного изолирующего состояния в работе [18]. Полученные нами коэффициенты B^*
и $\beta(T)$ близки к коэффициентам в работе [18]. В то же время температурные зависимости сопротивления не являются экспоненциальными функциями от T^{-x} , характерными для изоляторов с активационным (x = 1) или прыжковым типом проводимости (x = 1/2, 1/4), что указывает на металлический характер проводимости в магнитном поле, см. рис. 3. Таким образом, ни наблюдение бозе-металлического состояния в перфорированных пленках, ни насыщение магнитосопротивления в сильных магнитных полях в таких системах не могут однозначно свидетельствовать о формировании изолирующего состояния.

В слабом магнитном поле наблюдаются осцилляции магнитосопротивления с периодом $B_0 =$ = 0.32 Тл, соответствующим кванту магнитного потока на квадратную ячейку со стороной 80 нм (см. рис. 4). При увеличении температуры от минимальной достигнутой в экспериментах температуры $T_{min} = 0.1$ К амплитуда осцилляций монотонно уменьшается и при температурах свыше 0.75 К осцилляции магнитосопротивления исчезают. Аналогичное поведение ранее наблюдалось в наноструктурированных системах с периодом структурирования 200 нм на основе таких же пленок [19, 20] и. по-видимому, связано с близостью данных систем к переходу сверхпроводник-изолятор по беспорядку. Наиболее ярко выраженным является первый период осцилляций, второй период выражен значительно слабее, третий практически не различим. Таким образом, можно утверждать, что в магнитных полях свыше 0.4 Тл осцилляции магнитосопротивления быстро подавляются, что совпадает с результатами исследований 200-нанометровых периодических структур [19,20].

Рис. 3. Температурные зависимости сопротивления в магнитных полях B = 0-12 Тл: a — логарифмическое представление сопротивления в зависимости от T^{-1} , δ — логарифмическое представление сопротивления в зависимости от $T^{-1/2}$, e — логарифмическое представление сопротивления в зависимости от $T^{-1/2}$, e — логарифмическое представление сопротивления в зависимости от $T^{-1/4}$

Рис. 4. Результаты низкотемпературного исследования линейных транспортных свойств перфорированной пленки TiN: a — температурная зависимость сопротивления. Символами обозначены значения R(B = 0) с зависимостей R(B) при различных температурах панели 6; 6 — зависимости сопротивления от параметра фрустрации $f = B/B_0$, $B_0 = 0.32$ Тл соответствует кванту магнитного потока на квадратную ячейку. Все зависимости сдвинуты по оси сопротивлений для удобства отображения

3.2. Нелинейный транспорт

Результаты исследования нелинейных магнитотранспортных свойств представлены на рис. 5. При малых значениях постоянного тока поведение дифференциального магнитосопротивления аналогично поведению линейного магнитосопротивления — наблюдаются осцилляции дифференциального сопротивления с минимумами при целых и полуцелых значениях кванта магнитного потока на ячейку. При увеличении значения постоянного тока сначала происходит увеличение амплитуды осцилляций, аналогичное увеличению амплитуды при увеличении температуры. Далее картина разительно изменяется: локальный минимум дифференциального магнитосопротивления при $B = B_0$ превращается в локальный максимум. Величина этого локального максимума быстро растет с увеличением значения тока, достигает максимума и начинает уменьшаться. Одновременно с этим при дальнейшем увеличении тока локальный минимум дифференциального сопротивления при B = 0 также превращается в максимум. Последующее увеличение постоянного тока приводит к подавлению всех локальных максимумов, и ос-

Рис. 5. Результаты низкотемпературного исследования нелинейных транспортных свойств перфорированной пленки TiN: a — зависимость дифференциального сопротивления от параметра фрустрации $f = B/B_0$, $B_0 = 0.32$ Tл соответствует кванту магнитного потока на квадратную ячейку. Изменению цвета соответствует изменение тока от 0 до 500 нА; δ — те же данные в трехмерном представлении

цилляции дифференциального магнитосопротивления исчезают. Аналогичное поведение дифференциального сопротивления ранее наблюдалось в квадратных решетках островков ниобия на золотой подложке [7,8]. Однако в наших системах не обнаружено скейлингового поведения, показанного авторами работ [7,8].

4. ЗАКЛЮЧЕНИЕ

При исследовании низкотемпературного транспорта в перфорированных пленках TiN толщиной 5 нм обнаружено металлоподобное состояние с куперовским спариванием (бозе-металлическое), которое возникает ниже критической температуры сверхпроводящего перехода. Показано, что в данной системе бозе-металлическое состояние переходит в металлическое в магнитном поле. Обнаружены осцилляции линейного и дифференциального магнитосопротивления с периодом, соответствующим кванту магнитного потока на квадратную ячейку. Показано, что минимумы дифференциального магнитосопротивления в магнитном поле, соответствующем целому числу квантов магнитного потока на ячейку, переходят в максимумы при увеличении протекающего через образец тока. Такое поведение свидетельствует об осуществлении перехода вихревого изолятора Мотта в металлическое состояние.

Финансирование. Работа выполнена при финансовой поддержке гранта президента РФ MK-5455.2018.2.

ЛИТЕРАТУРА

- A. T. Fiory, A. F. Hebard, and S. Somekh, Appl. Phys. Lett. **32**, 73 (1978).
- M. Tinkham, D. W. Abraham, and C. J. Lobb, Phys. Rev. B 28, 6578 (1983).
- H. S. J. van der Zant, M. N. Webster, J. Romijn, and J. E. Mooij, Phys. Rev. B 50, 340 (1994).
- T. I. Baturina, Yu. A. Tsaplin, A. E. Plotnikov, and M. R. Baklanov, Physica B **378–380C**, 1058 (2006).
- I. Sochnikov, A. Shaulov, Y. Yeshurun et al., Nature Nanotech. 5, 516 (2010).
- S. P. Benz, M. S. Rzchowski, M. Tinkham, and C. J. Lobb, Phys. Rev. B 42, 6165 (1990).
- N. Poccia, T. I. Baturina, F. Coneri et al., Science 349, 1202 (2015).
- M. Lankhorst, N. Poccia, M. P. Stehno, A. Galda, H. Barman, F. Coneri, H. Hilgenkamp, A. Brinkman,

A. Golubov, V. Tripathi, T. I. Baturina, and
V. M. Vinokur, Phys. Rev. B 97, 020504(R) (2018).

- D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48, 13060 (1993).
- 10. V. V. Deshpande et al., Science 323, 106 (2009).
- М. В. Бурдастых, С. В. Постолова, Т. И. Батурина, Т. Пролие, В. М. Винокур, А. Ю. Миронов, Письма в ЖЭТФ 106, 712 (2017).
- A. Yu. Mironov, D. M. Silevitch, T. Proslier, S. V. Postolova, M. V. Burdastyh, A. K. Gutakovskii, T. F. Rosenbaum, V. M. Vinokur, and T. I. Baturina, Sci. Rep. 8, 4082 (2018).
- M. C. Diamantini, P. Sodano, and C. A. Trugenberger, Nuclear Physics B 474, 641 (1996).
- 14. M. C. Diamantini, C. A. Trugenberger, I. Lukyanchuk, and V. M. Vinokur, arXiv:1710.10575 (2018).
- C. Yang et al., Science 10.1126/science.aax5798 (2019).
- 16. M. C. Diamantini, A. Yu. Mironov, S. V. Postolova, X. Liu, Z. Hao, D. M. Silevitch, Ya. Kopelevich, P. Kim, C. A. Trugenberger, and V. M. Vinokur, arXiv:1906.07969 (2019).
- G. Kopnov, O. Cohen, M. Ovadia, K. Hong Lee, C. C. Wong, and D. Shahar Phys. Rev. Lett. 109, 167002 (2012).
- 18. T. I. Baturina, C. Strunk, M. R. Baklanov, and A. Satta, Phys. Rev. Lett. 98, 127003 (2007).
- A. Yu. Mironov, T. I. Baturina, V. M. Vinokur, S. V. Postolova, P. N. Kropotin, M. R. Baklanov, D. A. Nasimov, and A. V. Latyshev, Physica C 470, S808 (2010).
- 20. R. Córdoba, T. I. Baturina, J. SesCé, A. Yu. Mironov, J. M. De Teresa, M. R. Ibarra, D. A. Nasimov, A. K. Gutakovskii, A. V. Latyshev, I. GuillamCón, H. Suderow, S. Viera, M. R. Baklanov, J. J. Palacios, and V. M. Vinokur, Nature Commun. 4, 1437 (2013).