— БИОХИМИЯ —

УЛК 597.574.32

ТИРЕОИДНЫЕ И ПОЛОВЫЕ СТЕРОИДНЫЕ ГОРМОНЫ У НЕПОЛОВОЗРЕЛОЙ И РАНОСОЗРЕВАЮЩЕЙ КУМЖИ Salmo trutta

© 2023 г. Е. В. Ганжа*, @, Е. Д. Павлов*, М. А. Ручьёв*, **, Д. С. Павлов*

*Институт проблем экологии и эволюции им. А.Н. Северцова РАН, Ленинский просп., 33, Москва, 119071 Россия **Карельский научный центр РАН, ул. Пушкинская, 11, Петрозаводск, 185910 Россия

[®]E-mail: evganzha@gmail.com Поступила в редакцию 06.07.2022 г. После доработки 08.07.2022 г. Принята к публикации 08.07.2022 г.

Определено содержание тиреоидных и половых стероидных гормонов в крови у неполовозрелой и половозрелой кумжи $Salmo\ trutta$ на завершающем этапе формирования раносозревающих особей (возраст 1+, 2+) в популяции. В р. Алатсоя (Карелия) период формирования раносозревающих самцов в разные годы различается, рыбы могут достигать половой зрелости в возрасте 1+ или в 2+. Неполовозрелая и половозрелая кумжа в возрасте 1+ и 2+ не различается по содержанию свободного и общего трийодтиронина и свободного тироксина. Неполовозрелые самки и самцы в возрасте 1+ и 2+ также не различаются по уровню половых стероидных гормонов. В отличие от неполовозрелой кумжи раносозревающие самцы в возрасте 2+ характеризуются повышенным содержанием тестостерона и пониженным уровнем эстрадиола- 17β в крови. Установлено, что завершающий этап формирования раносозревающих особей в популяции характеризуется слабым вовлечением щитовидной железы в процесс созревания самцов и значительным снижением (в 4 раза) скорости превращения тестостерона в эстрадиол- 17β в их крови. Указанное превращение у всех исследованных самок и самцов кумжи связано с их длиной тела — скорость образования эстрадиола- 17β у рыб повышается по мере увеличения длины тела.

Ключевые слова: кумжа *Salmo trutta*, тиреоидные гормоны, половые стероидные гормоны, половое созревание, раносозревающие рыбы, жизненная стратегия

DOI: 10.31857/S1026347023010055, **EDN:** IKREAO

Различия в сроках достижения половой зрелости рыб определяются комплексом экзогенных факторов и способностью вида адаптироваться в динамических условиях среды. Кумжа Salmo trutta, обычно достигающая половой зрелости к 3—4 годам (Hart, 1973; Христофоров, Мурза, 1990), может созревать и раньше этого срока. Этот вид обитает как в крупных, так и малых реках, характеризующихся разнообразным гидрологическим режимом и химическим составом воды (Кузищин, 1997; Jonsson et al., 2001; Шустов и др., 2013; Huusko et al., 2018; Павлов и др., 2021). При благоприятных условиях обитания, сопряжённых с быстром ростом, кумжа в Фенноскандии может достигнуть половой зрелости уже в возрасте 1+...2+ (Мурза, Христофоров, 1984; Кузищин, 1997, 2010; Пономарева и др., 2006; Huusko et al., 2018; Павлов Д.С. и др., 2019; Павлов Е.Д. и др., 2020). Ответом особи на изменение факторов среды является модификация её эндокринной регуляции, которая, в свою очередь, влияет на сроки достижения половой зрелости. Тиреоидные гормоны у рыб в онтогенезе регулируют энергетический обмен в организме и через гормон роста участвуют в ростовых процессах (Суг, Eales, 1996; Dolomatov *et al.*, 2013; Deal, Volkoff, 2020), а половые стероидные гормоны участвуют в развитии репродуктивной системы (Amenyogbe *et al.*, 2020; Tenugu *et al.*, 2021). Количественное содержание указанных гормонов в крови может отражать те изменения, которые наблюдаются у молоди при формировании траектории развития, связанной с ранним созреванием.

Популяции кумжи в малых реках Карелии малочисленны, а доля раносозревающих особей, как правило, невелика. В р. Алатсоя раносозревающие самцы встречаются чаще, чем в популяциях других малых рек Карелии (Павлов Д.С. и др., 2019; Павлов Е.Д. и др., 2020). Достаточность выборки по раносозревающим самцам в р. Алатсоя позволяет оценить гормональные изменения, возникающие у рыб при ускоренном половом созревании. Мы не обнаружили информации о том, как соотносятся разные сроки созревания с уровнем тиреоидных и половых стероидных гормонов в популяции кумжи.

Цель работы — сравнить содержание тиреоидных и половых стероидных гормонов у поло-

возрелой и неполовозрелой кумжи в возрасте 1+ и 2+.

МАТЕРИАЛЫ И МЕТОДЫ

Работа проведена на рыбах, отловленных в реке Алатсоя, относящейся к бассейну Ладожского озера. Длина реки составляет 14 км, а ее истоком является оз. Алатунлампи (http://textual.ru/gvr). Река впадает в р. Янисйоки, на которой выше и ниже места впадения расположены две плотины. Нижняя плотина блокирует возврат половозрелой кумжи из Ладожского озера на нерест в р. Алатсоя, а верхняя — блокирует миграцию кумжи на нагул в оз. Янисъярви. В реках бассейнов Ладожского озера, включая Алатсоя, часть молоди кумжи смолтифицируется, выбирая проходную жизненную стратегию (Павлов Д.С. и др., 2019). Смолтификация и покатная миграция кумжи в северной части ареала, как правило, происходит в апреле-мае (Rasmussen, 1986; Bohlin et al., 1994). Период проведения работ был выбран такой, когда смолты (под термином "смолт" понимается особь, совершающая покатные миграции независимо от конечного пункта этих миграций – река, озеро, море (Jones et al., 2015; Huusko et al., 2018; Ferguson et al., 2019)) кумжи в исследованных реках отсутствуют.

Неполовозрелых особей и раносозревающих самцов кумжи отлавливали электроловом Fa-2 (Норвегия) (разрешение № 115 от 4 июля 2019 г.) с 10:00 по 12:00 в течение 2-х дней (29 и 30 августа 2019 г.). В прилове также присутствовали сеголетки (0+) и производители кумжи старшего возраста (≥3). Таких рыб возвращали обратно в реку. В течение часа после поимки годовиков и двухлеток кумжи перевозили в лабораторию в аэрируемом баке, объемом 100 л (плотность посадки ≤300 экз./м³). Перевозку осуществляли в воде из реки, в которой отлавливали рыб.

В течение 3-х ч после поимки (с 13:00 по 16:00) у рыб прижизненно отбирали кровь из хвостовой вены за анальным плавником шприцом объёмом 1 мл. Объем пробы в зависимости от размера особи варьировал от 50 до 150 мкл. Затем кровь отстаивали при комнатной температуре в течение 40-60 мин, полученную сыворотку центрифугировали 5 мин при 2000 об/мин. Сыворотку в индивидуальных пробирках этикетировали и замораживали при – 18°С. При определении концентрации гормонов сыворотку размораживали и разбавляли в 5 раз фосфатным буферным раствором (0.01 М, рН 7.4) ("Sigma-Aldrich", ФРГ). Методом иммуноферментного анализа (ИФА) с использованием тестнаборов производства DRG (ФРГ) на приборе Mindray MR 96A (KHP) в разбавленной сыворотке (индивидуальная проба) определяли концентрации общих тестостерона и эстрадиола-17В, обще-

го трийодтиронина (Т₃) и свободных трийодтиронина (FT₃) тироксина (FT₄), не связанных с белками сыворотки крови. Большая часть Т3 и Т4 в крови связана с белками сыворотки, а оставшаяся доля (<1%), т.е. FT_3 и FT_4 — являются биологически активными фракциями гормонов. При этом концентрация FT₄ является наиболее объективным критерием оценки функциональной активности щитовидной железы (Dolomatov et al., 2013). Именно поэтому мы взяли за основу определение концентраций свободных фракций тиреоидных гормонов. Рассчитывали показатель Тѕ/Е (Ганжа, Павлов, 2019) и долю FT_3 относительно T_3 (FT_3/T_3) (Eales, Shostak, 1985). Каждую пробу сыворотки крови исследовали на содержание каждого гормона в 2-х повторностях. Сравнительный анализ концентраций гормонов в сыворотке крови рыб, относящихся к разным экспериментальным группам, выполнен по абсолютным значениям.

После отбора крови у рыб измеряли стандартную длину (L) и массу тела (W), определяли пол (по морфологическому строению и цвету половых желёз при вскрытии). У неполовозрелых рыб яичники имели желтоватый цвет и утолщение в краниальной и медиальной части; семенники имели вид тонких полупрозрачных или сероватых тяжей без утолщений. Принадлежность к раносозревающим самцам определяли по размеру и цвету гонад. У неполовозрелых рыб в возрасте 1+ и 2+ яичники и семенники находились на II стадии зрелости. У раносозревающих самцов семенники были крупнее, имели выраженный беловатый цвет и находились на IV стадии зрелости. Гистологический анализ показал, что в семенниках раносозревающей кумжи присутствуют немногочисленные сперматозоиды, которые располагаются в просветах семенных канальцев, формирующихся между цистами с половыми клетками более раннего состояния (сперматоцитами и сперматидами). Раносозревающие самки не обнаружены, то есть весь материал по раносозревающим особям представлен самцами.

Для определения возраста кумжи отбирали несколько десятков чешуй выше боковой линии между задним краем спинного плавника и началом анального (Кузищин и др., 1999). Возраст определяли по числу годовых колец на чешуе с цельной центральной зоной, не имеющей признаков регенерации и повреждения (Чугунова, 1959). У каждой особи просматривали ≥10 чешуй.

Статистическая обработка материала выполнена по индивидуальным значениям с использованием *t*-критерия Стьюдента, *U*-критерия Манна—Уитни, корреляции Спирмена. Нормальность распределения выборок оценивали по одновыборочному критерию Колмогорова-Смирнова.

Пол. возраст L. cm W, Γ *n*, экз. Неполовозрелые 12.6 ± 0.20 20.0 ± 1.03 Q, 1+ 22 11.1-14.3 13.9 - 29.9 12.5 ± 0.20 19.5 ± 0.91 17 ♂, 1+ 11.7-25.4 10.8 - 13.6 17.1 ± 0.26 50.4 ± 2.52 21 9.2+14.8 - 20.831.3-89.4 17.2 ± 0.50 51.8 ± 4.77 ♂, 2+ 4 15.8-18.2 37.5-57.5 Половозрелые 12.9 22.0 p. ♂, 1+ 1 17.4 ± 0.35 60.2 ± 4.26 11 p. ♂, 2+

Таблица 1. Длина (L) и масса (W) тела кумжи р. Алатсоя в возрасте 1+ и 2+

15.6-19.8

Примечание. Здесь и далее над чертой — $M \pm m$, под чертой — min—max, n— число особей в группе; р. δ — раносозревающие сампы.

40.5-88.9

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Характеристика исследованных рыб. Были отловлены неполовозрелые самки и самцы кумжи в возрасте 1+ и 2+ и раносозревающие самцы тех же возрастных групп (табл. 1). Самок в возрасте 1+ и 2+ было несколько больше, чем самцов. Пойман только один раносозревающий самец в возрасте 1+. Половозрелые раносозревающие самцы составляли 73% самцов в возрасте 2+. Половой диморфизм по длине и массе тела у рыб одного и того же возраста не выявлен (t-критерий Стьюдента: p > 0.05).

Содержание тиреоидных и половых стероидных гормонов. U-критерий Манна-Уитни показал, что уровень тиреоидных гормонов (T_3 , FT_3 , FT_4 ,) и доля свободного трийодтиронина от его общей фракции (FT_3/T_3) не связаны (p > 0.05) с возрастом и полом исследованных рыб. Эти показатели у кумжи незначительно меняются у годовиков и двухлеток, отловленных в конце лета (табл. 2).

Концентрация половых стероидных гормонов у неполовозрелых особей (самки в возрасте 1+ и 2+, самцы в возрасте 1+), остается на близком уровне (рис. 1). У раносозревающих самцов по сравнению с остальными особями уровень тестостерона повышается почти в 2.5 раза, а эстрадиола- 17β , напротив, в два раза снижается. Из-за количественных изменений концентраций половых стероидных гормонов у раносозревающих самцов величина Ts/E возрастает в \sim 4 раза.

Уровень тестостерона у одного раносозревающего самца в возрасте 1+ составлял 3.4 нг/мл. У четырех неполовозрелых самцов в возрасте 2+ средние значения концентраций Тs составляли

 6.5 ± 1.85 (4.1—11.9) нг/мл, E — 0.46 ± 0.023 (0.40—0.51) нг/мл, а показателя Ts/E — 14.9 ± 5.13 (8.1—30.1).

Корреляционный анализ показал, что у самок и самцов кумжи в возрасте 1+ и 2+ наблюдается отрицательная связь величины показателя Ts/E от длины тела рыб $-r_s$ варьирует в пределах от -0.64 до -0.88. Максимальная зависимость выявлена у раносозревающих самцов в возрасте 2+, а минимальная - у самок того же возраста.

У самок и самцов неполовозрелой кумжи в возрасте 1+ и 2+ обнаружена корреляционная связь концентраций тестостерона с эстрадиолом- 17β (табл. 3). У раносозревающих самцов она не выявлена. В возрасте 1+ как у неполовозрелых у самок, так и у самцов наблюдается связь концентраций половых стероидных и тиреоидных гормонов. При этом у самок содержание половых стероидных гормонов связано с общим трийодтиронином, а у самцов — с его свободной формой. В возрасте 2+ у неполовозрелых самок выявлена связь этих гормонов со свободным трийодтиронином, а у раносозревающих самцов таких зависимостей не обнаружено (p > 0.05).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты свидетельствуют, что самцы кумжи в р. Алатсоя в 2019 г. преимущественно (73%) созревали в возрасте 2+. Обнаружен только один самец, созревший в возрасте 1+ (5.5%). Ранее в 2015 г. к возрасту 1+ созревали 38% самцов, а в возрасте 2+ не было поймано ни одного самца. Следовательно, у кумжи р. Алатсоя сроки достижения половой зрелости год от года в

Таблица 2. Содержание тиреоидных гормонов и их соотношение у самок и самцов кумжи *Salmo trutta* в возрасте 1+ и 2+ из р. Алатсоя

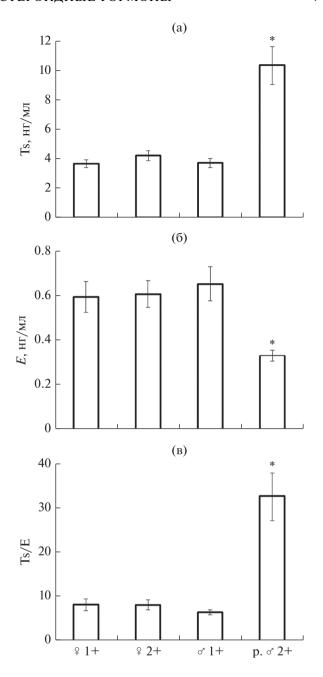
Пол, возраст	Т ₃ , нг/мл	FT ₃ , пг/мл	FT ₄ , нг/дл	FT ₃ /T ₃ , %				
Неполовозрелые								
9,1+	$\frac{11.1 \pm 0.94}{5.4 - 26.2}$	$\frac{7.9 \pm 0.46}{3.2 - 12.7}$	$\frac{0.98 \pm 0.140}{0.35 - 1.57}$	$\frac{0.09 \pm 0.012}{0.03 - 0.24}$				
♂,1+	$\frac{11.1 \pm 0.87}{6.4 - 19.5}$	$\frac{8.8 \pm 0.57}{4.5 - 14.9}$	$\frac{1.01 \pm 0.152}{0.20 - 1.82}$	$\frac{0.09 \pm 0.010}{0.03 - 0.18}$				
♀, 2+	$\frac{10.4 \pm 0.86}{4.5 - 15.7}$	$\frac{9.3 \pm 0.86}{4.5 - 15.7}$	$\frac{0.82 \pm 0.100}{0.27 - 1.60}$	$\frac{0.09 \pm 0.008}{0.05 - 0.14}$				
♂,2+	$\frac{9.4 \pm 2.27}{5.3 - 13.1}$	$\frac{10.6 \pm 1.65}{7.6 - 15.2}$	$\frac{0.35 \pm 0.05}{0.24 - 0.47}$	0.08				
Половозрелые								
p. 3, 1+	10.4	7.7	1.30	0.07				
p. &, 2+	$\frac{11.5 \pm 2.40}{8.2 - 25.8}$	$\frac{10.5 \pm 1.05}{7.5 - 16.9}$	$\frac{0.86 \pm 0.113}{0.36 - 1.29}$	$\frac{0.10 \pm 0.014}{0.04 - 0.14}$				

Примечание. Здесь и далее T_3 — трийодтиронин, FT_3 — свободный трийодтиронин, FT_4 — свободный тироксин, FT_3/T_3 — доля свободного от общего трийодтиронина.

Таблица 3. Корреляционная связь концентраций половых стероидных и тиреоидных гормонов у кумжи *Salmo trutta* в возрасте 1+ и 2+ из р. Алатсоя

	φ, 1+		₫, 1+		♀, 2+	
•	Ts	T ₃	Ts	FT ₃	Ts	FT ₃
Ts		0.60 (0.004)		0.51 (0.024)		0.58 (<0.001)
E	0.60 (0.004)	0.53 (0.023)	0.80 (<0.001)	0.63 (0.009)	0.47 (0.001)	0.34 (0.043)

Примечание. Перед скобками коэффициент корреляции Спирмена, r_s ; в скобках — уровень значимости (p). Тs — тестостерон, E — эстрадиол-17 β .


значительной степени изменчивы. Известно, что стимулом к раннему созреванию лососевых является комплекс благоприятных факторов, сложившихся в речной системе или в отдельных ее участках (Bohlin et al., 1994; Fleming, 1996; Кузищин, 1997; Metcalfe, 1998; Morgan, Metcalfe, 2001; Jonsson, Jonsson, 2011). Река Алатсоя, как и другие малые реки Карелии в течение года подвержена значительным колебаниям температуры и уровня воды (Шустов и др., 2013). Вероятно, в разные годы различаются и условия питания рыб в реке, что может влиять на их численность и обуславливает модификацию темпов роста и сроков созревания кумжи. Известно (Кузищин, 2010), что в ручье Воробьев (Северная Карелия) в холодные годы и/или при высокой плотности молоди кумжи формирование раносозревающих самцов и самок в поколении может значительно снижаться. На различия в питании в р. Алатсоя может указывать разница в темпах роста у кумжи сходного возраста

в 2015 и 2019 гг. В 2019 г. неполовозрелые самцы кумжи в возрасте 1+ имели достоверно (*t*-критерий Стьюдента, p < 0.05) меньшую длину и массу тела, чем неполовозрелые самцы и раносозревающие самцы того же возраста в 2015 г. (табл. 4). Следовательно, темпы роста кумжи в р. Алатсоя в период с 2018 по 2019 гг. могли быть ниже, чем в период с 2014 по 2015 гг. По-видимому, именно снижение темпов роста у кумжи в период 2018-2019 гг. привело к удлинению сроков созревания (на один год) большей части самцов в популяции. В малочисленных популяциях кумже свойственна очень высокая степень изменчивости морфологических признаков, выражающаяся в выработке практически в каждом водоёме специфических черт (Пономарева и др., 2014). Наши результаты свидетельствуют, что и в пределах одного водоема в разные годы происходят заметные изменения в структуре популяции.

Раносозревающие самцы кумжи р. Алатсоя в 2015 г. имели высокий темп роста в первое лето жизни, а со второго года различия в темпах роста между ними и неполовозрелыми самками и самцами сходного возраста сглаживались (Павлов и др., 2020). Данные 2019 г. согласуются с полученными ранее — мы не обнаружили значимых различий в длине и массе тела между раносозревающими самцами в возрасте 2+ и неполовозрелыми особями того же возраста.

В 2019 г. самки и самцы кумжи в возрасте 1+ и 2+ не имели значимых различий в концентрациях тиреоидных гормонов и их соотношении. Корреляционных зависимостей концентраций тиреоидных гормонов с длиной, массой, возрастом и достижением половой зрелости рыб также не выявлено. Полученные результаты указывают на низкую функциональную активность щитовидной железы на завершающем этапе формирования раносозревающих особей. На примере осетровых (сем. Acipenseridae) показано, что у неполовозрелых рыб уровни тиреоидных гормонов коррелируют с температурой, питанием и ростом, а у половозрелых особей в период нереста — связаны со зрелостью их гонад (Dettlaff, Davydova, 1979; Plohman et al., 2002; Falahatkar, 2015). Bepoятно, у кумжи наблюдается похожая связь синтеза тиреоидных гормонов со средой обитания. В связи с тем, что в целом на кумжу р. Аластсоя оказывают влияние сходные факторы, то и неполовозрелые особи, имеющие возрастные и половые различия, имеют близкий тиреоидный статус. Раносозревающие самцы, по-видимому, еще не вступили в нерестовый период, сопряженный с модификацией концентраций тиреоидных гормонов, поэтому они не отличаются от неполовозрелой молоди по уровню этих гормонов. В 2015 г. у кумжи в возрасте 1+ также не были выявлены различия по уровню Т₃, но отмечены по концентрации общего Т₄ между раносозревающими самцами и пестрятками в возрасте 1+ (Павлов и др., 2019). Мы предполагаем, что основная регуляторная роль щитовидной железы в процессе формирования раннего полового созревания осуществляется еще у сеголетков и сопряжена с ускоренным ростом будущих раносозревающих особей, который наблюдается в течение первого лета их жизни (Павлов и др., 2020). Проверка этой гипотезы требует дополнительных исследований.

Как показали результаты работ в 2015 (Павлов и др., 2019) и 2019 гг. содержание тестостерона и эстрадиола-17 β у неполовозрелых самок и самцов не различается. Вероятно, на ранних стадиях гаметогенеза (II стадия зрелости гонад) синтез половых стероидных гормонов умеренный, а половой диморфизм по концентрациям эстрогенов и андрогенов еще не реализуется. На примере красного барабана *Sciaenops ocellatus* показано, что поло-

Рис. 1. Содержание тестостерона (а), эстрадиола-17 β (б) и показателя их отношения (в) у самок и самцов кумжи *Salmo trutta* в возрасте 1+ и 2+ из р. Алатсоя. (|) — ошибка средней; * указывает на достоверные (*U*-критерий Манна—Уитни: p < 0.01) различия относительно других групп; р. σ 2+ — раносозревающие самцы в возрасте 2+.

вой диморфизм по эстрадиолу-17β не проявляется раньше начала вителлогенеза у самок (III стадия зрелости гонад), а по тестостерону — не раньше начала спермиогенеза (IV—V стадия зрелости гонад) у самцов (Kucherka *et al.*, 2006). У раносозревающих самцов в 2015 и 2019 г. несмотря на различия в сроках достижения половой зрелости отмечены

	L, см	<i>W</i> , г	<i>n</i> , экз.
Неполовозрелые	$\frac{12.8 \pm 0.28}{10.8 - 15.3}$	$\frac{22.4 \pm 1.57}{13.4 - 38.9}$	21
Половозрелые Раносозревающие	$\frac{13.5 \pm 0.17}{12.4 - 14.5}$	$\frac{29.0 \pm 1.31}{19.6 - 37.4}$	13

Таблица 4. Длина (L) и масса (W) тела самцов кумжи р. Алатсоя в возрасте 1+ в 2015 г. (Павлов и др., 2019)

сходные изменения в гормональном статусе - повышение уровня тестостерона и снижение эстрадиола-17В к нересту, что приводит к росту показателя Ts/E. Величина этого показателя указывает на снижение образования эстрадиола-17В из тестостерона у раносозревающих самцов по сравнению с неполовозрелыми особями. У раносозревающих самцов в возрасте 2+ (2019 г.) содержание тестостерона и эстрадиола-17В в крови превышает (*U*-критерий Манна—Уитни: p = 0.023 и p = 0.001, соответственно) таковое у раносозревающих самцов в возрасте 1+ (2015 г.). У раносозревающих самцов старшего возраста (2+) отмечено и увеличение уровня трийодтиронина (U-критерий Манна—Уитни: p = 0.003). Следовательно, для роста и достижения полового созревания раносозревающей кумже старшего возраста, имеющей большую длину и массу тела, требуется синтезировать большее количество половых стероидных гормонов и трийодтиронина.

Результаты корреляционного анализа свидетельствуют о вовлечении половых стероидных гормонов в процессы роста и созревания кумжи. У всех исследованных в 2019 г. групп кумжи (неполовозрелой кумжи в возрасте 1+ и 2+ и половозрелых самцов в возрасте 2+) выявлено наличие обратной связи средней и высокой силы превращения тестостерона в эстрадиол-17В (по показателю Ts/E) с длиной тела особей. Это согласуется с тем, что факторы различной природы, влияющие на рост рыб, принимают участие и в регуляции их стероидогенеза (Tenugu et al., 2021). По всей видимости, именно связь длины тела и соотношения тестостерона с эстрадиолом-17β формирует половой диморфизм в сроках достижения половой зрелости — как правило самцы кумжи созревают раньше самок (Кузищин, 2010; Jonsson, Jonsson, 2011; Ferguson, 2019).

Таким образом, в популяции кумжи р. Алатсоя период достижения половой зрелости в поколениях разных лет различается. Формирование раносозревающих особей может происходить как в возрасте 1+, так и в 2+. В 2019 г. 73% самцов достигали половой зрелости в возрасте 2+, оставшиеся самцы этого возраста созревают позднее. Не выявлено различий по содержанию свободного и общего трийодтиронина и свободного тирок-

сина у неполовозрелой кумжи в возрасте 1+ и 2+ и раносозревающих самцов в возрасте 2+. Это указывает на низкую функциональную активность щитовидной железы на завершающем этапе формирования раносозревающих особей в популяции. По сравнению с неполовозрелой кумжей раносозревающие самцы в возрасте 2+ характеризуются повышенным содержанием тестостерона и пониженным уровнем эстрадиола-17 β в крови. При сравнении результатов за 2015 и 2019 гг. показано, что самцы, достигшие половой зрелости в возрасте 2+, имеют более высокий уровень половых стероидных гормонов и общего трийодтиронина, чем самцы, созревшие на год раньше.

Благодарности. Авторы признательны Д.А. Ручьёву (ООО "Янисъярви") за содействие и помощь в проведении исследований; А.Г. Бушу за определение возраста кумжи.

Финансирование. Сбор материала осуществлен при финансовой поддержке гранта РНФ (14-14-00015), анализ материала и подготовка статьи — при финансовой поддержке гранта РНФ (19-14-00015- Π).

СПИСОК ЛИТЕРАТУРЫ

Ганжа Е.В., Павлов Е.Д. Суточная динамика тиреоидных и половых стероидных гормонов в крови молоди радужной форели // Биология внутренних вод. 2019. № 3. С. 80—83.

Государственный водный реестр. http://textual.ru/gvr.

Кузищин К.В. Особенности формирования внутривидовой разнокачественности у кумжи Salmo trutta L. Белого моря: Дис. ... канд. биол. наук. М.: МГУ. 1997.

Кузищин К.В. Формирование и адаптивное значение внутривидового экологического разнообразия лососёвых рыб (семейство Salmonidae): Дис. докт. биол. наук. М.: МГУ. 2010.

Кузищин К.В., Савваитова К.А., Груздева М.А. Структура чешуи как критерий дифференциации локальных популяций микижи Parasalmo mykiss из рек западной Камчатки и Северной Америки // Вопр. ихтиологии. 1999. Т. 39. № 6. С. 809—818. https://doi.org/10.1134/S0042875218050168

Мурза И.Г., Христофоров О.Л. Динамика полового созревания и некоторые закономерности формирова-

- ния сложной структуры популяций кумжи Salmo trutta L. из водоемов побережья Кандалакшского залива Белого моря // Сб. науч. тр. ГосНИОРХ. 1984. Вып. 220. С. 41-86.
- Павлов Д.С., Ганжа Е.В., Немова Н.Н., Павлов Е.Д., Веселов А.Е., Ручьёв М.А. Уровень тиреоидных и половых стероидных гормонов у кумжи Salmo trutta // Биол. внутр. вод. 2019. № 2. С. 87-92. https://doi.org/10.1134/S0320965219020116
- Павлов Е.Д., Буш А.Г., Костин В.В., Павлов Д.С. Рост и раннее половое созревание кумжи Salmo trutta р. Алатсоя (Республика Карелия) // Биол. внутр. вод. 2020. № 6. С. 584-591. https://doi.org/10.31857/S0320965220060145
- Павлов Е.Д., Ганжа Е.В., Павлов Д.С. Различие содержания ионов в крови у кумжи Salmo trutta из двух близкорасположенных рек до смолтификации // Известия РАН. Серия биологическая. 2021. № 6. C. 594-601. https//doi.org/31857/S1026347021060147
- Пономарева М.В., Пономарева Е.В., Кузищин К.В. Экологические особенности полового созревания кумжи (Salmo trutta L.) // Биоразнообразие и биоресурсы Урала и сопредельных территорий: Матер. III междунар, конф. Оренбург, 25-27 мая 2006 г. Оренбург. 2006. С. 255-257.
- Пономарева Е.В., Кузищин К.В., Волков А.А., Гордеева Н.В., Пономарева М.В., Шубина Е.А. Структура и генетическое разнообразие малых популяций кумжи Salmo trutta Кандалакшского залива Белого моря // Вопр. ихтиологии. 2014. Т. 54. № 1. С. 43-56. https://doi.org/10.7868/S0042875214010093
- Христофоров О.Л., Мурза И.Г. Половое созревание и структура популяции кумжи реки Поной // Биол. ресурсы Белого моря и внутр. водоемов Европейского Севера: Тез. докл. Сыктывкар. 1990. С. 37.
- Чугунова Н.И. Руководство по изучению возраста и роста рыб. М.: Изд-во АН СССР. 1959. 164 с.
- Шустов Ю.А., Тыркин И.А., Щуров И.Л., Ивантер Д.Э., Белякова Е.Н. Биологические особенности молоди лососевых рыб в реках Карелии и Кольского п-ва. Петрозаводск: ПетрГУ, 2013. 74 с.
- Amenyogbe E., Chen G., Wang Z., Lu X., Lin M., Lin A.Y. A review on sex seteroid hormone strogen receptors in mammals and fish // Intern. J. Endocr. V. 2020. P. 1–9. https://doi.org/10.1155/2020/5386193
- Bohlin T., Dellefors C., Faremo U. Probability of first sexual maturation of male parr in wild sea-run brown trout (Salmo trutta) depends on condition factor 1 yr in advance // Can. J. Fish. and Aquat. Sci. 1994. V. 51. P. 1920.
 - https://doi.org/10.1111/faf.12396
- Cyr D.G., Eales J.G. Interrelationships between thyroidal and reproductive endocrine systems in fish // Rev. Fish Biology Fisheries. 1996. V. 6. № 2. P. 165–200. https://doi.org/10.1007/BF00182342
- Deal C.K., Volkoff H. The role of the thyroid axis in fish // Front. Endocrin. V. 11. 2020. https://doi.org/10.3389/fendo.2020.596585

- Dettlaff T.A., Davydova S.I. Differential sensitivity of cells of follicular epithelium and oocytes in the stellate sturgeon to unfavorable conditions, and correlating influence of triiodothyronine // Gen Comp Endocrinol 1979. V. 39. № 2. P. 236-243. https://doi.org/10.1016/0016-6480(79)90228-4
- Dolomatov S.I., Kubyshkin A.V., Kutia S.A., Zukow W. Role of thyroid hormones in fishes // J. Health Sciences. 2013. V. 3. № 9. P. 279–296.
- Eales J.G., Shostak S. Free T_4 and T_3 in relation to total hormone, free hormone indices, and protein in plasma of rainbow trout and arctic charr // General and comparative endocrinology. 1985. V. 58. № 2. P. 291–302. https://doi.org/10.1016/0016-6480(85)90345-4
- Falahatkar B. Endocrine changes during the previtellogenic stage of the great sturgeon, Huso huso (Linnaeus, 1758) // J. Appl. Ichthyol. 2015. V. 31. № 5. P. 830–838. https://doi.org/10.1111/jai.12813
- Ferguson A., Reed T.E., Cross T.F., McGinnity P., Prodöhl P.A. Anadromy, potamodromy and residency in brown trout Sattps:lmo trutta: the role of genes and the environment // J. Fish Biol. 2019. P. 1. https://doi.org/10.1111/jfb.14005
- Fleming I.A. Reproductive strategies of Atlantic salmon: Ecology and evolution // Rev.: Fish Biol. Fish. 1996. V. 6. P. 379.
- Hart J.L. Pacific fishes of Canada // Bull. Fish. Res. Board Can. 1973. V. 180.
- Huusko A., Vainikka A., Syrjänen J.T., Orell P., Louhi P., Vehanen T. Life-history of the adfluvial brown trout (Salmo trutta L.) in Eastern Fennoscandia // Brown Trout: Biology, Ecology and Management. 2018. P. 267. https://doi.org/10.1002/9781119268352.ch12
- Jones D.A., Bergman E., Greenberg L., Jonsson B. Food availability in spring affects smolting in brown trout (Salmo trutta) // Canadian J. Fisheries and Aquatic Sciences. 2015. V. 72. P. 1694-1699.
- Jonsson B., Jonsson N. Ecology of atlantic salmon and brown trout: habitat as a template for life histories // Fish Fisheries Ser. 2011. V. 33. https://doi.org/10.1007/978-94-007-1189-1
- Jonsson B., Jonsson N., Brodtkorb E., Ingebrigtsen P.-J. Lifehistory traits of Brown Trout vary with the size of small streams // Functional Ecology. 2001. V. 15. № 3. P. 310-317. https://doi.org/10.1046/j.1365-2435.2001.00528.x
- Kucherka W., Thomas P., Khan I.A. Sex differences in circulating steroid hormone levels in the red drum, Sciaenops ocellatus L // Aquaculture Research. 2006. V. 37. № 14. P. 1464-1472. https://doi.org/10.1111/j.1365-2109.2006.01583.x
- Metcalfe N.A. The interaction between behavior and physiology in determining life history patterns in Atlantic salmon (Salmo salar) // Can. J. Fish. and Aquat. Sci. 1998. V. 55. P. 93-103. https://doi.org/10.1139/D98-005
- Morgan I.J., Metcalfe N.B. Deferred costs of compensatory growth after autumnal food shortage in juvenile salmon // Proceedings of the Royal Society of London Series B-

Biological Sciences. 2001. V. 268. 295–301. https://doi.org/10.1098/rspb.2000.1365

Plohman J.C., Dick T.A., Eales J.G. Thyroid of lake sturgeon, Acipenser fulvescens: Hormone levels in blood and tissues // Gen. Comp. Endocrinol. 2002. V. 125. № 1. P. 47–55.

https://doi.org/10.1006/gcen.2001.7733

Rasmussen G. The population dynamics of brown trout (Salmo trutta L.) in relation to year-class size // Polskie Archiwum Hydrobiologii. 1986. V. 33. P. 489–508.

Tenugu S., Pranoty A., Mamta S.-K., Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes — A review // Aquaculture and Fisheries. 2021. V. 6. № 3. P. 223—246. https://doi.org/10.1016/j.aaf.2020.09.004

Thyroid and Sex Steroid Hormones in Immature and Precocious Brown Trout Salmo trutta

E. V. Ganzha^{1, #}, E. D. Pavlov¹, M. A. Ruchiev^{1, 2}, and D. S. Pavlov¹

¹ Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., Moscow, 119071 Russia ² Karelian Research Centre, Russian Academy of Sciences, Pushkinskaya st., Petrozavodsk, 185910 Russia [#]e-mail: evganzha@gmail.com

The content of thyroid and sex steroid hormones in the blood of immature and precocious trout *Salmo trutta* at the final stage of the formation of early maturing fishes (age 1+, 2+) in the population was determined. The formation period of early maturing males varies in different years in Alatsoya River (Karelia). Fish can reach sexual maturity at the age of 1+ or 2+. Immature and precocious trout at the age of 1+ and 2+ do not differ in the free and total triiodothyronine and free thyroxine content. Immature females and males aged 1+ and 2+ also do not differ in the level of sex steroid hormones. In contrast to immature brown trout, precocious males aged 2+ are characterized by an increased content of testosterone and a reduced level of estradiol- 17β in the blood. It has been established that the final stage of the formation of early maturing fishes in the population is characterized by a weak involvement of the thyroid gland in the maturation process of males. Also, it was shown that the rate of conversion of testosterone to estradiol- 17β in their blood was a significant decrease (4 times). This transformation in all studied females and males of brown trout is associated with their body length. The rate of formation of estradiol- 17β in fish was increased with increasing of body length.

Keywords: brown trout Salmo trutta, thyroid hormones, sex steroid hormones, maturity, precocious fish, life strategy