ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ ФЛОГОПИТОВОГО ПЕРИДОТИТА АРХЕЙСКОГО ВОЗРАСТА В ГНЕЙСОЭНДЕРБИТАХ БУГСКОЙ ГНЕЙСО-ГРАНУЛИТОВОЙ ОБЛАСТИ УКРАИНСКОГО ЩИТА

© 2023 г. С. Б. Лобач-Жученко^{а, *}, Ш. К. Балтыбаев^{а, b}, Ю. С. Егорова^а, А. В. Юрченко^а

^аИнститут геологии и геохронологии докембрия РАН, наб. Макарова, д. 2, Санкт Петербург, 190034 Россия ^bСанкт-Петербургский государственный университет — Институт наук о Земле, Университетская наб., д. 7, Санкт Петербург, 199034 Россия

**e-mail: sb@ipgg.ru* Поступила в редакцию 13.06.2022 г. После доработки 16.01.2023 г. Принята к публикации 16.01.2023 г.

Рассмотрены минералогия, геохимия, особенности геологического положения и строения линзы флогопитового перидотита в гнейсоэндербитах архейского возраста в пределах Бугской гнейсо-гранулитовой области Украинского щита. Геохимические особенности изученных перидотитов и минералов свидетельствуют о сложной истории формирования линзы. К ранним событиям можно отнести кристаллизацию из расплава предположительно пикритового состава ассоциации оливин + шпинель (Al-хромит) с образованием кумулата, и кристаллизацию клинопироксена. Есть признаки гибридизации расплава материалом вмещающего гнейсоэндербита. Кристаллизация ортопироксена происходит позднее и часто с замещением им клинопироксена. Кристаллизация флогопита, скорее всего, связана с флюидной активностью и ростом потенциала калия во флюиде. В последующем наложенные пластические деформации и синхронный гранулитовый метаморфизм сильно повлияли на минеральный и химический состав перидотитов и ортопироксенитов. Последние изменения пород и минералов вызваны регрессивным метаморфизмом, а также локально-проявленным рассланцеванием пород.

Ключевые слова: перидотиты, мантия, Fe/Mg отношение, оливин, флогопит, архей, Украинский щит **DOI:** 10.31857/S0016752523060067, **EDN:** FIJMWQ

введение

Изучение включений ультрамафитов в гнейсах древней континентальной коры является важным элементом реконструкции мантийного магматизма в раннем докембрии. Сравнительно хорошо изучены мантийный магматизм и образование коматиитовых серий в гранит-зеленокаменных структурах архея, в то время как роль мантийного материала (продуктов магматизма и реститов мантии) в строении и развитии гранулито-гнейсовых структур раннего докембрия исследована значительно меньше.

Изучение U-Pb и Lu-Hf систем детритовых цирконов показало, что в раннем докембрии было несколько этапов переработки континентальной коры, а также внедрения мантийного материала (Griffin et al., 2014). Древний мантийный материал обычно сильно переработан и чаще всего сохранился в виде небольших будин или иных включений в кислом материале коры. Однако изучение геологии и состава таких включений позволяет не только констатировать присутствие мантийного вещества в составе коры, но также помогает подойти к расшифровке механизмов их попадания в кору, позволяет оценить последовательность деформаций и метаморфизма пород гранулито-гнейсовых областей.

Наше более раннее изучение мафит-ультрамафитовых включений в гнейсоэндербитах Бугской гнейсо-гранулитовой области выявило их многообразие: они различаются по составу, внутреннему строению, по соотношению с выделенными этапами деформаций, изотопному возрасту. Были выделены древнейшие (3.66 млрд лет) включения, отнесенные к метабазальтам (Балтыбаев и др., 2014; Лобач-Жученко и др., 2014); плутонические породы — серпентинизированные гарцбургиты, более древние, чем наиболее ранние выделенные деформации в регионе (D_{n+1}); ортопироксениты с возрастом 3.37 млрд лет (Лобач-Жученко и др., 2012) и сложные тела мафитов неустановленного возраста (Лобач-Жученко и др., 2017, 2022).

Объектом настоящего изучения стало включение флогопитового перидотита, которое представляет интерес благодаря нескольким минералого-геохимическим характеристикам, отличающим его от других включений. Во-первых, включение сложено тремя типами пород, взаимоотношения которых видны в обнажении. Во-вторых, оно характеризуется повышенным содержанием Ni при пониженной магнезиальности и необычно высоким Ni/Cr отношением. К тому же, породы включения содержат флогопит, который является индикатором присутствия воды и повышенного содержания калия в мантии. Большая часть отмеченных особенностей отражает сложные петрологические процессы, определившие современное строение и состав изучаемого включения перидотита. Учитывая сказанное, главной задачей данной работы была минералого-геохимическая характеристика указанного включения и анализ особенностей состава пород и минералов, сравнение с ультрамафитами различного геологического положения с целью разработки наиболее адекватной модели генезиса пород перидотитового включения.

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Содержание главных элементов пород определено методом мокрой химии в аналитической лаборатории Геологического института Кольского научного центра РАН (г. Апатиты). Редкие элементы в породе измерены в лаборатории аналитического центра Карельского научного центра РАН (г. Петрозаводск); методика и точность измерений рассмотрены в работе (Светов и др., 2015).

Электронно-микроскопическое изучение минералов выполнено в ИГГД РАН (г. Санкт-Петербург) на электронном микроскопе JSM-6510LA с энергодисперсионным спектрометром JED-2200 при ускоряющем напряжении 20 кВ, токе 1.5 нА с ZAF-методом коррекции матричных эффектов. Использовались стандарты: Si, Mg, Fe – оливин, Al – керсутит, Ca – диопсид, Na – жадеит, К – ортоклаз, Mn – спессартин, Ti – TiO, Ni и Cr – металлы. Состав минералов части образцов измерен на электронно-зондовом микроанализаторе JXA-8230 с кристаллами ТАР, LIF, РЕТ при ускоряющем напряжении 20 кВ, токе на цилиндре Фарадея 300 нА. Применялись стандарты М.А.С. Ltd: оливин (Si и Mg), оливин-гортонолит (Fe), ортоклаз (Al), диопсид (Ca), спессартин (Mn), TiO₂, чистые металлы Cr и Ni.

Содержание редких элементов в минералах определено на ионном микрозонде Cameca IMS-4f (г. Ярославль) по методике (Batanova et al., 1998; Portnyagin et al., 2008). Каждый анализ представляет собой среднее по трем измерениям, размер аналитического кратера около 20 мкм. Содержание элементов рассчитано по интенсивностям вторичных ионов, нормализованных к 30 Si⁺ (Jochum et al., 2000, 2007). Стандарт стекла NIST-610 (Rocholl et al., 1997) использовался для настроек на массы ионов. Погрешность измерений не превышала 10% для содержаний свыше 1 ррт и 20% для 0.1–1 ррт.

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ ЛИНЗЫ ПЕРИДОТИТА, СОСТАВ И ВОЗРАСТ

Включение перидотита UR17/2 находится (рис. 1, 2) на северном борту карьера "Одесский" (48°13'56" N, 29°59'13" Е) и представляет собой небольшую (~0.5-5.5 м) линзу внутри палеоархейских ($3755 \pm 6 - 3768 \pm 6$ млн лет, Бибикова и др., 2013) тоналитовых ортогнейсов, метаморфизованных ~3.6 млрд лет назад в условиях гранулитовой фации (Lobach-Zhuchenko et al., 2017) в составе Бугского гранулито-гнейсового комплекса юго-западной части Днестровско-Бугской провинции Украинского щита (рис. 1, врезка). Гнейсоэндербиты содержат кроме мафитов и ультрамафитов включения метаморфических пород – кислых метаосадков (кварцитов) и кристаллосланцев. Преобладают в метаморфических толщах гранат-пироксеновые и двупироксеновые кристаллосланцы гранулитовой фации (Балтыбаев и др., 2014; Лобач-Жученко и др., 2018а).

Линза находится внутри субширотной зоны сдвиговых деформаций (Лобач-Жученко и др., 2018а). Ориентировка длинной оси линзы C3 327° с погружением под углом 77°, что соответствует линейности флогопита в краевой перидотитовой части линзы (C3 337° угол ~71°) и в кайме ортопироксенита (C3 321°, угол 68°). Линейность гнейсоэндербитов у контакта и в породах линзы практически такие же (C3 325°, угол 76°).

Проявленные во включении и во вмещающих гнейсоэндербитах структуры были образованы в сдвиговой зоне благодаря деформациям поздней стадии, зафиксированной временем перекристаллизации циркона в интервале 2785—2715 млн лет (Лобач-Жученко и др., 2018б).

Рассмотрение включения флогопитового перидотита как фрагмента дайки исходит из формы и ориентировки линзы, ее симметричном внутреннем строении и присутствии, как будет показано ниже, каймы ортопироксенита — продукта взаимодействия расплава с вмещающим гнейсоэндербитом.

Центральная часть линзы сложена лерцолитом, а краевые части — гарцбургитом (рис. 2). На контакте с гнейсоэндербитом в полосе шириной около 10 см развит флогопитовый ортопироксенит. В гнейсоэндербитах в непосредственном контакте с ортопироксенитом в зоне шириной в 2–3 см наблюдается скопление лейкократового

Рис. 1. (а) Геологическая карта раннедокембрийских образований района по материалам ПГО "Севукргеология" и Завальевского графитового комбината, с упрощениями. 1 – карбонатные породы; 2 – метакварциты; 3 – основные породы (мафические гранулиты, амфиболиты, габбро-амфиболиты); 4 – граниты, 5 – эндербиты, чарнокиты, мигматиты; 6 – разрывные нарушения. На врезке: схема строения Украинского щита. Провинции: ВП – Волынская, РТП – Россинско-Тикическая, ДБП – Днестровско–Бугская, СПП – Среднеприднепровская, ПП – Приазовская. КП – Курская и зоны: ГЗ – Голованевская, КЗ – Криворожская, ОПЗ – Орехово–Павлоградская, Границы провинций и зон даны по (Щербак и др., 2008). 6) Схема геологического строения северной части карьера "Одесский". Архей (1-3): 1 – кристаллосланцы (метавулканиты), кварциты, гранатовые, гранат-пироксеновые и гранат-магнетитовые кварциты, 2 – гнейсоэндербиты, 3 – положение изученной линзы и номер, Протерозой: 4 – дайки трахибазальтов и метагаббро. Ориентировка гнейсовидности (5, 6): 5 – $S_n + 1$, 6 – $S_n + 2$; 7 – предполагаемая ориентировка простирания толщ; 8 – номера обнажений, упоминаемых в тексте.

Рис. 2. Обнажение с перидотитовой линзой в гнейсоэндербитах (вертикальная стенка). "а" – строение линзы с указанием места отбора образцов и их номеров, "б" и "в" – фотографии контактов линзы с вмещающим гнейсоэндербитом. *I* – вмещающие гнейсоэндербиты, *2* – перидотитовая часть линзы, состоящая из лерцолита в центре с нерезким переходом в гарцбургит к краю, *3* – кайма из флогопитового и паргаситового (UR17/2-4) ортопироксенита, *4* – участки контактов пород на фотографиях "б" и "в", *5* – участки отбора серии проб и их номера (I-III): I – (UR17/2-2, UR17/2-2a, UR17/2-2b, UR17/2-3, UR17/2-3a, UR17/2-3b, UR17/2-3v), II – (UR17/2-A, UR17/2-B, UR17/2-B, UR17/2-Г), III – (UR17/2-2I, UR17/2-2II, UR17/2-2III, UR17/2-2IV, UR17/2-2IV, UR17/2-2V), *6* – места отбора отдельных образцов и их номера. На фотографиях сокращенные названия пород: *Hzb* – гарцбургит, *Opt* – ортопироксенит, *End* – гнейсоэндербит.

Рис. 3. Микрофотографии лерцолита (а, б), гарцбургита (в), ортопироксенита (г) из линзы UR17/2. Фотографии (а, в, г) сделаны в проходящем свете, (б) – в обратно-отраженных электронах (BSE).

материала с преобладанием кварца и альбит-олигоклаза (рис. 2в).

В верхней части линза выклинивается, эта ее часть целиком преобразована метаморфизмом и деформациями и сложена паргаситовым ортопироксенитом (рис. 2a).

СОСТАВ ПОРОД И МИНЕРАЛОВ

Флогопит-шпинелевый лерцолит представляет собой среднезернистую породу с аллотриоморфнозернистой структурой со слабой листоватостью (рис. 3а, 3б). Модальный состав UR17/2: $Ol \sim 63$ (здесь и далее – в об. %, если не указано иное, все сокращения минералов в (Приложение табл. Д3), $Opx \sim 16$, $Cpx \sim 12$, $Phl \sim 9$, Mgt (Spl) ~ 0.3 . Вторичные минералы – серпентин, гематит, доломит. В акцессорных количествах – апатит, пентландит, халькопирит, ильменит.

Флогопит-шпинелевый гарцбургит содержит: $Ol \sim 68$, $Opx \sim 19$, $Cpx \sim 3$, $Phl \sim 10$, $Mgt \sim 0.5$, $Spl \sim 2$. От лерцолита отличается меньшим количеством клинопироксена и внешне — сильным катаклазом (рис. 3в), который в краевых частях линзы проявлен значительно сильнее, чем в ее центре. Из вторичных минералов отмечается серпентин в небольшом количестве.

Флогопит-шпинелевый лерцолит и флогопитшпинелевый гарцбургит при сходном с РМ со-

ГЕОХИМИЯ том 68 № 6 2023

держании MgO характеризуются высоким содержанием FeO, пониженной величиной #mg и повышенным содержанием Co, Cu, Zn, (табл. 1). Высокое содержание Ni при низком содержании Cr обеспечило высокое Ni/Cr отношение, достигающее 4.

Лерцолит отличается от гарцбургита существенно более высокими содержаниями CaO, Sr, Y, отношением Sm/Nd, более низкими концентрациями Ti, K, Rb. Небольшая разница между лерцолитом и гарцбургитом наблюдается по REE: центр линзы (лерцолит) имеет более высокие концентрации REE в сравнении с гарцбургитом (табл. 1, 2). Хотя содержания в последнем возрастают к контакту с ортопироксенитом (рис. 4). Понижение REE в гарцбургите происходит за счет меньшего содержания *Срх*, а последующее возрастание – из-за ассимиляции эндербита (табл. 2). Обе породы, как и пироксены, характеризуются отрицательной аномалией европия.

Флогопитовый ортопироксенит — среднезернистая порода с гранолепидобластовой структурой (рис. 3г). Содержит (мас. %): *Орх* ~ 76, *Срх* ~ 0.1, *Phl* ~ 13, *Amph* ~ 7, *Mgt* ~ 2; акцессорные минералы (*Ap* + *Carb*) ~ 2 и единичные зерна пентландита, халькопирита, миллерита, пирита. В клинопироксене сохранились реликты оливина. Во флогопите и ортопироксене встречаются округлые до 2-3 мкм зерна циркона. В сравнении с гарцбур-

Varganaum	<i>Phl</i> лер	цолит	F	<i>hl</i> гарцбурги	ĨŢ	Phl	ортопироксе	нит
компонент	UR17/2J	UR17/2	UR17/2-2I	UR17/2-2II	UR17/2-2III	UR 17/2-3	UR17/2-2IV	UR17/2-2V
SiO ₂	41.6	41.5	40.8	41.4	41.0	51.2	52.0	50.3
TiO ₂	0.19	0.18	0.35	0.23	0.21	0.18	0.25	0.30
Al_2O_3	1.89	1.62	1.90	1.66	1.30	3.10	2.39	3.48
FeOtot	11.1	10.4	11.4	11.1	11.3	12.5	9.66	11.0
MnO	0.17	0.18	0.19	0.18	0.18	0.29	0.23	0.27
MgO	37.5	35.6	39.1	38.9	37.9	28.0	31.4	27.8
CaO	2.14	2.65	0.04	0.69	1.09	1.77	0.31	2.17
Na_2O	0.06	0.10	0.10	0.09	0.09	1.00	0.13	0.18
K_2O	0.92	1.00	1.26	1.15	0.94	1.22	1.25	1.85
P_2O_5	0.04	0.02	_	0.04	0.02	0.05	0.04	0.02
H ₂ O	0.14	0.48	0.33	0.31	0.43	_	0.24	0.27
CO_2	1.05	0.87	1.05	0.73	0.76	_	0.76	0.64
E E	0.19	0.17	_	_	_	_	_	_
Cl	0.19	0.05	_	_	_	_	_	_
S	_	_	0.10	0.08	0.05	_	0.05	0.07
ппп	2.18	3.80	3.27	2.99	3.84	_	0.82	1.52
Сумма	99.7	99.0	100.2	99.9	99.4	99.3	99.8	100.0
Mg#	86	86	86	86	86	80	85	82
Li	3.40	_	3.67	3.18	2.44	_	7.24	9.39
Rb	73.0	50.0	91.8	66.9	61.7	50.9	67.1	61.0
Sr	21.0	4.03	2.50	2.43	2.78	3.53	4.04	4.28
Ba	568	381	674	550	524	382	475	460
Y	4.22	—	1.30	2.08	3.00	7.80	3.74	8.38
Zr	34.2	31.0	26.0	16.9	12.9	- 70	21.3	21.7
HI	1.01	0.75	0.50	0.34	0.26	0.78	0.54	0.51
ND Ta	2.69	2.60	2.72	2.40	1.92	2.69	3.10	3.95
Ta Th	0.26	0.17	0.15	0.13	<0.1 0.22	0.13	0.19	0.23
III II	1 45	_	<0.20	<0.24	<0.22	0.55	<0.42	<0.25
La	2 29	2 45	1 30	1 50	1.68	2.82	1 49	3.00
Ce	6.37	6.20	2.67	3.52	4.38	7.15	3.46	8.50
Pr	0.65	0.89	0.30	0.45	0.62	0.98	0.41	1.28
Nd	3.26	4.55	1.15	1.92	2.74	4.02	1.71	5.68
Sm	0.92	0.97	0.22	0.49	0.75	1.39	0.39	1.60
Eu	0.13	0.18	0.05	0.06	0.08	0.17	0.05	0.19
Gd	1.02	1.23	0.19	0.46	0.67		0.42	1.63
Tb	0.19	0.22	0.03	0.07	0.12	0.23	0.08	0.28
Dy	0.79	1.25	0.18	0.40	0.60	1.45	0.56	1.69
Ho	0.16	0.31	0.04	0.07	0.11	0.32	0.14	0.34
Er	0.41	0.83	0.13	0.19	0.28	0.86	0.44	0.87
1m Vh	0.08	0.12	0.02	0.03	0.04	0.12	0.07	0.13
10 I u	0.34	0.73	0.13	0.18	0.24	0.84	0.32	0.84
Lu Sc	0.07 7 79	-	5 53	5 57	6 51	0.15	8.89	9.82
V	47.3	49.0	45.5	39.6	36.0	47 7	47.7	61.9
Ċr	729	588	661	775	950	347	861	600
Co	185	142	174	161	184	78.3	90.2	80.0
Ni	3169	2350	3680	3360	4170	_	1740	1000
Cu	58	—	36.9	37.9	21.2	—	32.6	26.3
Zn	130	—	150	132	149	—	136	152
Pb	3.29	3.00	<1	<1	<1	—	<1	<1
Ga	5.26	7.83	3.72	2.96	2.86	—	5.78	7.11

Таблица 1. Химический состав пород, слагающих перидотитовую линзу

Примечания. Места отбора образцов показаны на рис. 2 и 4. Содержания петрогенных оксидов элементов даны в мас. %, редких элементов – в ppm; "<" – нижний предел чувствительности метода.

		Зона ко	онтакта		Вмещ	ающие
Компонент	Phl ортоп	ироксенит		гнейсоэ	ндербит	
	UR 17/2-A	UR 17/2-Б	UR 17/2-B	UR 17/2-Γ	UR17/2-1	06-BG38
SiO ₂	52.6	48.2	56.3	59.1	61.55	62.75
TiO ₂	_	_	_	-	0.65	0.88
Al_2O_2	3.92	8.75	14.6	15.1	15.33	16.3
FeQ	13.2	11.6	10.1	7.39	6.35	6.43
MnO	_	_	_	_	0.08	0.08
MgO	25.5	19.7	4 77	4 02	3 71	2.12
CaO	0.71	2.83	8.08	6.38	6.91	5.15
Na ₂ O	0.09	0.59	3.43	3.44	3.51	4.49
K ₂ O	1.27	3 46	0.61	0.61	0.66	0.63
	1.27	-	-	0.01	0.00	0.05
F_2O_5	07.2	05.1	07.0		0.09	0.20
Сумма Ма#	97.5	95.1	97.9	90.0	98.8	29.40
Mg#	//.5	/5.3	45.8	49.5	51.0	38.40
L1 D1	6.68	13.5	12.0	17.0	-	0.6
RD	68.7	158	3.44	11.1	3.2	0.6
Sr	3.07	54.4	228	272	26	505
Ba	458	1299	279	420	- 10.5	562
ľ Za	0.19	9.55	25.0	10.5	19.5	12.4
	13.5	145.0	25.4	55.0	2 29	157
	0.39	5.5/	0.98	1.51	3.28	3
	4.42	11.5	5.85	5.88	4.38	7.2
Th Th	0.29	0.51	0.33	0.25	0.14	0.4
	0.34	0.73	0.38	0.51	0.39	0.2
	0.10	0.48	0.09	0.10	0.10	0.1
La	2.33	12.7	34.4	14.5	21.0	25.2
Dr	5.99 0.74	12.7	54.4 1 17	20.0	30.5	40.3
ГI NA	0.74	1.03	4.4/	3.40	4.03	3.4
Sm	0.74	1.00	10.5	14.1	17.4	20.7
5m Fu	0.74	0.40	1.03	1.08	1.26	1.3
Cd	0.11	0.40	1.03	1.08	2.03	1.5
Th	0.95	0.33	4.82	0.58	0.66	0.4
Dv	1.07	1.96	4 64	3 35	3.84	2.5
Но	0.24	0.39	0.93	0.68	0.78	0.4
Fr	0.24	1.07	2.62	1.89	2.1	13
Tm	0.12	0.15	0.36	0.26	0.3	0.1
Yh	0.12	0.15	2 29	1.60	2 34	1
In	0.11	0.14	0.32	0.24	0.31	12
Sc	11.9	14 7	28.8	21.5	_	10
V	44.8	111	183	143	149	121
Cr	558	297	150	105	93	21
Co	105	82.7	34.2	28.5	26	20
Ni	2001	850	114	214	125	28
Cu	63.6	21.0	53.6	63.5	35.7	49
Zn	188	171	104	77.1	72.6	19
Pb	0.54	2.19	6.25	6.89	3.41	1
Ga	6.0	15.7	16.4	17.6	16.2	19.8

Таблица 2. Химический состав пород на контакте линзы с гнейсоэндербитами

Примечания. Места отбора образцов показаны на рис. 2 и 4. Образец 06-BG38 взят в 45 м от линзы UR17/2; анализ из (Shumlyanskyy et al., 2021). Содержание петрогенных оксидов элементов даны в мас. %, редких элементов – в ppm.

Рис. 4. Обобщенный профиль, демонстрирующий изменение содержания главных и редких элементов от лерцолита (в центре линзы) через зону эндо- и экзоконтакта к вмещающим гнейсоэндербитам: І – лерцолит, II – гарцбургит, III – ортопироксенит, IV – гнейсоэндербит. В правой части графика для сравнения приведен средний (*n* = 11) состав гнейсоэндербитов на удалении от контакта. В нижней части графика показаны номера проанализированных образцов (табл. 1, 2): лерцолит (UR17/2J, UR17/2), гарцбургит (UR17/2-2-I, UR17/2-2-II, UR17/2-2-III), ортопироксенит (UR17/2-2-IV, UR17/2-3, UR17/2-2-V), гнейсоэндербит (UR17/2-Б, UR17/2-B, UR17/2-Г, UR17/2-1).

гитом флогопитовый ортопироксенит содержит больше SiO₂, Al₂O₃, MnO, CaO, Na₂O, P₂O₅, Y, Hf, Nb, REE, V, Ga, меньше MgO, Cr, Co, Ni (табл. 1; рис. 4, 6a); в нем выше отношение FeO/Fe₂O₃. Химический и минералогический состав ортопироксенита меняется по мере приближения к контакту с гнейсоэндербитом (рис. 4), в том числе последовательно растет содержание всех REE и Eu-отрицательная аномалия (рис. 6a). Общей особенностью химического состава пород линзы является высокое содержание К и Rb, которое на порядок выше, чем в эндербите (рис. 4, табл. 1).

Верхняя часть линзы (рис. 2а) сложена среднезернистым паргасит-плагиоклазовым ортопироксенитом с нематобластовой структурой. По петрографическим наблюдениям содержание $Prg + Opx \ge Pl$. Содержание биотита до об. 5%. На контакте с гнейсоэндербитом присутствуют авгит и калиевый полевой шпат. Акцессорные минералы — апатит, кальцит.

В изученных породах доминируют железомагнезиальные алюмосиликатные минералы и лишь в небольшом количестве встречаются рудные.

Оливин лерцолита и гарцбургита имеет близкие составы ($Fa_{14}Fo_{86}$), образуют зерна размером 1–2 мм и содержит включения шпинели (Al-хромита). Состав оливина (Приложение, табл. Д1) при катаклазе не меняется, трещины заполнены серпентином и магнетитом. Отличительной особенностью оливина перидотитов являются высокое содержание NiO (0.42–0.49 мас. %), которое не коррелируется с его магнезиальностью (рис. 5). Оливин, в целом, имеет низкие концентрации REE, плоское распределение, с небольшим увеличением HREE (рис. 66). Небольшое увеличе-

Рис. 5. График соотношения содержания Ni и магнезиальности (содержания форстерита) оливина. 1 – оливин лерцолита линзы, 2 – оливин гарцбургита линзы, 3 – оливин их включений перидотитов Бугского комплекса (средние значения; Лобач-Жученко и др., 2018а), 4 – оливин из мантийных ксенолитов из кимберлитов в кратонах (Beard et al., 2007; Сазонова и др., 2015), 5 – оливин ксенолитов мантии в щелочных базальтах (Witt-Eickschen, O'Neil 2005; Rudnick et al., 1999), 6 – оливин коматиитов Южной Африки и Горгоны (Sobolev et al., 2007), 7 – оливин пикритов Гавайских островов и Норильского комплекса (Sobolev et al., 2007), 8 – оливин кимберлитов (Сазонова и др., 2015). Поля кратонных и внекратонных оливинов даны по (Downes et al., 2004), линии эволюции оливина при смешении и фракционировании – по (Prelevic et al., 2013).

ние LREE имеется в лишь одном из четырех зерен (Приложение, табл. Д2).

Шпинель по составу отвечает Cr и Al-шпинелидам (рис. 7а, Приложение, табл. Д1). Магматическая шпинель (Spl 1) сохраняется в виде мелких включений в оливине лерцолита и отвечает глиноземистым алюмохромитам. Также к ранним шпинелям предположительно относятся алюмохромиты ксеноморфных зерен из межзернового пространства, некоторые из них секутся трещинами, заполненными флогопитом или доломитом (рис. 8). Реликты Spl 1 иногда имеют резорбированные края и/или Cr-Mgt-Mgt каймы. Spl 1 характеризуется повышенной железистостью #fe = $= (Fe^{+2}/(Mg + Fe^{+2})) = 68-83$, благодаря которой на диаграмме #mg (Mg/(Mg + Fe + 2) - #Cr (Cr/Cr + Al) ее составы отклоняются от области мантийных (рис. 7б), а также повышенным количеством TiO_2 , низким содержанием MnO, Fe^{+3} (Приложение, табл. Д1). Большая часть шпинели образует сложные ксеноморфные зерна (Spl 2), расположенные между породообразующими минералами или в трещинах минералов (рис. 8). Их состав варьирует от Mg-Al-шпинели (плеонаста) пикотитов до Cr-Mgt-Mgt (рис. 7а). Такой состав отражает распад первичной шпинели на Mg-Al-Zn и Cr-Fe-Ti фазы во время поздне-, постмагмати-

ГЕОХИМИЯ том 68 № 6 2023

ческих процессов; часто эти шпинели образуют сростки с сульфидами, доломитом, ильменитом, гематитом, апатитом, флогопитом. Обогащенные глиноземом шпинели встречаются вблизи контакта с ортопироксенитовой каймой, что может свидетельствовать о влиянии контаминации. Шпинель лерцолита отличается от шпинели гарцбургита меньшим содержанием Ni, что определяется меньшим содержанием Ni в породе.

Ортопироксен характеризуется повышенной железистостью (Приложение, табл. Д1), типичной для ортопироксенов основных и ультраосновных пород Украинского щита. Характерно низкое (<1%) содержание Al_2O_3 и Cr_2O_3 . Отличия ортопироксенов лерцолита и гарцбургита проявлены в несколько большем содержании в гарцбургите NiO и Cr_2O_3 . Магнезиальность ортопироксена снижается от лерцолита и гарцбургита (0.86–0.87) к ортопироксениту (0.79).

В паргаситовом ортопироксените присутствует гиперстен, #mg которого уменьшается от 0.62 до 0.56 на контакте с эндербитом. По соотношению (FeO + MgO)/Al₂O₃ (Лобач-Жученко и др., 2018а), а также диаграмме с учетом состава Са-пироксена (Rietmeijer, 1983), ортопироксен лерцолита, гарцбургита и ортопироксенита соответствуют магматическому типу, в то время как гиперстен

Рис. 6. Распределение редкоземельных элементов в породах и минералах изученной линзы. а – породы, б – оливин, в – клинопироксен и ортопироксен; г – флогопит. Нормировано на хондрит C1 (Sun, McDonough, 1989).

Рис. 7. Составы шпинели гарцбургита на диаграммах: $a - Al - Cr - Fe^{+3}$, 6 - #Cr - #mg. 1-3 - шпинели гарцбургита изученной линзы UR17/2: 1 - Spl 1 в оливине; 2 - Spl 1 из межзернового пространства; 3 - Spl 2 в разной степени преобразованные зерна; 4-7 - шпинель ультрамафитов Прибайкалья: 4 - из интрузий Западного Прибайкалья (Mekhonoshin et al., 2020), 5-7 - из Йоко-Довыренского массива (Пушкарев и др., 2004): 5 - из неконтаминированных дунитов, 6 - из контаминированных дунитов, 7 - хромититов. Пунктирные линии на "а" соединяют составы фаз зерен сложного строения. Серое поле на "6" – шпинели мантийных перидотитов и линии изоплет (Kamenetsky et al., 2001). #Cr = Cr/Cr + Al.

из паргаситового ортопироксенита находится в поле метаморфических ортопироксенов. Содержание REE в ортопироксене (и, соответственно, в ортопироксените) низкое, характерно относительно плоское распределение L- и MREE с небольшим увеличением HREE, $(La/Yb)_n = 0.016$ и четкая отрицательная аномалия Eu (рис. 6а). Последнее может быть связано с различной подвижностью Eu^{2+} и Eu^{3+} в системе при (пере)кристаллизации пироксенов в результате изменения фугитивности кислорода (Fabbrizio et al., 2021).

Клинопироксен представлен диопсидом (Приложение, табл. Д1) со средним значением #mg = 92 в лерцолите и гарцбургите; магнезиальность в ор-

Рис. 8. Фотографии пластин изученных пород на растровом электронном микроскопе. Показаны шпинели из флогопитового лерцолита – (а, б), гарцбургита – (в) и ортопироксенита – (г).

топироксените варьирует (87.6–89.7), что ниже, чем в перидотитах. Содержание Al_2O_3 и Cr_2O_3 в лерцолите и гарцбургите низкие – 1.02–0.67% и 0.22–0.08%, соответственно. В клинопироксене из ортопироксенита содержание Al_2O_3 выше: 2.4– 1.03%, а Cr_2O_3 сходно с таковым из лерцолита и гарцбургита. В клинопироксене ортопироксенита несколько увеличивается содержание Na, уменьшается Ca, Cr (Приложение, табл. Д2). Для *Срх* перидотитов характерно относительно плоское распределение REE с небольшим уменьшением HREE и отрицательной аномалией Eu (рис. 6в), как и в ортопироксене.

Слюда лерцолита, гарцбургита и ортопироксенита по соотношению Al, Fe и Mg представлена флогопитом (Приложение, табл. Д1), который образует пластинки, иногда крупные (до 400 мкм), развивается за счет пироксенов и оливина. При замещении флогопитом оливина в слюде сохраняются тонкие прожилки продуктов изменения оливина – серпентин и магнетит. Иногда сохраняется только магнетит.

Состав флогопита в разных частях линзы и различной ориентировки идентичен (Приложение, табл. Д1). Небольшие изменения наблюдается при переходе от перидотитов к ортопироксениту: увеличивается содержание Na_2O , уменьшается содержание Cr, #mg (от 92 до 88), что соответствует

уменьшению магнезиальности и содержания Cr_2O_3 в замещаемых флогопитом пироксенах. В целом, флогопиты ортопироксенитов имеют более варьирующие содержания многих элементов, чем перидотиты (Приложение, табл. Д1, Д2).

В паргаситовом ортопироксените и в эндербите слюда представлена биотитом с 3.5 мас. % TiO₂.

Амфибол присутствует в ортопироксените, развивается по пироксенам и представлен магнезиальной роговой обманкой — эденитом. В паргаситовом ортопироксените амфибол образует самостоятельные крупные зерна, состав которых меняется от Mg-паргасита в центре зерна до чермакита на краю (Приложение, табл. Д1).

Карбонат перидотитов представлен доломитом, реже железистым карбонатом; в паргаситовом ортопироксените – кальцитом.

Серпентин (антигорит) замещает оливин; совместно с магнетитом заполняет тонкие трещины в катаклазированных зернах.

Сульфиды. Среди сульфидов преобладает пентландит. Встречаются редкие сростки *Pn* и *Ccp* (Лобач-Жученко и др., 20216). Состав *Pn* перидотита с отношением Fe_{31-34} : Ni₃₃₋₃₄ по сравнению с *Pn* ортопироксенита с отношением Fe_{24-30} : Ni₃₆₋₄₁ является более высокотемпературным (Kitakaze et al., 2011). В ортопироксените пентландит заме-

щается миллеритом, а в зоне контакта с эндербитом они оба деформированы и ориентированы, как и флогопит, параллельно контакту (Лобач– Жученко и др., 2021б). В ортопироксените присутствуют единичные зерна пирита. Сульфиды замещаются окислами железа и магнетитом.

Магнетит перидотитов представлен двумя генетическими типами: Сг-магнетитом, содержащим до 5–6 мас. % Сг, Al, Ti, и магнетитом, заполняющим трещины в серпентине и не содержащим примесей других элементов. В паргаситовом ортопироксените встречается магнетит с небольшой примесью хрома.

Апатит присутствует в небольшом количестве в перидотите и ортопироксените, представлен фторапатитом (Cl – 0.25–0.62, F – 1.62–2.94 мас. %).

Циркон в виде мелких зерен встречается в ортопироксене и флогопите, а крупные зерна сами содержат включения клинопироксена, ортопироксена, плагиоклаза, флогопита, апатита. Большая часть включений минералов сильно изменена, как и содержащий их циркон. Неизмененные ортопироксен и флогопит идентичны по составу минералам ортопироксенитов. В одном из зернен циркона по данным рамановской спектроскопии диагностировано включение оливина (Лобач-Жученко и др., 2018б).

РАСЧЕТ *РТ*-ПАРАМЕТРОВ ОБРАЗОВАНИЯ И ПРЕОБРАЗОВАНИЯ ПОРОД

Для определения условий образования пород и последующего их преобразования мы использовали *PT*-оценки равновесий по множеству минеральных реакций, а также различные моно- и биминеральные геотермобарометры (табл. 3). Оценивалась также температура кристаллизации некоторых минералов в системе "расплав-минерал", принимая за состав гипотетического расплава отдельные составы изученных пород.

Необходимо отметить, что неудовлетворительная сходимость линий реакций минералов, полученная методом оценки мультиравновесий TWEEQU (Berman, 1991), показала отсутствие или нарушение химического равновесия между некоторыми главными минералами в перидотитах и ортопироксенитах. На нарушение равновесия указывал также достаточно пестрый состав некоторых минералов в пределах отдельных полированных пластин. Вместе с этим, по оценкам ряда минеральных термобарометров определенная закономерность в РТ-параметрах выявляется (табл. 3) при использовании непосредственно контактирующих или близко расположенных друг к другу минералов, не имеющих структурных и морфологических признаков неравновесных взаимоотношений. Эти оценки нами взяты как более адекватно отражающие РТ-параметры формирования и преобразования пород линзы.

Наиболее высокие температуры (~1000-1200°С, табл. 3), превышающие температуру метаморфизма окружающих пород (до 900°С, Балтыбаев и др., 2014; Lobach-Zhuchenko et al., 2017), получены по равновесиям оливина и шпинели (Wan et al., 2008), а также оливина и клинопироксена (Loucks, 1996). Эти температуры мы рассматриваем как минимальные субсолидусные, установившиеся после магматической кристаллизации этих минералов. Термометрия с привлечением оливина и шпинели показала (табл. 3) широкий диапазон значений, что связано с существованием шинелей нескольких генераций, как отмечалось выше. По шинелям (Al-хромиты) получены самые высокие значения температур – до 1272°С, но большинство других составов шпинелей в паре с оливином, показали значения температур значительно ниже (табл. 3). Низкие значения температур, полученные по этим и другим минеральным парам и разным геотермометрам (табл. 3) рассматриваются как следствие нарушения химического равновесия и/или несоответствия составов минералов условиям калибровки геотермометров.

Ортопироксен-клинопироксеновые, оливинортопироксеновые термометры, а также мономинеральные ортопироксеновые и клинопироксеновые термометры для различных, предположительно равновесных составов минералов, выявили температуры: ~750-900°С, а также ~900-1050°С (табл. 3). Если температуры ~750-900°С скорее связаны с этапом метаморфического переуравновешивания составов первично магматических минералов, в том числе метаморфизма магматического циркона (средняя температура 780°С. Лобач-Жученко и др., 2018б), то более высокие температуры могут рассматриваться как субсолидусные, установившиеся после магматической кристаллизации этих минералов. Во всяком случае, эти температуры (~900-1050°С) несколько превышают температуры метаморфизма окружающих пород (Балтыбаев и др., 2014; Lobach-Zhuchenko et al., 2017).

Значительное число оценок температур по биминеральным равновесиям выявило широкий низкотемпературный диапазон значений, соответствующий, вероятно, стадиям регрессивного преобразования пород. Однако интерпретировать каждый полученный температурный интервал представляется сложным в виду отсутствия объективных критериев достижения равновесия для использованных составов минералов.

Таким образом, по данным минеральной термометрии ассоциация *Ol* + *Spl*, вероятно, кристаллизовались при температуре выше 1000°С, но последующие метаморфические преобразования сильно нарушили химическое равновесие между этими минералами. Набор имеющихся минеральных парагенезисов (Lobach-Zhuchenko et al., 2017), отсутствие, в частности, граната, не дает возможности удовлетворительно оценить давление при

Р, кбар	Amph	Molina	I	I	I	I
	Amph-Pl	HI-BI94	I	I	I	I
	Opx-Bt	890	I	784– 813; 623–718	703– 783; 568–724	719– 782; 669–754
	Opx	<i>Opx(CpxSpl</i>) M80a	I	798—914; 807—854	857–911; 622	767–948
	Cpx	<i>Cpx(OpxSpl</i>) M80a	867–947; 1065	I	I	882
		<i>CpxOpx</i> P08a	I	I	I	882–968
	xdO-xd	CpxOpx P08	I	I	I	787– 843
$T, ^{\circ}C$		<i>CpxOpx(Ol</i>) KB90-T	I	I	I	504522
	Ol-Opx-Spl	<i>Ol-Spl(Opx)</i> ONW87	I	545–605 (Al- <i>Cr</i>); 501–586 (<i>Mgt</i>)	527–566 (Pct); 527–574 (Al-Crt); 534–590 (Mgt)	835–894 (<i>Psr</i>); (<i>Psr</i>); 517–564 (<i>Pcr</i>); 595–608 (Al- <i>Cr</i> 1); 563–588 (<i>Mgr</i>)
	Ol-Cpx	Loucks	1004-1108	I	I	1030-
	10	B17	$\begin{array}{l} 1015-1100\\ (P=8);\\ 1035-1122\\ (P=12) \end{array}$	I	I	I
		TKH98	777–831 (<i>Psr</i>); (<i>Asr</i>); (<i>Asr</i>); (<i>Asr</i>); (<i>Asr</i>); 594–662 (<i>Mar</i>)	(Al-Cr1); (Al-Cr1); (A35-638 (Mgt)	(43–695 (<i>Ptr</i>); (32–698 (Al- <i>Cr</i>); 583–619 (<i>Mgt</i>)	984–1064 (<i>Psr</i>); 835–894 (<i>Psr</i>); 633–752 (<i>Pcr</i>); 680–707 (A1-Cr7); 591–635 (<i>Mgr</i>)
	01-Spl	BBG91	619–677 (<i>Psr</i>); 544–604 (<i>Pcr</i>); 550–617 (Al-Crt); 577–633 (Mgt)	565–629 (Al- <i>Crt</i>); 546–630 (<i>Mgt</i>)	552–595 (<i>Pct</i>); 545–594 (Al- <i>Cr</i>); 589–661 (<i>Mgt</i>)	$\begin{array}{c} 866-971\\ (Psr);\\ (Psr);\\ 677-744\\ (Psr);\\ 516-612\\ (Pcr);\\ 604-633\\ (A1-Crr);\\ 628-658\\ (Mgr)\end{array}$
		WCC08	$\begin{array}{c} 1016-1107\\ (Psr);\\ (Psr);\\ 1046-1193\\ (Pcr);\\ 1082-1249\\ (A1-Crt);\\ 1160-1272\\ (Fe-Cr)\end{array}$		1	I
Параметр	Минеральные пары/ минералы	Образец/ инструменты	Лерцолит URI7/2	Гарцбургит UR17/2-2	Гарцбургит UR17/2-21	Гарцбургит UR17/2-211
ГЕС	охимия	том 68	№ 6 2023			

Р, кбар	Amph	Molina	I	I	1	1	6-7; 3	т, 1980); / BBG91 случаев х одной
	Amph-Pl	HI-B194	I	I	I	I	730– 780; 710–780	а (Mercie 16); <i>Ol-Sp</i> 1). В ряде в предела
	Opx-Bt	890	I	I	676– 816; 657–790	696– 897; 534–669	550– 984; 760–860	, <i>Opx</i> M80 oucks, 199 et al., 1990 1Hepaлob
	Opx	<i>Opx(CpxSpl)</i> M80a	I	810890	845—912	778–891	1007–1027; 852–973	ndy,1994); <i>Cpx</i> <i>Cpx</i> Loucks (L S90 (Sengupta M cocrabam MI
	Cpx	<i>Cpx(OpxSpl</i>) M80a	096-006	I	917—1042	814–937; 651	983–1156	(Holland, Blur al., 2017); <i>ОІ</i> 2008); <i>Орх-Вt</i> ены по разны
		<i>CpxOpx</i> P08a	Ι	Ι	772-898; 851-878	808-825; 608-688	815– 1029	HI-BI,94 (ssweiler et Van et al., Э ые получо
	xdO-xd	CpxOpx P08	Ι	Ι	833– 930; 869– 898	870– 896; 728– 790	837— 1042	<u> </u> <i>Атрһ-РІ</i> И В17 (Bu WCC08 (V гта, котор
$T, ^{\circ}C$	0	CpxOpx(Ol) KB90-T	I	I	740—870; 837—886	725–750; 568–584	866—1024; 728—841	et al., 2015); rka, 2008); <i>О</i> 998); <i>ОІ-SpI</i>
	Ol-Opx-Spl	<i>Ol-Spl(Opx)</i> ONW87	I	I	I	I	I	lina (Molina px P08a (Puti Гaylor et al., 1' ия для одног
	Ol-Cpx	Loucks	I	I	I	I	I	<u> </u> <i>Атр</i> Мс 3); <i>Срх-О</i>] ТКН98 (7 И давлен
	Ю	B17	I	I	1	I	I	лки на них: Putirka, 2008 987); <i>Ol-Spl</i> parypы и/ил
		TKH98	Ι	Ι	1	I	I	 ленты и ссы x- <i>Opx</i> P08 (Veill, Wall, 1 ений темпе]
	Ol-Spl	BBG91	I	I	I	I	I	ные инструм еу, 1990); <i>С</i> р ОNW87 (О'1 ервала знач
		WCC08	I	I	I	I	I	спользованн (Kohler, Br 91); <i>01-Spl</i> и более инт нной пласти
Параметр	Минеральные пары/ минералы	Образец/ инструменты	Гарцбургит UR17/2-2b	Гарцбургит UR17/2-3b	<i>Ры</i> ортопи- роксенит UR17/2-3a	<i>Ры</i> ортопи- роксенит UR17/2-2IV	Рузортопи- роксенит UR17/2-4	Примечания. Ис <i>Срх-Орх</i> КВ90-Т (Ballhaus et al., 15 показаны два ил посанализиова

582

Таблица 3. Окончание

ЛОБАЧ-ЖУЧЕНКО и др.

ГЕОХИМИЯ том 68 № 6

минералообразовании. Использованный мономинеральный пироксеновый барометр (Mercier, 1980) дает завышенное давление ~25-35 кбар и выше, что связано с практическим отсутствием хрома в изученных пироксенах. Однако, принадлежность перидотитов к шпинелевой фации глубинности отвечает умеренным давлениям до ~15-20 кбар. Судя по нашим оценкам, с использованием пакетов программ "MELTS" и "PERPLEX" (как при допушении магматического генезиса минералов. так и метаморфического). давление минералообразования не превышало 10-12 кбар. Нижний предел давления минералообразования можно оценить по отсутствию плагиоклаза в минеральных парагенезисах перидотитов как не ниже 7 кбар, поскольку породы не относятся к плагиоклазовой фации глубинности.

Составы минералов из сильно дислоцированной и метаморфизованной части линзы, где образуются паргаситовый ортопироксенит (рис. 2а), позволили ограничить возможный температурный диапазон этого метаморфического преобразования. Для оценки в расчетах использовались составы амфиболов из зоны перекристаллизации линзы, т.е. непосредственно из паргаситового ортопироксенита. Амфибол-плагиоклазовые минеральные пары выявили по термометру (Holland, Blundy, 1994) температуры 710-780°С для широкого диапазона давления от 1 до 15 кбар (табл. 3). Для амфибола нижней части линзы, замещающего пироксен в флогопитовом ортопироксените и включенного в циркон, выявляется температура кристаллизации ниже 700°С (Лобач-Жученко и др., 2018б). По составу этих же амфиболов из паргаситового ортопироксенита с использованием барометра (Molina et al., 2015) получены две оценки давления: 6-7 кбар по предположительно ранним генерациям амфибола, состав которых ближе к паргаситу, и около 3 кбар – по более поздним (табл. 3). Эти оценки давления характеризуют тренд спада давления на регрессивном этапе метаморфизма пород Бугской гнейсо-гранулитовой области.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Вариации концентраций несовместимых и совместимых элементов в флогопитовом лерцолите и гарцбургите совместно с изотопными отношениями Sr, Nd, Hf (Лобач-Жученко и др., 2017), свидетельствуют о сложном генезисе пород изученной линзы. Главными особенностями состава пород включения UR17/2 являются: а) повышенная железистость, б) высокие концентрации никеля, не коррелирующие с содержанием MgO, в) высокие содержания K (K₂O > Na₂O).

Для выяснения генезиса включения UR17/2 необходимо учитывать его особенности: внутреннее симметричное зональное строение, последо-

ГЕОХИМИЯ том 68 № 6 2023

вательность минералообразования и специфические составы минералов. Отдельного внимания заслуживает природа флогопитового и паргаситового ортопироксенитов.

Для расшифровки генезиса пород необходимо сравнение их с включениями ультрабазитов в континентальной коре, представленных двумя главными типами: внутрикоровыми дифференциатами основных магм (стратиформных интрузий) и мантийных реститов.

Если сравнивать перидотиты изученной линзы с перидотитами — фрагментами расслоенных интрузий и реститами субкратонной литосферной мантии, то следует отметить нижеследующее.

Характерной особенностью расслоенных интрузий является неоднородность состава пород и минералов. Вариации железистости наблюдаются даже в прослоях внешне однородных дунитов. Например, в Сарановском ультрабазитовом комплексе аподунитовые серпентиниты и гарцбургиты имеют железистость от 12 до 18% (Штейнберг, Лагутина, 1984), а в расслоенном массиве Стольцбург в слоях дунитов и перидотитов содержание MgO варьирует от 29 до 38 вес. % (Anhaeusser, 2001). Магнезиальность перидотитов архейской расслоенной интрузии Фискенессет (ЮЗ Гренландия) варьирует от 0.74 до 0.81. Перидотиты этой интрузии рассматриваются как продукты фракционной кристаллизашии базальтового расплава, а также как самостоятельные силлы перидотитов (Polat et al., 2009). Перидотиты интрузии Фискенессет с содержанием SiO₂, равным таковому линзы UR17/2, имеет большие концентрации CaO, FeO, Al₂O₃, меньшую величину #mg = 0.80.

Близкие геохимические характеристики с перидотитами изученной линзы имеют два включения гарцбургита в ортогнейсах комплекса Итсак (ЮЗ Гренландия), которые рассматриваются как фрагменты расслоенной интрузии (Friend et al., 2002). Они идентичны с линзой UR17/2 как по составу породы в целом, так и составами оливина и ортопироксена, а отличие – в большем содержании NiO в породах линзы UR17/2. Отнесение данных двух включений гарцбургита комплекса Итсак к фрагментам расслоенного комплекса базируется только на их магнезиальности, не типичной для пород мантии (Friend et al., 2002).

Ортопироксениты линзы UR17/2 от ортопироксенитов архейских расслоенных интрузий Южной Африки (Anhaeusser, 2001) и расслоенных силлов Канады (Desharnais et al., 2000) отличаются меньшими содержаниями FeO и CaO и большими – щелочей и MgO.

Особенностью ультрамафитов расслоенных интрузий является отсутствие регрессивной серпентинизации. Указывается, что наблюдаемая серпентинизация в расслоенных массивах контролируется локальными зонами проницаемости и носит наложенный характер (Штейнберг, Лагутина, 1984). В перидотитах UR17/2 серпентинизация слабая, но затрагивает все зерна оливинов, и происходила, скорее всего, в ходе регрессивных преобразований.

Можно заключить, что перидотиты линзы UR17/2 близки к перидотитам расслоенных интрузий пониженной магнезиальностью, но принципиально отличаются постоянством состава, в том числе отношения Fe/Mg как в породах, так и в алюмосиликатных минералах.

Сравнение перидотитов линзы UR17/2 с ксенолитами мантии, которые присутствуют в кимберлитах древних кратонов, а также в вулканических поясах, представляет сложную задачу из-за вариаций составов реститов разных кратонах. Также следует иметь в виду, что основная часть информации относится к гранат-содержащим разностям ксенолитов, т.е. более глубинным породам.

Ксенолиты чаще представлены гранатовыми и, в меньшей степени, шпинелевыми лерцолитами, гарцбургитами и верлитами. Модальный состав шпинелевых перидотитов шпинель-пироксенитовой субфации (Соболев и др., 1974) близок к модальному составу перидотитов линзы UR17/2 и отличается от абиссальных перидотитов (океанической мантии) большим количеством *Орх* и меньшим *Ol*.

При сравнении состава линзы UR17/2 с реститами субконтинентальной мантии следует отметить, что повышенная железистость пород UR17/2 (#mg = 0.86) не соответствует стандартной магнезиальности (#mg = 0.926) ксенолитов литосферной мантии, установленной на многих кратонах (Boyd, 1978). В то же время, магнезиальность верхней мантии под различными кратонами варьирует. Наличие в кимберлитах кратона Каапвааль и кратона Слейв ксенолитов мантии с повышенной железистостью (Pearson et al., 2003; Коруюча et al., 1999) свидетельствует о присутствии в субкратонной литосфере участков, обогащенных железом. Для северной части кратона Слейв установлена геохимическая стратификация литосферной мантии с выделением на глубине 150 км слоя, мощностью ~50 км, обогащенного железом (с #mg 0.88) (Kopylova, Russell, 2000).

Предположение о возможном существовании в мантии различных по составу доменов, возникших в архее, высказано рядом исследователей (Vervoort, Patchett, 1996; Kamber et al., 2003; Frei et al., 2004). Гетерогенность литосферной мантии, первичная или возникшая в течение геологической истории, находит подтверждение в широкой вариации магнезиальности перидотитов различных кратонов и различных доменов одного кратона (Pearson, Witting, 2008). Тем не менее, перидотиты UR 17/2 более железистые, чем наиболее железистые реститы мантии. Соответственно, они содержат и более железистые оливин, ортопироксен, раннюю шпинель.

Для перидотитов ксенолитов с повышенной железистостью (Harte et al., 1987) предполагается, что они представляют продукты кристаллизации ранних расплавов (Simon et al., 2002). Для ксенолитов дунитов из многих трубок (Boyd, Nixon, 1978), которые отличаются от лерцолитов и гарцбургитов большей железистостью (#mg = 0.869-0.894), предполагается кумулусное образование. Близким составом с UR17/2 обладают ксенолиты верлитов из кимберлитовой трубки на Кольском полуострове (Beard et al., 2007). Ортопироксены верлитов сходны с ортопироксенами перидотитов $UR_{17/2}$ низкими содержаниями $Al_{2}O_{3}$ (<1 вес. %) и Cr_2O_3 (<0.5 вес. %), величиной #mg = 0.87, составом шпинели. На графике #mg vs Cr# (рис. 56) оливин-шпинелевые пары верлитов, как и перидотитов UR17/2, располагаются правее мантийного оливин-шпинелевого тренда OSMA (Arrai, 1994).

Шпинель верлитов, как и шпинель из пикритов Норильска (Криволуцкая, 2011), имеет повышенные содержания TiO_2 и ZnO. Преобладающим сульфидом верлитов, как и перидотитов UR17/2, является пентландит.

Повышенная железистость ультрамафитов UR17/2, как и других ультрамафитов Украинского щита, может отражать обогащенный железом состав литосферной мантии под Сарматским кратоном и тем самым не противоречить предположению о реститовой природе перидотитов линзы. Но существенным отличием химического состава перидотитов UR17/2 от реститов древней мантии является отношение Ca/Al, среднее значение которого у архейской мантии равно 0.73 (Boyd, 1989), а в лерцолите UR17/2 оно существенно выше: 1.53 и 2.21, в гарцбургитах варьирует от 1.05 до 0.03.

Включения гарцбургитов в гнейсах ЮЗ Гренландии, рассматриваемые как тектонические фрагменты мантии (обр. 42, Friend et al., 2002), отличаются от гарцбургитов UR17/2 большими концентрациями SiO₂, Al₂O₃ и MgO (#mg = 0.90) и отношением Ca/Al = 0.30, не отвечающим среднему значению перидотитов ксенолитов архейской мантии. На диаграммах Al vs Ca (Fig. 3, Boyd, 1989) фигуративные точки лерцолитов включения UR17/2 располагаются вне поля кратонных перидотитов за счет большего содержания кальция, а из трех точек гарцбургитов две расположены вблизи поля кратонных перидотитов. Гарцбургит включения ЮЗ Гренландии (№ 47; Friend et al., 2002) также находится вне поля кратонных перидотитов, но за счет большего содержания глинозема.

Пониженная магнезиальность перидотитов включения UR17/2 коррелируется с пониженной магнезиальностью оливина (Fo = 85.6), составляющего более 60% объема перидотитов линзы. Магнезиальность изученных оливинов отличает-

ся от #mg большинства оливинов ультраосновных пород, ксенолитов кратонной и более молодой мантии, расчетной #mg оливина PM, орогенных лерцолитов Альпийского пояса, абиссальных перидотитов океанического дна, содержание форстерита в *Ol* которых находится, как правило, в пределах 89–92 (Herzberg et al., 2016).

Содержание FeO в оливине зависит от коэффициента распределения (Kd^{ol/m}), который определяется содержанием FeO в расплаве, температурой, давлением и фугитивностью кислорода (Takahashi, 1978; Sugawara, 2000; Herzberg et al., 2016 и др.). Важным моментом является коэффициент распределения отношения Fe⁺²/Mg в системе "оливин-расплав" (см. обзор в статье Takahashi, 1978). Было показано, что в системе, в которой оливин равновесен с расплавом, этот коэффициент равен ~0.3 (Roeder, Emslie, 1970), что обычно и используется для оценки отношения MgO/FeO в расплаве, равновесном с оливином. В перидотите UR17/2 отношение Fe/Mg^{0l}/Fe/Mg^{порода} равно 1.25. Это означает, что оливин не равновесен с расплавом, имеющим такой же состав, как вмещающая порода; оливин равновесен с расплавом, отношение Fe/Mg которого отвечает значению 0.60-0.55. Иными словами, расплав, из которого кристаллизовался данный оливин, содержал значительно больше железа и/или меньше магния, чем в породе, в которой он находится.

Помимо железистости, отношений Fe/Mg и Ca/Al, породы линзы отличаются от ксенолитов мантии повышенными содержаниями никеля.

Таким образом, флогопитовые перидотиты UR17/2 при сходном с примитивной мантией содержании MgO характеризуются высоким содержанием FeO (11 мас. %), пониженной (0.86) величиной #mg и высоким содержанием Ni, среднее содержание которого в лерцолитах UR17/2 равно 2760 ppm, в гарцбургитах — 3737 ppm (табл. 1). Эти характеристики отличают изученные ультрамафиты от большинства других магматических и мантийных ультрамафитов (Palme, O'Neil, 2003).

Нельзя не отметить, что повышенное содержание Fe, Ni и K характерны для импактных расплавов. Экспериментальными работами установлено, что при высокоскоростном ударе последовательность испарения элементов определяется их летучестью. В результате этого происходит обогащение конденсатов летучими K₂O, Na₂O и FeO относительно умеренно летучих SiO₂, MgO и труднолетучих CaO, TiO₂ и Al₂O₃ (Яковлев и др., 1991, 2011; Яковлев, Люль, 1992; Сорокин и др., 2020). Результаты экспериментов согласуются с составами импактных расплавов Попигайской астроблемы (Kettrup et al., 2003), кратеров Брент и Ильинецкий (Dressler, Reimold, 2001) и некоторых других. Ряд ультрамафитов, связанных с импактами, например, ультрамафиты структуры

ГЕОХИМИЯ том 68 № 6 2023

Вредефорт, имеют, как и изученные нами породы, высокие отношения Ni/Cr (рис. 2 в Лобач-Жученко и др., 2021а). Но предположение об импактной природе пород линзы требует дальнейшего изучения.

Преобладающая часть никеля ультрабазитов находится в оливине. Содержание же никеля в *Ol* определяется его количеством в расплаве (Herzberg et al., 2016), коэффициентом распределения $(D_{Ni}^{Ol-melt})$, который контролируется температурой, давлением и фугитивностью кислорода (Hart, Davis, 1978; Sobolev et al., 2007; Li, Ripley, 2010; Herzberg et al., 2016) и степенью полимеризации расплава (Kushiro, Mysen, 2002).

В перидотитах изученного включения содержание Ni в оливинах варьирует от 4730 ppm в лерцолите (центр линзы) до 5612 ppm в гарцбургите (краевая часть включения); среднее значение, измеренное SIMS методом, равно 5206 ppm (Приложение, табл. Д2). Эти величины не согласуется с его магнезиальностью (Fo = 86), т. к. подобные высокие содержания Ni в Ol (от 1000 до 5000 ppm) обычны для пород с #mg > 0.89 (Sobolev et al., 2007). Оливин мантии содержит 2200–3400 ppm Ni, а магматический оливин в случае фракционирования имеет более низкие (до 800 ppm) его концентрации. Более высокие содержания, до 9000 ppm, характерны для расплавов повышенной щелочности (Foley et al., 2013).

Содержание никеля в породах линзы обусловлено количеством оливина (60% объема породы), содержащим ~0.5 мас. % Ni, и флогопитом (ок. 10% объема породы) с содержанием никеля (0.17-0.33 мас. %). Но особенностью оливина изученной линзы является отсутствие корреляции содержания Ni с его магнезиальностью (рис. 5). Установлена строгая зависимость содержания никеля в оливине от его магнезиальности, эволюционирующая от коматиитов до PM (Herzberg et al., 2016) с содержанием в перидотитах около 3000 ppm Ni. Оливины UR17/2 расположены вне тренда эволюции составов при частичном плавлении перидотитов (Herzberg et al., 2016) (рис. 5) и находятся вблизи пикритов Гавайских о-вов и Новулкано-плутонического рильского комплекса (Lobach–Zhuchenko et al., 2021). В координатах Ni ррт vs Fo%, фигуративные точки составов оливинов UR17/2 располагаются вдали от поля оливинов из ксенолитов мантии и находятся вблизи тренда смешения и фракционирования магм (рис. 5). Причиной высокого содержания Ni в изученном оливине может быть повышенное содержание в расплаве калия, повышенные отношения K2O/Na2O и K_2O/Al_2O_3 , которые обуславливают очень высокий коэффициент распределения Ni в оливин (Prelevic, Foley, 2007). Это может иметь значение, если высокое содержание калия было присуще расплаву, из которого кристаллизовался оливин.

Избыток Ni по отношению к магнезиальности отмечен, как сказано выше, для оливинов из пикритов Гавайских островов и Норильского комплекса. В качестве объяснения предложено несколько моделей: 1) особый состав источника, образованный при смешении перидотита с пироксенитом (Sobolev et al., 2007); 2) повышенное давление (Li, Ripley, 2010; Niu et al., 2011; Putirka et al., 2008); 3) увеличение Fe и Ni в результате добавления материала из ядра Земли или с границы ядро-мантия (плюмы) в мантийный источник пикритов (Рябчиков, 2003, 2009; Humayun et al., 2004). Предложенные модели объясняют высокие концентрации никеля в расплаве и, соответственно, в оливине.

Симметричное зональное строение линзы, наличие гибридной каймы ортопироксенита, обогащенной в сравнении с гарцбургитом SiO_2 , Na_2O , Al_2O_3 , присутствие в гнейсоэндербите тонкой полосы, насыщенной лейкократовым материалом, по-видимому, образованной в результате его частичного плавления на контакте с горячим расплавом, согласуются с тем, что породы линзы представляют продукт кристаллизации расплава.

Ключевым вопросом является состав исходного расплава. Гибридизация расплава материалом эндербита, имевшая место до кристаллизации ортопироксена, магнезиальность которого уменьшается при переходе от гарцбургита к ортопироксениту, затрудняют оценку состава расплава. Проверка магматической кристаллизации минералов расплавов состава лерцолита и гарцбургита UR17/2 с применением программы pMELTS 5.6.1 (Ghiorso et al., 2002) продемонстрировала, что рассчитанные последовательность кристаллизации минералов и их магнезиальность существенно отличаются от их наблюдаемых взаимоотношений в шлифах и фактического состава. Также расчеты показали, что исходный состав не соответствует перидотиту.

По данным нашего моделирования кристаллизации минералов из расплава перидотитового состава (в программе "MELTS", Asimow, Ghiorso, 1998), первые кристаллизующиеся шпинели должны иметь высокое содержание как магния, так и хрома. Это позволяет предполагать, что наблюдаемые в породах шпинели скорее являются метаморфогенными: они содержат относительно немного хрома и имеют низкую магнезиальность. Из характера замещения ранних шпинелей и соотношению их с другими минералами следует, что метаморфогенными определенно являются более железистые шпинели, которые отличаются и иным трендом составов, направленным в сторону чистого магнетита (рис. 7а).

Как отмечено выше, оливин линзы равновесен с расплавом, отношение Fe/Mg в котором находится в пределах 0.60-0.55, что типично для магм средне-го-основного состава. Содержание 1.5 вес. % TiO₂ в шпинели, включенной в оливин, указывает на

повышенную щелочность расплава, из которого кристаллизовались оливин и шпинель (Al-феррихромит). Хромиты с повышенным содержанием TiO₂ характерны для субщелочных и щелочных ультраосновных — основных комплексов пород. Можно предполагать, что исходный состав был близок к пикриту, в процессе кристаллизации которого кристаллизовался кумулусный оливин.

выводы

Учитывая геохимические особенности изученных перидотитов, зачастую противоречивость некоторых геохимических параметров пород и минералов, можно предварительно предложить следующую последовательность событий, определивших формирование минералов и перидотитовой линзы в целом.

Главные события происходили ~2814 ± 51 млн лет:

1) Кристаллизация из расплава предположительно пикритового состава оливина и шпинели (Al-хромита) с образованием кумулата, кристаллизация клинопироксена.

 Гибридизация расплава материалом вмещающего гнейсоэндербита.

 Кристаллизация ортопироксена и замещение им клинопироксена.

На этапе 2785-2715 млн лет имело место:

4) Понижение температуры, появление водного флюида, обогащенного калием и кристаллизация флогопита. Одновременно происходит кристаллизация или перекристаллизация некоторых сульфидов.

5) Пластические деформации, образование сдвиговых зон и синхронный гранулитовый мета-морфизм.

6) Регрессивный метаморфизм, поздние низкотемпературные изменения минералов и локальное рассланцевание пород.

В совокупности указанные процессы определили зональное строение и вещественное разнообразие перидотитовой линзы.

Авторы весьма признательны Б.А. Базылеву (ГЕОХИ РАН) и анонимному рецензенту за ценные замечания и поставленные вопросы, работа над которыми существенно улучшила рукопись статьи. Также авторы выражают благодарность В.В. Балаганскому (ГИ КНЦ РАН), Л.М. Степанюку (ИГМР НАН Украины) за участие в полевых исследованиях, О.Л. Галанкиной (ИГГД РАН) за проведенный анализ состава породообразующих минералов.

Работа выполнена в рамках Госзаданий (темы НИР FMUW-2022-0004, FMUW-2022-0002).

ПРИЛОЖЕНИЕ

Таблица Д	[1 . X _I	эним	ский	соста	ів ми	нера	TOB II	срид	ОТИТО	овой	линз	ыUł	R17/2	C 1														
Порода Об	разец	Ми- нерал т	N₂ очки	SiO ₂	rio ₂ A	M ₂ O ₃	FeO	MnO 1	MgO	CaO 1	Na ₂ O I	ζ20]	NiO	Cr2O3	Cym- Ma	si	Ë	R	Cr I	e ²⁺ F	è ³⁺ N	4n N	C B	Ž	×	Ż	Cyn	1- #M
Phi-Lhz UR	17/2	Ю	5* 3	9.43 t	.d.l. t	.d.l.	14.19	0.13	45.68 1	b.d.l.	n.d.	n.d. (0.57	n.d.	100	.986	I	I	- 0	.269 0	.028 0.0	003 1.	- 02	I	I	0.01	2 3	0.86
Phi-Lhz UR	17/2	Ю	11 3	19.31 E	h.d.l. t	.l.b.c	14.84 (0.32	45.33 1	b.d.l.	n.d.	n.d. (0.21	n.d.	100	0.985	I	I	0	.281 0.	030 0.0	007 1.0	- 65	I	I	0.00	4	0.86
PhI-Lhz UR	17/2	Ю	13 3	19.77 b	v.d.l. t	.d.l.	13.99	0.10	45.63 1	b.d.l.	n.d.	л.d. (0.51	n.d.	100	0.994	I	I	0	.281 0	.011 0.0	002 1.7	- 02	1	I	0.01	0 3	0.86
Phi-Lhz UR	17/2	Ю	15 3	9.64 E	v.d.l. t	.d.l.	13.68	0.11	45.98 1	b.d.l.	n.d.	л.d. (09.0	n.d.	100	0.989	I	I	0	264 0	021 0.0	002 1.	- 12	 	I	0.01	2 3	0.87
PhI-Lhz UR	17/2	01	17 3	19.58 t) .l.b.(0.05	14.69	0.15	45.03 1	b.d.l.	n.d.	л.d. (0.51	n.d.	100	0.993	<u> </u>	.002	0	295 0	.013 0.0	003 1.0	88	I	Ι	0.01	0 3	0.85
PhI-Lhz UR	17/2	01	24 4	:0.83 t	.d.l. t	.d.l.	14.58 (0.07	44.23 1	b.d.l.	n.d.	л.d. (0.29	n.d.	100	1.027	I	I	0	307	0.0	002 1.0	- 20	I	Ι	0.00	6 3	0.84
PhI-Lhz UR	17/2	Ю	27 3	19.83 t	.d.l. t	.d.l.	14.50	0.13	44.98	b.d.l.	n.d.	л.d. (9.56	n.d.	100	666.0	I	I	0	303 0	0.0	003 1.0		I	Ι	0.01	1 3	0.85
PhI-Lhz UR	17/2	Ю	30 3	9.84 E	.d.l. t	.d.l.	14.44 (0.08	45.13	0.16	n.d.	л.d. (0.35	n.d.	100	866.0	I	I	0	.299 0.	003 0.0	002 1.0	- 65	I	I	0.0(7 3	0.85
PhI-Lhz UR	17/2	Ю	34 3	19.87 E	.d.l. t	.d.l.	14.65	0.26	44.69 1	b.d.l.	n.d.	л.d. (0.52	n.d.	100	1.002	I	I	0	308	0.0	006 1.	- 22	I	I	0.01	1 3	0.82
Phi-Lhz UR	17/2	Ю	35 3	19.93 E	.d.l.	0.17	14.25	0.06	44.96	b.d.l.	n.d.	n.d. (9.63	n.d.	100	1.001	<u> </u>	.005	0	.299	- 0.0	001 1.0		I	I	0.01	3 3	0.85
Phi-Lhz UR	17/2	Ю	44	:0.26 t	.d.l. t	.l.b.c	13.83	0.14	45.19 1	b.d.l.	n.d.	л.d. (0.57	n.d.	100	1.008	Ι	I	0	290	- 0.0	003 1.0	- 65		I	0.01	2 3	0.85
PhI-Lhz UR	17/2	Ю	54 3	9.74 t	.d.l. t	.d.l.	14.13	0.15	45.44 1	b.d.l.	n.d.	n.d. (0.54	n.d.	100	.995	I	I	0	.285 0	.011 0.0	003 1.	- 02	I	I	0.01	1 3	0.86
Phi-Lhz UR	17/2	Ю	30* 3	9.14 E	.d.l. t	.d.l.	15.00	0.13	45.03 1	b.d.l.	n.d.	n.d. (0.70	n.d.	100	0.983	I	I	0	.280 0.	035 0.0	003 1.0	- 65	I	I	0.01	4	0.86
Phi-Lhz UR	17/2	Ю	37* 4	:0.10 t	h.d.l. t	o.d.l.	14.38	0.05	45.09 1	b.d.l.	n.d.	л.d. (0.39	n.d.	100	1.005	I	I	0	.301	- 0.0	001 1.0	88	I	I	0.00	8	0.85
Phi-Lhz UR	17/2	Ю	38* 4	:0.07 t	h.d.l. t	.d.l.	14.66	0.15	44.42	b.d.l.	n.d.	n.d. (0.69	n.d.	100	1.008	I	I	0	309	- 0.0	003 1.	- 22	I	Ι	0.01	4	0.82
Phi-Lhz UR	17/2	01*	31 4	0.27 (0.02 t	o.d.l.	14.37	0.16	46.25 1	b.d.l.	n.d.	n.d. (0.45	0.01	102	0 0	000	0	0000	282 0	.015 0.0	003 1.	- 02	I	I	0.00	9 3	0.85
Phi-Lhz UR	17/2	01*	32 4	0.39 (0.03 t	.d.l.	14.45	0.18	45.76 1	b.d.l.	b.d.l. (0.01	0.40 l	b.d.l.	101	1.000 0	.001	I	0	.299	- 0.0	004 1.0	- 65	I	0.0(0.00	8	0.85
PhI-Lhz UR	17/2	01*	35 4	0.93	0.01 t	.l.b.c	12.77	0.13	47.54	0.02	0.01 b	, d.l. (0.46	0.01	102	0 866.0	000	0	0000	.257 0.	004 0.0	003 1.	73 0.0	0.00		0.00	9 3	0.87
Phi-Lhz UR	17/2	01*	42 4	0.12 E	.d.l. t	.d.l.	13.68 (0.24	46.80 1	b.d.l.	b.d.l. ().02 (0.42 l	b.d.l.	101	0.987	Ι	I	0	.256 0	0.000	005 1.		I	0.0(0.00	8 3	0.86
Phi-Lhz UR	17/2	01*	46 4	:0.92 E	h.d.l. t	.d.l.	13.68	0.27	46.39 1	b.d.l.	p.d.l. () 10.0	0.42 l	b.d.l.	102	1.005	I	I	0	.281	- 0.0	006 1.7	- 02	I	0.0(0.00	8 3	0.86
Phi-Lhz UR	17/2	01*	47 4	0.30	0.01 t	o.d.l.	13.40	0.19	46.13 1	b.d.l.	b.d.l. (0.01	0.41	b.d.l.	100	1.001 0	000	I	0	.278	- 0.0	004 1.	- 12	I	0.00	0.00	8	0.86
Phi-Lhz UR	17/2	01*	55 4	:0.53 t	.d.l. t	.d.l.	13.93	0.22	46.57	0.04	p.d.l. (0.01	0.39 1	b.d.l.	102	.995	Ι	I	0	.276 0	010 0.0	005 1.7	70 0.0	- 10	0.00	0.00	8	0.86
PhI-Lhz UR	17/2	01*	58 4	0.53 ().02	0.01	13.52 (0.22	46.60	0.01	0.01 b	, d.l. (0.44	0.02	101	0 266.0	000	0000	000.	.274 0.	005 0.0	005 1.	71 0.0	0.0(- 10	0.00	9 3	0.86
Phi-Lhz UR	17/2	01*	59 4	:0.40 E	.d.l.	0.01	14.05	0.22	46.00	0.00	b.d.l. b	.d.l.	0.41	0.00	101	000.1	<u> </u>	.000	0	290 0	0.0	005 1.7	- 02	I	I	0.00	8	0.85
Phi Hzb UR	17/2-2	Ю	7* 4	:0.00 E	.d.l. t	.d.l.	14.48 t	2.d.l.	45.21 1	b.d.l.	n.d.	n.d. (0.31	n.d.	100	1.002	I	I	0	.303		-	- 69	I	I	0.0(6 3	0.85
PhI Hzb UR	17/2-2	Ю	14* 4	:0.05 E	h.d.l. t	.l.b.c	13.99 E	.d.l. ∠	45.34 1	b.d.l.	n.d.	n.d. (0.39	n.d.	100	1.003	I	I	0	.293	I	<u></u>	- 69		Ι	0.00	8	0.85
Phi Hzb UR	17/2-2	Ю	36* 3	9.58 b	.d.l. t	.l.b.c	14.89 t	.d.l.	45.13 1	b.d.l.	n.d.	n.d. (0.40	n.d.	100	0.993	I	I	0	.297 0	.015	- <u>-</u>	- 69		I	0.0(8	0.85
PhI Hzb UR	17/2-2	Ol	38* 4	10.46 t	1.l.b.	0.05	14.46 t	2.d.l. ∠	44.70 1	b.d.l.	n.d.	n.d. (0.33	n.d.	100	1.016	-	.002	- 0	.304		- 1.	57 -	Ι		0.00	7 3	0.85

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

587

ГЕОХИМИЯ

том 68 № 6

Продолжение
Д1.
Таблица

#Mg	0.85	0.86	0.86	0.86	0.86	0.87	0.85	0.86	0.89	0.86	0.86	0.86	0.86	0.86	0.86	0.87	0.87	0.87	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86
Сум- ма	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Ni	0.008	0.002	0.003	0.005	0.013	0.002	0.003	0.006	0.012	0.005	0.006	0.004	0.003	0.007	0.003	0.002	0.002	0.003	0.010	0.010	0.009	0.011	0.009	0.010	0.009	0.010	0.010	0.009	0.004
К	Ι	Ι	Ι	Ι	Ι	Ι	I	I	Ι	Ι	I	Ι	Ι	Ι	Ι	I	Ι	Ι	0.000	Ι	0.000	0.000	Ι	Ι	I	Ι	0.000	I	Ι
Na	-	Ι	Ι	Ι	Ι	I	Ι	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	0.001	Ι	0.001	0.001	Ι	Ι	Ι	Ι	Ι	I	I
Са	I	Ι	Ι	I	I	I	I	I	I	I	Ι	0.001	Ι	Ι	Ι	Ι	Ι	Ι	0.000	0.000	Ι	0.001	0.000	Ι	Ι	I	0.000	0.000	Ι
Mg	1.69	1.71	1.71	1.71	1.70	1.72	1.70	1.71	1.74	1.70	1.71	1.70	1.72	1.70	1.71	1.74	1.73	1.75	1.72	1.69	1.71	1.73	1.71	1.71	1.72	1.72	1.71	1.72	1.71
Mn	0.003	Ι	0.002	0.002	0.003	0.003	0.002	0.002	I	Ι	0.002	0.002	0.003	0.005	0.002	Ι	Ι	Ι	0.004	0.004	0.005	0.004	0.004	0.004	0.005	0.004	0.003	0.004	0.001
Fe ³⁺	I	Ι	I	I	0.009	0.008	I	0.017	0.040	Ι	I	I	I	Ι	I	I	Ι	0.001	0.017	Ι	0.025	0.042	0.018	Ι	0.019	0.013	0.018	0.019	0.021
Fe^{2^+}	0.298	0.287	0.276	0.278	0.278	0.267	0.289	0.277	0.225	0.279	0.271	0.275	0.274	0.273	0.274	0.255	0.253	0.252	0.253	0.283	0.260	0.233	0.264	0.279	0.259	0.262	0.266	0.262	0.277
Cr	I	Ι	I	I	I	I	Ι	I	I	I	I	I	I	Ι	I	I	Ι	Ι	0.000	0.000	0.000	Ι	0.000	0.000	0.001	0.000	0.000	I	I
W		0.001	0.005	0.005	Ι	0.009	0.011	0.003	I	0.005	0.004	I	I	Ι	I	I	Ι	Ι	I	0.001	I	Ι	I	I	I	0.000		I	I
Τï	I	Ι	Ι	I	Ι	Ι	Ι	I	Ι	Ι	I	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	0.000	Ι	Ι	I	Ι	I	I	I
Si	1.001	1.000	1.008	1.000	0.996	0.991	1.000	0.990	0.980	1.010	1.005	1.016	1.005	1.018	1.014	1.008	1.020	1.000	0.992	1.007	0.988	0.979	0.991	1.001	0.990	0.993	0.991	0.991	0.990
Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	101	101	101	101	102	101	101	101	101	100	100
Cr ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.01	0.02	0.01	b.d.l.	0.02	0.01	0.03	0.02	0.01	b.d.l.	n.d.
NiO	0.38	0.08	0.17	0.24	0.64	0.11	0.15	0.29	0.58	0.26	0.30	0.20	0.16	0.33	0.17	0.10	0.08	0.16	0.51	0.48	0.46	0.53	0.47	0.49	0.46	0.49	0.50	0.44	0.19
K ₂ O	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.01	0.00	0.01	0.01	b.d.l.	b.d.l.	b.d.l.	0.00	0.01	b.d.l.	n.d.
Na ₂ O	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.01	b.d.l.	0.01	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	n.d.
CaO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.04	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.01	0.01	b.d.l.	0.03	0.01	b.d.l.	b.d.l.	b.d.l.	0.01	0.01	b.d.l.
MgO	45.28	46.03	45.87	46.03	45.68	46.35	45.56	45.79	47.16	45.72	46.14	45.78	46.19	45.61	45.89	46.94	46.62	47.27	46.84	45.76	46.45	47.07	46.98	46.14	46.52	46.71	46.56	46.12	45.87
MnO	0.13	b.d.l.	0.11	0.08	0.12	0.16	0.08	0.11	b.d.l.	b.d.l.	0.08	0.10	0.14	0.25	0.11	0.01	b.d.l.	b.d.l.	0.18	0.19	0.23	0.18	0.19	0.21	0.24	0.19	0.16	0.20	0.07
FeO	14.22	13.76	13.24	13.33	13.73	13.22	13.82	14.07	12.75	13.35	13.02	13.16	13.17	13.05	13.16	12.30	12.19	12.20	13.09	13.63	13.76	13.35	13.76	13.43	13.40	13.32	13.78	13.43	14.24
Al ₂ O ₃	b.d.l.	0.03	0.17	0.18	b.d.l.	0.32	0.36	0.10	b.d.l.	0.17	0.12	b.d.l.	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.01	b.d.l.	b.d.l.	b.d.l.							
TiO ₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.01	b.d.l.						
SiO ₂	39.98	40.10	40.44	40.15	39.83	39.85	40.02	39.64	39.51	40.49	40.35	40.72	40.34	40.75	40.67	40.65	41.10	40.38	40.20	40.53	39.94	39.72	40.49	40.34	39.99	40.26	40.20	39.70	39.63
ле Ме	26*	1*	7	7	7	18	19*	20	20	27	28	41	42	43*	44	52	59	*09	1	4	6	12	14	19	21	25	26	29	1
Ми- нерал 1	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	*10	*10	*10	*10	*10	*10	*10	*10	01*	*10	10
Образец	J R1 7/2-2	JR17/2-2I	JR17/2-211																										
Порода	<i>Phi Hzb</i> L	Phl-Hzb L	Phi-Hzb L	Phl-Hzb L	Phi-Hzb L	Phl-Hzb L																							

ГЕОХИМИЯ том 68 № 6

2023

Продолжение	
Таблица Д1.	

ГЕОХИМИЯ	том 68	№ 6
LOAMMIN	10M 00	J¶≌ U

#Mg	0.85	0.85	0.86	0.87	0.86	0.85	0.85	0.86	0.87	0.86	0.85	0.86	0.86	0.85	0.86	0.85	0.87	0.86	0.86	0.86	0.87	0.87	0.86	0.86	0.86	0.86	0.87
Сум- ма	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Ż	0.003	0.008	0.005	0.002	0.004	0.009	0.010	0.003	0.004	0.006	0.001	0.004	0.001	0.004	0.010	0.004	0.006	0.008	0.003	0.006	0.014	0.012	0.011	0.010	0.016	0.018	0.017
a K	1		1	1			1											1									
Z		 								 		 	 		 	 		 						 	 		
1g (. 69	. 89	1	72	7	. 89	. 89	20	72	- 20	20	72	1	. 69	- 20	- 20	72	1	1	- 20	73	3	20	12	12	. 69	72
2	.1			1.		1.	Ι.			Ι.		Ι.	Τ.	1.	Ι.		Γ.	-		Γ.							
Mn	0.004	0.001	0.003	0.001	0.001	0.001	Ι	0.002	0.004	I	0.004	0.001	0.001	I	I	0.004	I	0.001	0.004	0.001	0.004	0.007	0.005	0.004	0.002	0.00	0.003
Fe^{3+}	I	Ι	0.002	0.032	I	I	Ι	0.012	0.022	Ι	0.006	Ι	0.009	Ι	Ι	Ι	0.024	0.010	0.005	I	0.009	0.019	0.017	0.009	0.001	Ι	0.027
Fe ²⁺	0.298	0.296	0.282	0.264	0.286	0.308	0.303	0.288	0.254	0.285	0.292	0.274	0.287	0.286	0.279	0.288	0.262	0.281	0.285	0.281	0.250	0.258	0.280	0.268	0.276	0.282	0.249
Ċ	I	Ι	Ι	Ι	Ι	Ι	Ι	I	Ι	I	Ι	I	I	I	I	Ι	I	Ι	I	I	I	I	I	Ι	Ι	Ι	I
F).006	I).004	.004).006	I	Ι).005).006	I	.004).002	I	Ι	I	Ι	I	Ι	Ι	0.001	Ι	Ι	I	Ι	Ι).006	Ι
Ë		Ι		1		Ι	I			Ι	1		Ι	Ι	Ι	Ι	I	Ι	I		I	I	I	Ι	Ι		
Si	1.001	1.019	0.997	0.982	0.998	1.000	1.009	0.992	0.986	1.014	0.995	1.004	0.996	1.025	1.012	1.006	0.988	0.995	0.998	1.008	0.996	0.990	166.0	0.996	0.999	1.001	0.986
Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Cr ₂ O ₃	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
NiO	0.17	0.37	0.26	0.12	0.18	0.42	0.49	0.13	0.20	0.32	0.06	0.18	0.07	0.20	0.51	0.19	0.29	0.38	0.17	0.28	0.70	0.62	0.56	0.48	0.78	0.88	0.85
K ₂ O	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Na ₂ O	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
CaO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
MgO	45.22	44.85	45.86	46.13	45.87	44.97	44.87	45.58	46.49	45.48	45.58	46.20	45.83	45.17	45.62	45.60	46.31	45.79	45.82	45.77	46.61	46.05	45.41	46.11	45.81	45.20	46.23
MnO	0.19	0.04	0.15	0.04	0.05	0.05	b.d.l.	0.10	0.19	b.d.l.	0.19	0.04	0.05	b.d.l.	b.d.l.	0.19	b.d.l.	0.04	0.18	0.07	0.21	0.33	0.24	0.19	0.10	0.28	0.12
FeO	14.24	14.12	13.64	14.19	13.69	14.68	14.44	14.36	13.29	13.65	14.23	13.17	14.17	13.66	13.35	13.76	13.74	13.95	13.87	13.48	12.43	13.30	14.19	13.28	13.29	13.48	13.23
Al ₂ O ₃	0.20	b.d.l.	0.15	0.12	0.22	b.d.l.	b.d.l.	0.16	0.19	b.d.l.	0.12	0.08	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.02	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.19	b.d.l.
TiO ₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
SiO ₂	39.98	40.62	39.94	39.40	39.99	39.87	40.21	39.67	39.65	40.55	39.82	40.33	39.88	40.96	40.52	40.27	39.66	39.83	39.96	40.37	40.05	39.70	39.59	39.94	40.02	39.97	39.56
№ гочки	4*	9	6*	7	17	19	21	28	30	33	35	36	36	41	43	49*	50*	51	54*	57	18*	6	6	12	14*	15*	10*
Ми- терал 1	01	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
бразец	117/2-2II	117/2-211	117/2-211	117/2-211	117/2-211	117/2-211	117/2-211	117/2-2II	117/2-211	117/2-211	117/2-211	117/2-211	117/2-211	117/2-211	117/2-2II	17/2-211	117/2-211	117/2-2II	117/2-211	117/2-211	117/2-2v	117/2-2v	117/2-2v	117/2-2v	117/2-2v	117/2-2b	t17/2-2b
ТаО	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	b UR	
Πopo	PhI-H ₂	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz	Phl-H2	Phl-Hz	Phl-H ₂	Phl-Hz	Phl-H ₂	Phl-H ₂	Phl-H ₂	Phl-H ₂	Phl-Hz	Phl-Hz	Phl-Hz	<i>PhI-H</i> _ζ	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz	Phl-Hz

$\begin{array}{c} {\rm Fe}^{3+} \\ {\rm Fe}^{3+} \\ {\rm +AI} \end{array}$	0.36 0.24	0.48 0.17	0.05	0.22	0.08	0.19	0.22	0.13	0.05	0.94	010	01-0	0.17		0.22		0.13	0.15		0.36	000	0.70	0.97		0.88	0.21		0.34	0.21		0.15	0.22		0.19
Cr/ Cr+ + Al	0.61 0.51	0.60 0.46	0.37	0.49	0.40	0.40	0.42	0.45	0.13	0.77	0.54	-	0.54		0.56		0.52	0.59		0.59	22.0	c/.n	0.80		0.72	09.0		0.62	0.60		0.53	0.45		0.44
$\begin{array}{c} Mg/\\ Mg+\\ + Fe^{2+}\end{array}$	0.17 0.28	0.17 0.29	0.37	0.25	0.38	0.30	0.32	0.30	0.60	0.04	0.00	70.0	0.28		0.25		0.30	0.26		0.20	0.02	cn.n	0.06		0.09	0.24		07.0	0.25		0.28	0.30		0.29
Сум- ма	<i>ო ო</i> ძ	n n	3	3	3	3	3	3	с, i	ς	n 4	r	3		3		з	3		3	ç	c	3		3	3	,	m	ŝ	,	3	3		ю
V^{3+}	0.013 0.008	0.014 0.013	0.012	0.012	0.010	0.006	Ι	0.011		0.029	210.0	110.0	0.010		0.016		0.017	0.015		Ι		I	Ι		Ι	0.013	0000	0.008	0.012		0.018	0.008		0.013
ïż	0	0.010 0.004	Ι	Ι	0.009	0.003	0.005	Ι		0.025	0.004	- 00.0	0.002		0.001		0.001	0.003		0.006	200.0	170.0	0.015		0.020	0.006	0.00	010.0	I		Ι	0.007		0.003
Zn	0.035 0.029	0.029 0.033	0.076	0.042	0.061	0.039	0.051	0.061	0.071	I	0.030	000.0	0.032		0.045		0.035	0.043		0.028		I	Ι		Ι	0.025		0.045	0.038		0.026	0.039		0.043
Ca			Ι	Ι	Ι	Ι	I	Ι	I	Ι			Ι		Ι		Ι	I		Ι		I	Ι		Ι	Ι		I	0.004		0.006	I		I
Mg	0.173 0.279	0.169 0.288	0.359	0.251	0.359	0.294	0.314	0.291	0.562	0.044	0.310	(10.0	0.281		0.260		0.301	0.260		0.202	0.033	ccu.u	0.059		0.090	0.246		0.1.90	0.249		0.284	0.299		0.290
Mn		0.006	Ι	Ι	0.001	I	Ι	Ι	0.007	I			0.008		Ι		0.008	0.003		Ι		I	Ι		I	Ι		I	0.005		0.012	0.004		0.004
Fe ³⁺	0.336 0.259	0.194 0.194	0.058	0.234	0.096	0.243	0.270	0.142	0.086	1.432	0.000	7/0.0	0.165		0.206		0.125	0.127		0.371	1 701	1./01	1.640		1.254	0.184		0.312	0.180		0.145	0.257		0.218
Fe ²⁺	0.861 0.731	0.717 0.717	0.600	0.757	0.590	0.696	0.658	0.675	0.374	1.028	010.10	100.0	0.732		0.779		0.715	0.744		0.792	0.074	U.7/4	0.964		0.944	0.773		66/.0	0.758		0.736	0.692		0.705
Cr	0.938 0.858	0.822 0.793	0.694	0.827	0.745	0.687	0.703	0.824	0.248	0.311	102.0		0.940		0.920		0.915	1.047		0.924	1110	0.114	0.227		0.463	1.029		1.002	1.038		0.933	0.744		0.756
A	0.602 0.813	0.930 0.930	1.190	0.852	1.129	1.015	0.972	0.989	1.639	0.093	0.004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.795		0.721		0.859	0.735		0.650	0.020	ocu.u	0.057		0.177	0.697		0.612	0.689		0.814	0.925		0.953
Ξ	0.037 0.006	0.033 0.012	Ι	0.014	Ι	0.005	0.007	0.006	0.003	0.021			0.020		0.042		0.007	0.008		0.007	1000	40.0	0.025		0.030	0.017		0.016	0.026		0.013	0.012		0.010
si	0.017	0.012	0.011	0.011	Ι	0.013	0.021	Ι	0.010	10.0	170.0	07070	0.016		0.011		0.019	0.016		0.020		I	0.013		0.024	0.009	0	010.0	0.002		0.014	0.014		0.008
To- tal	100	100 100	100	100	100	100	100	100	100	100	100	201	100		100		100	100		100	100	001	100		100	100	00,	100	100		100	100		100
V ₂ O ₂	0.47 0.32	0.00 0.63	0.49	0.46	0.40	0.24	b.d.l.	0.42	b.d.l.	1.00	CF-0	71.0	0.37		0.59		0.64	0.55		b.d.l	ן ק	T'D' 0	b.d.l.		p.d.l	0.48		62.0	0.47	5	0.71	0.30		0.51
NiO	b.d.l. b.d.l.	0.38 0.17	b.d.l.	b.d.l.	0.37	0.10	0.21	b.d.l.	b.d.l.	0.88	0.14	110	0.09		0.02		0.02	0.13		0.22	100	0.74	0.51		0.72	0.24		0.3/	b.d.l.		b.d.l.	0.28		0.10
ZnO	1.41	1.16 1.42	3.38	1.77	2.70	1.67	2.18	2.60	3.48	b.d.l.	1 28	07.1	1.32		1.85		1.48	1.77		1.12	ן ק ק	D.U.L.	b.d.l.		b.d.l.	1.04	i,	1.72	1.56		1.08	1.67		1.82
CaO	b.d.l. b.d.l.	b.d.l. b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	ы. Ч.		b.d.l.		b.d.l.		p.d.l.	b.d.l.		b.d.l.	- 7 - 7		b.d.l.		b.d.l.	b.d.l.		p.d.l.	0.11		0.18	b.d.l.		b.d.l.
MgO	3.44 5.79	3.36 6.07	7.91	5.21	7.84	6.28	6.70	6.15	13.70	0.82	1.40	00.0	5.82		5.31		6.30	5.33		4.07	50	70.0	1.12		1.71	5.00		3.92	5.05		5.90	6.33		6.14
MnO	b.d.l. 0.01	0.38 0.22	b.d.l.	b.d.l.	0.03	b.d.l.	b.d.l.	b.d.l.	0.29	b.d.l.	ы. 1 р. d. l		0.30		b.d.l.		0.30	0.09		b.d.l.	- 7 4		b.d.l.		b.d.l.	b.d.l.		b.d.l.	0.16		0.42	0.15		0.14
FeO	42.52 36.66	48.01 34.27	25.82	36.69	26.68	35.81	35.36	30.76	20.03	82.54 02.40	74.00 70 16	01./2	33.13		35.92		31.35	31.77		41.88	36 00	67.76	87.62		74.83	34.66	0000	39.38	33.96		32.62	35.80		34.83
Cr ₂ O ₃	35.25 33.60	30.80 31.58	28.80	32.43	30.69	27.70	28.33	32.78	11.42	11.03	10.7 20.92	c/.0c	36.73		35.48		36.13	40.40		35.20	0.1	4.02	8.09		16.66	39.40		31.70	39.78		36.58	29.70		30.18
Al ₂ O ₃	15.17 21.37	13.71 24.84	33.14	22.40	31.19	27.48	26.27	26.41	50.56	2.21	10.2 22.61	10.77	20.84		18.65		22.75	19.03		16.61	00.0	0.07	1.37		4.28	17.91	ļ	15.4/	17.70		21.40	24.76		25.53
TiO ₂	1.47 0.26	1.29 0.50	b.d.l.	0.59	b.d.l.	0.23	0.28	0.26	0.15	0.78	1.7U		0.81		1.71		0.28	0.32		0.29	201	17.1	0.93		1.12	0.67	0	0.65	1.04		0.52	0.51		0.41
SiO ₂	0.18 0.51	0.30	0.37	0.35	b.d.l.	0.42	0.67	b.d.l.	0.37	0.52	07.0	10.0	0.50		0.33		0.60	0.49		0.60	- - -	n.u	0.36		0.68	0.28	0	62.0	0.06		0.43	0.43		0.24
№ Точ- КИ	42 12*	5 ⁴ 0*	10	41*	23*	20	22	28	*6	7	12*	1	16		23*		33*	34		5*	11*	1	3*		9*	5	ţ	6*	35	1	33*	14*		15
Ми- нерал	Al-Crt Al-Crt	Fe-Crt Pc	Pc	Pc	Pc	Pc	Pc	Pc	Pst	Mgt	AL-CH		AI-Crt		Al-Crt	1	Al-Crt	Al-Crt		Al-Crt	Meet	ISIN	Mgt		Cr- Met	Al-Crt	(AI-UT	Al-Crt		Al-Crt	Pc		Pc
Обра- зец	UR17/2 UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2		2-2	URI7/	2-2	URI7/	2-2	URI7/	2-2 UR17/	2-2	URI7/	2-2	//INU	urit/	2-2	UR17/ 2-2	URI7/	2-21	UKI//	2-21 UR17/	2-21	URI7/	2-2I UR17/	2-2I	UR17/ 2-21
Порода	Phl-Lhz	PhI-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	5hl-Lhz	2hl-Lhz	Phi-Lhz	Dh1-LN2	Hzb	-Inf-	qžH	-1µI-	Hzb	-Jhl-	-lhf	Hzb	-lul-	Hzb D-La	-111-	-Ihd	qžH	-Ihl-	-Ihl-	Hzb	-Int-	-lul-	Hzb	-lul-	Hzb Phl-	Hzb	-lul- Hzb

ЛОБАЧ-ЖУЧЕНКО и др.

590

Таблица Д1. Продолжение

ГЕОХИМИЯ том 68 Nº 6 2023 ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

$\begin{array}{c} Fe^{3+} \\ Fe^{3+} \\ + AI \end{array}$	0.26	0.93	0.82	0.87	0.25	0.33	0.33	0.09	0.08	0.09	0.13	0.18	0.13	0.25	0.05	0.05	0.04	0.82	0.84	06.0	0.97	0.96	0.92	0.97
${ m Cr}/{ m Cr}$ + Al	0.48	0.71	0.69	0.70	0.44	0.52	0.52	0.22	0.18	0.29	0.50	0.49	0.32	0.45	0.08	0.10	0.08	0.71	0.75	0.73	0.76	0.72	0.74	0.77
$\frac{Mg}{Mg+}$ + Fe ²⁺	0.25	0.07	0.08	0.08	0.28	0.23	0.24	0.49	0.54	0.41	0.33	0.27	0.40	0.23	0.73	0.66	0.67	0.09	0.07	0.07	0.04	0.05	0.05	0.04
Сум- ма	3	3	3	3	3	3	3	3	3	3	3	3	Э	3	Э	Э	ю	3	3	3	3	Э	ю	3
v^{3+}	0.013	I	Ι	ļ	ļ	0.013	0.020	I	0.004	Ι	0.006	Ι	Ι	0.007	Ι	Ι	Ι	0.026	0.032	0.032	0.013	0.013	0.017	I
ïŻ	0.004	0.017	0.012	0.012	0.012	0.011	I	0.004	0.013	0.007	0.005	Ι	I	0.023	0.009	0.012	0.006	0.027	0.031	0.033	0.019	0.020	0.016	0.029
Zn	0.043	I	I	I	0.033	0.032	0.040	0.060	0.065	0.057	0.049	0.053	0.056	0.051	0.091	0.081	0.078	Ι	I	I	I	Ι	I	I
Ca	1	I	I	0.006	I	I	I	I	I	I	I	I	I	I	I	Ι	Ι	I	I	I	I	Ι	I	I
Mg	0.251	0.075	0.087	0.078	0.275	0.236	0.251	0.465	0.511	0.394	0.319	0.255	0.377	0.218	0.668	0.606	0.626	0.099	0.083	0.078	0.046	0.053	0.053	0.036
Mn	I	I	I				I	0.002	0.005	I	0.009		0.011	Ι	I	0.001	I	I	I	0.027		I	I	1
Fe ³⁺	0.297	1.430	1.047	1.255	0.316	0.357).353	0.144	0.125	0.128	0.133	0.201	0.190	0.296	960.0	0.081	0.072	0.975	0.919	1.126	1.684	1.646	1.328	1.739
Fe^{2+}	.750 (.004	066.0	.957	.693 (.793 (.776 (.476 (.431	.566 (.640	.693 (.561 (0.747 (.247 (.308	.302 (.038 (060.1	.068	000.1	966.(1.065	.962
_ ت	0.780 (0.267	.537 0	.445 (.734 0	0.789 (.801 0	.409 (.336 (.534 (.915 0	.876 0	0.581 (.734 (0.151 (0.183 (0.151 (1).515	.526 1	.362	0.152).166 (0.312	0.160 (
F	.841 0	0.111 0	.236 0	.193 0	.925 0	.726 0	.733 0	.434 0	.495 0	.290 0	.916	.923 0	.221 (.897 0	.725 (.720 (.753 (.208 (0.178 0	.132 0	.049 (.064 (0110	.047 (
Ë	.022 0	0 960.	0 060.	.054 0	.013 0	.027 0	.027 0	.003 1	-	.007 1	0	0	.004 1	.011 0	.003 1	-	-	.101 0	.141 0	.143 0	.023 0	.022 0	.081 0	.013 0
Si	0	0	0	0	0	.017 0	0	004 0	.017	.017 0	600		0	.015 0	011 0	008	.012	.012 0	0	0	016 0	020 0	.018 0	.014 0
To- tal	100	100	100	100	100	100 0	100	100 0.	100 0	100 0	100 0.	100	100	100 0	100 0	100 0.	100 0	100 0	100	100	100 0	100 0	100 0	100 0
V ₂ O ₃	0.51	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.51	0.76	b.d.l.	0.16	b.d.l.	0.25	b.d.l.	b.d.l.	0.25	b.d.l.	b.d.l.	b.d.l.	0.91	1.12	1.10	0.44	0.47	0.61	b.d.l.
NiO	0.14	0.58	0.44	0.42	0.46	0.40	b.d.l.	0.17	0.55	0.28	0.18	b.d.l.	b.d.l.	0.89	0.42	0.55	0.26	0.96	1.10	1.14	0.65	0.70	0.56	1.01
ZnO	1.82	b.d.l.	b.d.l.	b.d.l.	1.41	1.31	1.66	2.81	3.10	2.58	2.07	2.22	2.53	2.12	4.61	4.06	3.95	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
CaO	b.d.l.	b.d.l.	b.d.l.	0.17	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
MgO	5.22	1.42	1.67	1.49	5.79	4.83	5.14	10.82	12.10	8.89	6.75	5.34	8.37	4.49	16.83	15.06	15.72	1.88	1.57	1.48	0.86	1.00	0.99	0.68
MnO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.10	0.19	b.d.l.	0.32	b.d.l.	0.41	b.d.l.	b.d.l.	0.04	b.d.l.	b.d.l.	b.d.l.	0.91	b.d.l.	b.d.l.	b.d.l.	b.d.l.
FeO	38.71	82.19	69.40	75.22	37.95	41.91	41.24	25.69	23.49	27.89	29.12	33.38	29.69	38.31	15.40	17.25	16.76	68.40	67.69	73.77	90.10	88.92	80.31	90.64
Cr ₂ O ₃	30.52	9.54	19.36	16.02	29.18	30.41	30.96	17.95	15.02	22.70	36.49	34.60	24.32	28.53	7.17	8.57	7.17	18.50	18.75	12.86	5.41	5.90	11.06	5.68
$\mathbf{M}_2\mathbf{O}_3$	22.08	2.67	5.71	4.65	24.68	18.77	19.00	42.20	44.79	36.78	24.50	24.46	34.30	23.39	55.01	54.09	55.70	5.01	4.26	3.14	1.16	1.52	2.63	1.12
TiO ₂	0.89	3.60	3.41	2.03	0.53	1.09	1.08	0.13	b.d.l.	0.31	b.d.l.	b.d.l.	0.19	0.46	0.13	b.d.l.	b.d.l.	3.81	5.27	5.36	0.85	0.83	3.02	0.48
SiO ₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.53	b.d.l.	0.14	0.59	0.58	0.27	b.d.l.	b.d.l.	0.47	0.42	0.29	0.44	0.33	b.d.l.	b.d.l.	0.44	0.57	0.51	0.39
N₀ to4- kn	49*	38*	56*	62	57	49	44*	32*	46	14	4	24*	15*	9	15*	47*	33*	50*	45*	14	39	40	12	13
Ми- нерал	Pc	Ċ	Cr-	Cr-	P_{c}^{Mgt}	Al-	Al-	F_{CH}	Pc	Pc	Pc	Pc	Pc	Pc	Pns	Pns	Pns	Ċ-	Cr-	Cr-	Mgt Mgt	Mgt	Mgt	Mgt
ізец	/2-2I	/2-2I	/2-2I	/2-2I	/2-2I	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-211	/2-2II
O6pa	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,	UR17,
По- рода	-lhl-	Hzb Phl-	-lul d2H	-lyl Dhl-	Hzb Phl-	-lul- d2H	Phl-	lhl- Uhl-	-lul- d2H	-lyl Dhl-	-lul- d2H	-lyd d2H	-lyl Dhl-	-lyl d2H	-lul-	-lul- d2H	Phl-	Phl-	-14d azu	-lyl Dhl-	-lyl Dhl-	-lyl Dhl-	-lul Dhl-	Phl- Hzb
ГЕОХИМ	ИЯ	т	ом 68	8	Nº 6	20)23																	

Таблица Д1. Продолжение

и Д1. Продолжение	родолжение	кение	e																						·					
Образец $\frac{M_{H^-}}{Heparr} \propto \frac{N_0}{K^{H}}$ SiO ₂ TiO ₂ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO M	$\left(\begin{array}{c c} M_{H^{-}} & N_{0} \\ Hepa_{II} & TOH^{-} \end{array} \right) SIO_{2} TIO_{2} TIO_{2} AI_{2}O_{3} CI_{2}O_{3} FeO MIO M$	$\begin{bmatrix} N_{0} \\ r^{OH-} \\ K^{H} \end{bmatrix} = \begin{bmatrix} N_{0} \\ SiO_{2} \end{bmatrix} \begin{bmatrix} AI_{2}O_{3} \\ AI_{2}O_{3} \end{bmatrix} \begin{bmatrix} CI_{2}O_{3} \\ FeO \end{bmatrix} \begin{bmatrix} M_{1}O \\ M_{1}O \end{bmatrix} \begin{bmatrix} K_{1} \\ K^{H} \end{bmatrix}$	$\left \operatorname{SiO}_2 \left \operatorname{TiO}_2 \right \operatorname{AI}_2 \operatorname{O}_3 \left \operatorname{Cr}_2 \operatorname{O}_3 \right \operatorname{FeO} \left \operatorname{MnO} \right \operatorname{MnO} \right $	2 TiO2 Al2O3 Cr2O3 FeO MnO W	$\left {{}^{2}} \right $ Al ₂ O ₃ Cr ₂ O ₃ FeO MnO M	3 Cr2O3 FeO MnO M	3 FeO MnO M	MnO N.	2	lgO (CaO N	a ₂ 0 F	ζ20 Γ	ViO V.	ум- S иа	ii Ti	F	Ľ	Fe ²⁺	Fe ³⁺	Mn	Mg	Ca	Za	ے ب	Ii Cym Ma	- W#	g En	щ	, S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Opx* 33 57.28 0.04 0.84 0.06 9.06 0.19	33 57.28 0.04 0.84 0.06 9.06 0.19	57.28 0.04 0.84 0.06 9.06 0.19	28 0.04 0.84 0.06 9.06 0.19	4 0.84 0.06 9.06 0.19	4 0.06 9.06 0.19	9.06 0.19	0.19		33.08	0.19 b	.d.l. G	0.01 0	0.05 1	01 1.5	98 0.0C	10.0	34 0.00	2 0.262	0.000	0.006	5 1.71 (0.007	- 0.	0.0 000	01 4	87	86	13	\sim
UR17/2 Opx* 34 57.42 0.07 0.88 0.10 9.24 0.26 33.	Opx^* 34 57.42 0.07 0.88 0.10 9.24 0.26 33.	34 57.42 0.07 0.88 0.10 9.24 0.26 33.	57.42 0.07 0.88 0.10 9.24 0.26 33.	42 0.07 0.88 0.10 9.24 0.26 33.	7 0.88 0.10 9.24 0.26 33.	3 0.10 9.24 0.26 33.	9.24 0.26 33.	0.26 33.	33.	48	0.27 b	.d.l. (0 10.0	0.06 1	02 1.5	97 0.00	12 0.0	36 0.00	3 0.235	0.026	0.008	3 1.71	0.010	<u>;</u> 1	0.0 000	02	88	87	12	_
$UR17/2$ Opx^* 37 56.70 0.07 0.94 0.09 9.16 0.22 32.	<i>Opx</i> * 37 56.70 0.07 0.94 0.09 9.16 0.22 32.	<i>37</i> 56.70 0.07 0.94 0.09 9.16 0.22 32.	56.70 0.07 0.94 0.09 9.16 0.22 32.	70 0.07 0.94 0.09 9.16 0.22 32.	7 0.94 0.09 9.16 0.22 32.	4 0.09 9.16 0.22 32.	9.16 0.22 32.	0.22 32.	32.	80	0.37 0	0.02 0	01 0	0.07	00 1.5	97 0.00	12 0.0	39 0.00.	3 0.247	0.015	0.007	7 1.70 (0.014 0	001 0.	0.0 000	02	87	87	13	
UR17/2 Opx* 43 57.51 0.09 0.95 0.08 9.50 0.22 32.9	Opx^{*} 43 57.51 0.09 0.95 0.08 9.50 0.22 32.	43 57.51 0.09 0.95 0.08 9.50 0.22 32.	57.51 0.09 0.95 0.08 9.50 0.22 32.9	51 0.09 0.95 0.08 9.50 0.22 32.9	9 0.95 0.08 9.50 0.22 32.9	5 0.08 9.50 0.22 32.	9.50 0.22 32.9	0.22 32.9	32.	94 (0.29 0	0.03 0	00.0	0.05 1	02 1.5	98 0.00	0.0	39 0.00.	2 0.265	00.0	0.006	69.1	0 110.0	002	- 0.0	01 4	86	86	4	
UR17/2 Opx^* 48 57.46 0.04 0.83 0.09 9.31 0.21 33.	$Opx^* 48 57.46 0.04 0.83 0.09 9.31 0.21 33.$	48 57.46 0.04 0.83 0.09 9.31 0.21 33.	57.46 0.04 0.83 0.09 9.31 0.21 33.	46 0.04 0.83 0.09 9.31 0.21 33.	4 0.83 0.09 9.31 0.21 33.	3 0.09 9.31 0.21 33.	9.31 0.21 33.	0.21 33.	33.	08 (0.25 b.	.d.l. 0	00.0	0.08 1	01 1.5	98 0.00	0.0	34 0.00.	3 0.264	10.00	0.006	5 1.70 (600.0	1	- 0.0	02 4	86	86	13	0
UR17/2 Opx* 49 57.95 0.09 0.81 0.06 9.20 0.24 33	<i>Opx</i> * 49 57.95 0.09 0.81 0.06 9.20 0.24 33	49 57.95 0.09 0.81 0.06 9.20 0.24 33	57.95 0.09 0.81 0.06 9.20 0.24 33	35 0.09 0.81 0.06 9.20 0.24 33) 0.81 0.06 9.20 0.24 33	1 0.06 9.20 0.24 33	9.20 0.24 33	0.24 33	33	30 (0.25 b	.d.l. b.	.d.l. 0	0.05 1	02 1.5	98 0.00	0.0	33 0.00	2 0.263		0.007	7 1.70	600.0	-	- 0.0	01 4	86	86	4	0
UR17/2 Opx* 52 58.18 0.00 0.07 0.04 8.57 0.19 34	<i>Opx</i> * 52 58.18 0.00 0.07 0.04 8.57 0.19 34	52 58.18 0.00 0.07 0.04 8.57 0.19 34	58.18 0.00 0.07 0.04 8.57 0.19 34	18 0.00 0.07 0.04 8.57 0.19 34	0 0.07 0.04 8.57 0.19 34	7 0.04 8.57 0.19 34	8.57 0.19 34	0.19 34	32	.24 (0.43 b.	.d.l.b.	.d.l. 0	0.04	02 1.5	- 66	0.0(0.00	1 0.22	0.023	0.006	5 1.74 (0.016	1	- 0.0	01 4	89	88	Ξ	-
UR17/2 Opx* 60 57.12 0.06 0.79 0.09 9.53 0.24 32	<i>Opx</i> * 60 57.12 0.06 0.79 0.09 9.53 0.24 32	60 57.12 0.06 0.79 0.09 9.53 0.24 32	57.12 0.06 0.79 0.09 9.53 0.24 32	12 0.06 0.79 0.09 9.53 0.24 32	5 0.79 0.09 9.53 0.24 32	9 0.09 9.53 0.24 32	9.53 0.24 32	0.24 32	8	2.70	0.21 b.	.d.l.b.	.d.l. 0	0.07	01 1.5	98 0.00	12 0.0	32 0.00.	3 0.275	0.001	0.007	7 1.69 (0.008	-	- 0.0	02 4	86	86	14	0
UR17/2-2 Opx 25* 56.89 b.d.1. 0.67 0.27 9.75 0.07 32	Opx 25* 56.89 b.d.l. 0.67 0.27 9.75 0.07 32	25* 56.89 b.d.l. 0.67 0.27 9.75 0.07 32	56.89 b.d.l. 0.67 0.27 9.75 0.07 32	89 b.d.l. 0.67 0.27 9.75 0.07 32	1. 0.67 0.27 9.75 0.07 32	7 0.27 9.75 0.07 32	9.75 0.07 32	0.07 32	8	P.04 (0.31 b	d.l.b.	.d.l.b.	.d.l. 1	00 1.5	- 66	0.0	28 0.00	8 0.28(1	0.002	2 1.67	0.012	-	-	4	85	84	15	-
UR17/2-2 Opx 27* 57.02 b.d.l. 0.61 b.d.l. 9.57 0.07 32	<i>Opx</i> 27* 57.02 b.d.l. 0.61 b.d.l. 9.57 0.07 32	27* 57.02 b.d.l. 0.61 b.d.l. 9.57 0.07 32	57.02 b.d.l. 0.61 b.d.l. 9.57 0.07 32	02 b.d.l. 0.61 b.d.l. 9.57 0.07 32	1. 0.61 b.d.1. 9.57 0.07 32	l b.d.l. 9.57 0.07 32	9.57 0.07 32	0.07 32	8	.45 (0.28 b	d.l.b.	d.l.b.	.d.l. 1	00 1.5	- 66	0.0	25 -	0.28(0.002	2 1.69 (110.C	-	 	4	86	85	15	-
UR17/2-2 Opx 8* 56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l. 32	<i>Opx</i> 8* 56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l. 32	8* 56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l. 32	56.88 b.d.l. 0.68 b.d.l. 10.12 b.d.l. 32	88 b.d.l. 0.68 b.d.l. 10.12 b.d.l. 32	l. 0.68 b.d.l. 10.12 b.d.l. 32	8 b.d.l. 10.12 b.d.l. 32	10.12 b.d.l. 32	b.d.l. 32	33	.13	0.19 b	.d.l. b.	.d.l.b.	.d.l. 1	00 1.5	- 66	0.0	- 28	0.29(1	Ι	1.68 (0.007	-	' 	4	85	84	15	0
UR17/2-2 Opx 15* 56.38 b.d.l. 0.74 0.25 10.09 0.08 32	<i>Opx</i> 15* 56.38 b.d.l. 0.74 0.25 10.09 0.08 32	15* 56.38 b.d.l. 0.74 0.25 10.09 0.08 32	56.38 b.d.l. 0.74 0.25 10.09 0.08 32	38 b.d.l. 0.74 0.25 10.09 0.08 32	1. 0.74 0.25 10.09 0.08 32	4 0.25 10.09 0.08 32	10.09 0.08 32	0.08 32	32	.35	0.11 b.	.d.l. b	d.l.b.	.d.l. 1	00 1.5	- 26	0.0	31 0.00	7 0.275	0.016	0.002	e 1.69 (0.004	1	' 	4	86	86	4	0
UR17/2-2 Opx 35* 56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 32.	<i>Opx</i> 35* 56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 32.	35* 56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 32.	56.97 b.d.l. 0.79 b.d.l. 9.61 0.12 32.	97 b.d.l. 0.79 b.d.l. 9.61 0.12 32.	1. 0.79 b.d.l. 9.61 0.12 32.	9 b.d.l. 9.61 0.12 32.	9.61 0.12 32.	0.12 32.	32.	18 (0.33 b.	.d.l.b.	.d.l.b.	.d.l. 1	00 1.5	- 66	0.0	33 –	0.281	I	0.004	4 1.68 (0.012	-	 	4	86	84	15	-
UR17/2-2 Opx 37* 57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 31.	<i>Opx</i> 37* 57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 31.	37* 57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 31.	57.22 b.d.l. 0.68 b.d.l. 9.82 0.18 31.	22 b.d.l. 0.68 b.d.l. 9.82 0.18 31.	l. 0.68 b.d.l. 9.82 0.18 31.	8 b.d.l. 9.82 0.18 31.	9.82 0.18 31.	0.18 31.	31.	89 (0.21 b.	.d.l.b.	.d.l.b.	.d.l. 1	00 2.(- 10	0.02	28 -	0.28		0.005	5 1.67 (0.008		 	4	85	83	16	0
UR17/2-21 Opx 14* 56.10 b.d.l. 0.92 b.d.l. 9.50 0.16 32	I <i>Opx</i> 14* 56.10 b.d.l. 0.92 b.d.l. 9.50 0.16 32	14* 56.10 b.d.l. 0.92 b.d.l. 9.50 0.16 32	56.10 b.d.l. 0.92 b.d.l. 9.50 0.16 32	10 b.d.l. 0.92 b.d.l. 9.50 0.16 32	l. 0.92 b.d.l. 9.50 0.16 32	2 b.d.l. 9.50 0.16 32	9.50 0.16 32	0.16 32	33	.92 (0.39 b.	.d.l. b.	.d.l.b.	.d.l. 1	00 1.5	- 96	0.0	38	0.22(0.051	0.005	5 1.71 (0.015	-	' 	4	86	88	12	-
UR17/2-21 Opx 15 56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 32	I <i>Opx</i> 15 56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 32	15 56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 32	56.61 b.d.l. 1.02 b.d.l. 9.38 0.34 32	51 b.d.l. 1.02 b.d.l. 9.38 0.34 32	I. 1.02 b.d.l. 9.38 0.34 32	2 b.d.l. 9.38 0.34 32	9.38 0.34 32	0.34 32	33	.36 (0.30 b	.d.l. b.	.d.l.b.	.d.l. 1	00 1.5	- 86	0.04	+2	0.271	0.003	0.010	0 1.69 (0.011	-		4	86	86	14	Г
UR17/2-21 Opx 16 56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 32	I <i>Opx</i> 16 56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 32	16 56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 32	56.80 b.d.l. 1.16 b.d.l. 9.21 0.22 32	30 b.d.l. 1.16 b.d.l. 9.21 0.22 32	l. 1.16 b.d.l. 9.21 0.22 32	5 b.d.l. 9.21 0.22 32	9.21 0.22 32	0.22 32	32	4.	0.17 b.	.d.l. b.	.d.l.b.	.d.l. 1	00 1.5	- 86	0.0∠	18	0.269		0.007	7 1.69 (0.006	-	' 	4	86	85	4	0
UR17/2-21 Opx 17* 56.76 b.d.l. 1.04 b.d.l. 9.49 0.19 32	I <i>Opx</i> 17* 56.76 b.d.l. 1.04 b.d.l. 9.49 0.19 32	17* 56.76 b.d.l. 1.04 b.d.l. 9.49 0.19 32	56.76 b.d.l. 1.04 b.d.l. 9.49 0.19 32	76 b.d.l. 1.04 b.d.l. 9.49 0.19 32	l. 1.04 b.d.l. 9.49 0.19 32	4 b.d.l. 9.49 0.19 32	9.49 0.19 32	0.19 32	32	.25 (0.26 b	.d.l.b.	.d.l.b.	.d.l. 1	00 1.5	- 86	0.04	13	0.277		0.006	5 1.68 (0.010		- -	4	86	85	15	0
UR17/2-21 Opx 29 57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 33.	I <i>Opx</i> 29 57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 33.	29 57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 33.	57.86 b.d.l. 0.53 b.d.l. 7.84 0.27 33.	36 b.d.l. 0.53 b.d.l. 7.84 0.27 33.	l. 0.53 b.d.l. 7.84 0.27 33.	3 b.d.l. 7.84 0.27 33.	7.84 0.27 33.:	0.27 33.3	33.	51 b	.d.l. b.	.d.l. b.	.d.l.b.	.d.l. 1	00 2.(- 01	0.0	22 -	0.22	1	0.008	3 1.73		-	 	4	88	87	13	-
UR17/2-21 Opx 30 57.41 b.d.l. 0.78 b.d.l. 9.18 0.04 32	I <i>Opx</i> 30 57.41 b.d.l. 0.78 b.d.l. 9.18 0.04 32	30 57.41 b.d.l. 0.78 b.d.l. 9.18 0.04 32	57.41 b.d.l. 0.78 b.d.l. 9.18 0.04 32	41 b.d.l. 0.78 b.d.l. 9.18 0.04 32	1. 0.78 b.d.1. 9.18 0.04 32	8 b.d.l. 9.18 0.04 32	9.18 0.04 32	0.04 32	32	.51 (d 60.0	.d.l.b.	.d.l.b.	.d.l. 1	00 2.(- 00	0.0	32 –	0.268	1	0.001	1.69 (0.003	· 	 	4	86	84	15	0
UR17/2-21 Opx 45 56.47 b.d.l. 0.90 b.d.l. 8.96 0.01 33.4	I <i>Opx</i> 45 56.47 b.d.l. 0.90 b.d.l. 8.96 0.01 33.4	45 56.47 b.d.l. 0.90 b.d.l. 8.96 0.01 33.4	56.47 b.d.l. 0.90 b.d.l. 8.96 0.01 33.4	47 b.d.l. 0.90 b.d.l. 8.96 0.01 33.4	1. 0.90 b.d.1. 8.96 0.01 33.4) b.d.l. 8.96 0.01 33.4	8.96 0.01 33.4	0.01 33.4	33.4	46 (0.20 b	.d.l. b.	.d.l.b.	.d.l. 1	00 1.5	- 96	0.0	37 -	0.221	0.035	1	1.73 (0.007	I	' I	4	87	88	П	\sim
UR17/2-21 Opx 46* 57.19 b.d.l. 0.70 b.d.l. 8.35 0.15 33.	I <i>Opx</i> 46* 57.19 b.d.l. 0.70 b.d.l. 8.35 0.15 33.	46* 57.19 b.d.l. 0.70 b.d.l. 8.35 0.15 33.	* 57.19 b.d.l. 0.70 b.d.l. 8.35 0.15 33.	19 b.d.l. 0.70 b.d.l. 8.35 0.15 33.	l. 0.70 b.d.l. 8.35 0.15 33.) b.d.l. 8.35 0.15 33.	8.35 0.15 33.	0.15 33.	33.	58 (0.02 b.	.d.l.b.	.d.l.b.	.d.l. 1	00 1.5	- 66	0.0	- 29	0.242		0.004	4 1.74 (0.001	-	 	4	88	88	12	0
UR17/2-21 Opx 53 56.85 b.d.1. 1.02 b.d.1. 8.38 0.21 3	I <i>Opx</i> 53 56.85 b.d.l. 1.02 b.d.l. 8.38 0.21 3	53 56.85 b.d.l. 1.02 b.d.l. 8.38 0.21 3	56.85 b.d.l. 1.02 b.d.l. 8.38 0.21 3	85 b.d.l. 1.02 b.d.l. 8.38 0.21 3.	l. 1.02 b.d.l. 8.38 0.21 3.	2 b.d.l. 8.38 0.21 3	8.38 0.21 3	0.21 3	3	3.35	0.19 b	.d.l.b.	.d.l.b.	.d.l. 1	00 1.5	- 86	0.0	42	0.235	00.00	0.00	5 1.73 (0.007	-	- -	4	88	88	12	0
UR17/2-21 Opx 17 56.81 b.d.1. 0.71 0.09 9.25 0.11 3	I <i>Opx</i> 17 56.81 b.d.1. 0.71 0.09 9.25 0.11 3	17 56.81 b.d.1. 0.71 0.09 9.25 0.11 3	56.81 b.d.l. 0.71 0.09 9.25 0.11 3	81 b.d.l. 0.71 0.09 9.25 0.11 3	1. 0.71 0.09 9.25 0.11 3	1 0.09 9.25 0.11 3	9.25 0.11 3	0.11 3	\mathbf{c}	2.49 (0.32 b	.d.l.b.	.d.l. 0	0.22 1	00 1.5	- 86	0.02	29 0.00	3 0.27(0.003	3 1.69 (0.012	-	- 0.0	06 4	86	85	4	-
UR17/2-21 Opx 18 57.49 b.d.1. 0.66 b.d.1. 8.91 0.18 3	I Opx 18 57.49 b.d.l. 0.66 b.d.l. 8.91 0.18 3	18 57.49 b.d.l. 0.66 b.d.l. 8.91 0.18 3	57.49 b.d.l. 0.66 b.d.l. 8.91 0.18 3	49 b.d.l. 0.66 b.d.l. 8.91 0.18 3	1. 0.66 b.d.l. 8.91 0.18 3	5 b.d.l. 8.91 0.18 3	8.91 0.18 3	0.18 3	3	2.58	0.18 b.	.d.l.b.	.d.l.b.	.d.l. 1	00 2.(- 10	0.0	27 -	0.26(0.005	5 1.69 (0.007	-	- -	4	87	85	15	\sim
UR17/2-21 Opx* 2 56.06 0.07 0.79 0.14 8.85 0.22 3	$[Opx^*] 2 56.06 0.07 0.79 0.14 8.85 0.22 3$	2 56.06 0.07 0.79 0.14 8.85 0.22 3	56.06 0.07 0.79 0.14 8.85 0.22 3	06 0.07 0.79 0.14 8.85 0.22 3	7 0.79 0.14 8.85 0.22 3	9 0.14 8.85 0.22	8.85 0.22 3	0.22	- C J -	32.99 (0.29 b	.d.l. C	00.00	0.09 1	00 1.5	96 0.00	12 0.0	33 0.00	4 0.223	3 0.036	0.007	7 1.72 (0.011	-	- 0.0	03 4	88	88	11	_
$UR17/2-21$ Opx^{*} 3 57.40 0.05 0.68 0.10 9.31 0.20 2	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	3 57.40 0.05 0.68 0.10 9.31 0.20 3	57.40 0.05 0.68 0.10 9.31 0.20 3	40 0.05 0.68 0.10 9.31 0.20 3	5 0.68 0.10 9.31 0.20	3 0.10 9.31 0.20	9.31 0.20	0.20	· · ·	32.96	0.15 b	.d.l. b	.d.l. 0	0.09	01 1.5	<u> 90.0</u>	0.0	28 0.00	3 0.265		0.00	5 1.70 (0.006	1	- 0.0	03 4	86	86	4	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$I Opx^* 7 57.69 0.10 0.84 0.17 9.00 0.22 3$	7 57.69 0.10 0.84 0.17 9.00 0.22 3	57.69 0.10 0.84 0.17 9.00 0.22 3	59 0.10 0.84 0.17 9.00 0.22 3	0.84 0.17 9.00 0.22	4 0.17 9.00 0.22	9.00 0.22	0.22	· · ·	33.14 (0.29 b	.d.l. 0	00.00	0.09 1	02 1.5	98 0.00	3 0.05	34 0.00	5 0.255		0.006	5 1.70 (0.011		- 0.0	03 4	86	86	14	1
UR17/2-21 Opx* 8 57.61 0.08 0.771 0.11 9.10 0.17 3	$1 Opx^* 8 57.61 0.08 0.771 0.11 9.10 0.17 3$	8 57.61 0.08 0.771 0.11 9.10 0.17 3	57.61 0.08 0.771 0.11 9.10 0.17 3	51 0.08 0.771 0.11 9.10 0.17 3	8 0.771 0.11 9.10 0.17 3	1 0.11 9.10 0.17 3	9.10 0.17 3	0.17 3	\sim	3.41 (0.23 b	.d.l. C	0100	0.08 1	02 1.5	98 0.00	12 0.0	31 0.00	3 0.25	300.08	0.005	5 1.71 (600.0	<u>;</u> _	0.0 000	02 4	87	87	13	0
UR17/2-21 Opx* 11 56.12 0.06 0.71 0.11 8.93 0.23 33	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	11 56.12 0.06 0.71 0.11 8.93 0.23 33	56.12 0.06 0.71 0.11 8.93 0.23 3.	12 0.06 0.71 0.11 8.93 0.23 33	5 0.71 0.11 8.93 0.23 33	1 0.11 8.93 0.23 33	8.93 0.23 33	0.23 33	ŝ	3.15	0.13 b.	.d.l. G	0.01	0.07	00 1.5	96 0.00	12 0.02	29 0.00.	3 0.221	0.040	0.007	7 1.73 (0.005	<u>;</u>	0.0 000	02 4	89	88	11	0
UR17/2-21 Opx* 13 56.31 0.06 0.74 0.10 9.39 0.21 33	I <i>Opx</i> * 13 56.31 0.06 0.74 0.10 9.39 0.21 33	13 56.31 0.06 0.74 0.10 9.39 0.21 33	56.31 0.06 0.74 0.10 9.39 0.21 33	31 0.06 0.74 0.10 9.39 0.21 33	5 0.74 0.10 9.39 0.21 33	4 0.10 9.39 0.21 33	9.39 0.21 33	0.21 33	33	36 (0.25 b	.d.l.b.	.d.l. 0	0.09 1	00 1.5	95 0.00	0.0	30 0.00.	3 0.212	0.061	0.00	5 1.72 (600.0	-	- 0.0	03 4	89	89	Π	0
UR17/2-21 Opx* 15 57.12 0.08 0.86 0.14 9.11 0.21 32.	I Opx* 15 57.12 0.08 0.86 0.14 9.11 0.21 32.	15 57.12 0.08 0.86 0.14 9.11 0.21 32.	57.12 0.08 0.86 0.14 9.11 0.21 32.	12 0.08 0.86 0.14 9.11 0.21 32.	3 0.86 0.14 9.11 0.21 32.	5 0.14 9.11 0.21 32.	9.11 0.21 32.	0.21 32.	32.	91 (0.39 b.	.d.l.b.	.d.l. 0	0.09 1	01 1.5	98 0.00	0.0	35 0.00	4 0.258	0.006	0.006	5 1.70 (0.015	-	- 0.0	03 4	87	86	13	1
UR17/2-21 Opx* 16 57.12 0.06 0.82 0.11 9.19 0.21 33.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 57.12 0.06 0.82 0.11 9.19 0.21 33.	57.12 0.06 0.82 0.11 9.19 0.21 33.	12 0.06 0.82 0.11 9.19 0.21 33.	5 0.82 0.11 9.19 0.21 33.	2 0.11 9.19 0.21 33.	9.19 0.21 33.	0.21 33.	33.	22	0.27 C	0.01 6	00.0	0.05 1	01 1.5	97 0.00	0.0	33 0.00	3 0.245	0.020	0.006	5 1.71 (0.010 0	001	- 0.0	01 4	87	87	13	1
UR17/2-21 Opx* 20 57.14 0.08 0.83 0.11 9.26 0.23 33.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 57.14 0.08 0.83 0.11 9.26 0.23 33.	57.14 0.08 0.83 0.11 9.26 0.23 33.	14 0.08 0.83 0.11 9.26 0.23 33.	3 0.83 0.11 9.26 0.23 33.	3 0.11 9.26 0.23 33.	9.26 0.23 33.	0.23 33.	33.	02	0.27 b.	.d.l.b.	.d.l. 0	0.04	01 1.5	97 0.00	2 0.0	34 0.00	3 0.258	0.01C	0.007	7 1.70	0.010		- 0.0	01 4	87	86	13	-
UR17/2-21 Opx* 23 57.77 0.05 0.80 0.08 9.27 0.21 33	$1 Opx^* 23 57.77 0.05 0.80 0.08 9.27 0.21 33$	23 57.77 0.05 0.80 0.08 9.27 0.21 33	<i>57.77</i> 0.05 0.80 0.08 9.27 0.21 33	77 0.05 0.80 0.08 9.27 0.21 33	5 0.80 0.08 9.27 0.21 33	0.08 9.27 0.21 33	9.27 0.21 33	0.21 33	33	.37	0.18 b.	.d.l. 0	0.02 0	0.07	02 1.5	98 0.00	M 0.0	32 0.00	2 0.26(0.006	0.006	5 1.70 (0.007	<u>;</u>	0.0 0.0	02 4	87	86	13	0
$UR17/2-21$ Opx^* 27 57.25 0.09 0.78 0.10 9.21 0.20 3	$1 Opx^* 27 57.25 0.09 0.78 0.10 9.21 0.20 3$	27 57.25 0.09 0.78 0.10 9.21 0.20 3	57.25 0.09 0.78 0.10 9.21 0.20 3	25 0.09 0.78 0.10 9.21 0.20 3	9 0.78 0.10 9.21 0.20 3	3 0.10 9.21 0.20 3	9.21 0.20 3	0.20 3	ŝ	2.98 (0.24 0	.01 b.	.d.l. 0	0.09 1	01 1.5	98 0.00	2 0.0	32 0.00	3 0.262	0.003	0.006	01.70	0 600.0	100	- 0.0	03 4	86	86	13	0
$UR17/2-21$ Opx^{*} 28 56.63 0.07 0.75 0.11 9.10 0.23 3	$1 Opx^* 28 56.63 0.07 0.75 0.11 9.10 0.23 3$	28 56.63 0.07 0.75 0.11 9.10 0.23 3	56.63 0.07 0.75 0.11 9.10 0.23 3	53 0.07 0.75 0.11 9.10 0.23 3	7 0.75 0.11 9.10 0.23 3	5 0.11 9.10 0.23 3	9.10 0.23 3	0.23 3	$-\infty$	2.99 (0.21 0	.01 b.	.d.l. 0	0.07	00 1.5	97 0.00	2 0.05	31 0.00	3 0.243	0.022	0.007	7 1.71 (0.008 0	001	- 0.0	02 4	88	87	12	0
UR17/2-211 Opx 2* 55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l. 32	II Opx 2* 55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l. 32	2* 55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l. 32	55.96 b.d.l. 1.08 b.d.l. 9.89 b.d.l. 32	36 b.d.l. 1.08 b.d.l. 9.89 b.d.l. 32	l. 1.08 b.d.l. 9.89 b.d.l. 32	3 b.d.l. 9.89 b.d.l. 32	9.89 b.d.l. 32	b.d.l. 32	32	.59 (0.48 b	.d.l.b.	.d.l.b.	.d.l. 1	00 1.5	95 -	0.04	+4	0.24(0.049		1.70	0.018	-	' 	4	85	87	12	-
UR17/2-211 Opx 8 56.32 b.d.1. 0.87 b.d.1. 9.88 0.26 32	U Opx 8 56.32 b.d.l. 0.87 b.d.l. 9.88 0.26 32	8 56.32 b.d.l. 0.87 b.d.l. 9.88 0.26 32	56.32 b.d.l. 0.87 b.d.l. 9.88 0.26 32	32 b.d.l. 0.87 b.d.l. 9.88 0.26 32	l. 0.87 b.d.l. 9.88 0.26 32	7 b.d.l. 9.88 0.26 32	9.88 0.26 32	0.26 32	33	.37 (0.31 b.	.d.l. b.	.d.l.b.	.d.l. 1	00 1.5	- 16	0.0	36 –	0.263	0.026	0.008	3 1.69 (0.012	1		4	85	86	13	-
UR17/2-211 Opx 14 57.21 b.d.1 0.91 b.d.1 9.65 b.d.1 32.	II Opx 14 57.21 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32.	14 57.21 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32.	<i>57</i> .21 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32.	21 b.d.l. 0.91 b.d.l. 9.65 b.d.l. 32.	l. 0.91 b.d.l. 9.65 b.d.l. 32.	1 b.d.l. 9.65 b.d.l. 32.	9.65 b.d.l. 32.	b.d.l. 32.	32.	05	0.18 b.	.d.l. b.	.d.l.b.	.d.l.	00 2.(- 00	0.0	38	0.282		l	1.67 (0.007	-		4	86	84	16	

	Wo	0	1	0	0	0	0	0	1	0 0	>	0	0	0,) –	-	0	0 -		-				-	0	1	4	0	0	-
	n Fs	6 14	4 15	8 12	6 14	4 15	6 14	2 18	0 20	2 18 0 11	4 15	7 12	5 14	5 15	6 13 6 14	19	5 15	7 13	9 20 20	9 20	8 22	8 21 21	x 21 21	8 21	4 16	3 16	2 17		3 16	5 15	4 16
	^g E	87 8	86 &	86 8	86 8	86 8.	87 8	82 8	81 8	82 87 87 87	6 08 80 08	86 8	87 8.	86		98 98	86 8	87 8	10 C	80	79 73	62 6	2 2 82	81 7	84 8	84 8	83 8	-	84 80	84 8	83 8.
	Cym- ≄ Ma	4	4	4	4	4	4	4	4	4 4	1 4	4	4	4 •	4 4	+ 4	4	4	4 ~	+ 4	4	4 .	4 4	· 4	4	4	4		4	4	4
	ī	Ι	Ι	.002	I	004	I	Ι	I			I	I	1			I	Ι	I		I	I		I	I	I	1		I	I	I
	K		Ι	0	I	0	I	I	I			Ι	Ι	Ι			Ι	Ι	I		Ι	I		I			I		I	I	I
	Na	Ι	Ι	Ι	Ι	1	I	Ι				Ι	I	I.			I	I				I		I	I	I	Ι		Ι	I	Ι
	Са	0.006	0.012	0.006	0.004	0.008	I	0.010	0.012	0.009	0.011	0.008	0.008	0.005	010.0	0.012	0.015	0.008	0.009	0.013	0.011	0.014	0.013	0.013	0.011	0.010	0.012	0	0.009	0.006	0.012
	gM	1.70	1.68	1.71	1.69	1.67	1.72	1.60	1.58	1.60	1.68	1.71	1.70	1.69	1 70	1.74	1.67	1.71	1.55	1.55	1.53	1.54	cc.1 153	1.55	1.65	1.64	1.63		1.64	1.66	1.64
	Mn	0.004	0.004	0.004	0.004	0.004	0.002	0.010	0.005	0.014	0.006	0.010	0.005	0.002	200.0	0.004	0.007	0.008	0.011	0.012	0.014	0.012	610.0 110.0	0.011	0.006	0.004	0.005		0.008	0.006	0.005
	Fe ³⁺	I	I	0.044	I	I	I	0.007	I	0.007	0000	0.052	Ι	000	0.028	0.127	I	0.018	0.019		I	000	0.006	I	0.009	I	I		I	0.014	0.016
	Fe ²⁺	0.264	0.278	0.235	0.279	0.277	0.256	0.344	0.362	0.345 0.209	0.271	0.236	0.257	0.270	762.0 768	0.164	0.279	0.248	0.393	0.397	0.398	0.408	0.420 0.420	0.370	0.308	0.316	0.324		0.322	0.293	0.308
	C	I	I	I	1	0.012		I	I			I	0.004	0.008	0.003		I	I			I	I		I		I	1			I	0.004
	М	0.045	0.035	0.032	0.040	0.040	0.028	0.058	0.046	0.054	0.038	0.031	0.033	0.034	0.044	0.033	0.038	0.034	0.061	0.048	0.062	0.047	0 0 0 0	0.063	0.045	0.048	0.053	!	0.047	0.051	0.059
	Τï	I	Ι	Ι	I	I	I	I	I			I	Ι	I			I	I	I	0.006	Ι	I		Ι	I	I	I		I	I	ļ
	Si	1.99	2.00	1.96	1.98	1.99	2.00	1.97	1.99	1.97 1.96	2.00	1.96	2.00	1.99	1 98	1.92	1.99	1.97	1.96 1 90	1.97	1.98	1.98	1.97	2.00	1.97	1.98	1.98	0	1.98	1.97	1.96
	Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100	100
	NiO	b.d.l.	b.d.l.	0.08	b.d.l.	0.13	b.d.l.	b.d.l.	b.d.l.	b.d.l. Ь.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. b.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l. b.d.l	b.d.l.	b.d.l.	b.d.l.	р.а.I. Ы.d.1	b.d.l.	b.d.l.	b.d.l.	b.d.l.		b.d.l.	b.d.l.	b.d.l.
	K_2O	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. Ь.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. h.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	р.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.		b.d.l.	b.d.l.	b.d.l.
	Na ₂ O	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. b.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. h.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	р.а.I. Ь.d.I	b.d.l.	b.d.l.	b.d.l.	b.d.l.	;	b.d.l.	b.d.l.	b.d.l.
	CaO	0.16	0.33	0.16	0.12	0.22	b.d.l.	0.25	0.32	0.24	0.28	0.20	0.20	0.13	0.27	0.31	0.39	0.22	0.24	0.33	0.29	0.37	0.34	0.35	0.30	0.26	0.31	1	0.25	0.17	0.31
	MgO	32.61	32.14	32.98	32.48	31.94	33.04	30.46	30.01	30.39 33 53	32.22	32.76	32.64	32.38	32.34 37.64	33.56	32.09	32.93	29.14 28 04	29.25	28.83	28.87 28.19	29.18 28.67	29.18	31.47	31.36	30.97		31.20	31.81	31.19
	MnO	0.13	0.12	0.14	0.15	0.12	0.07	0.32	0.16	0.46	0.20	0.32	0.17	0.08	0.31	0.14	0.25	0.27	0.35	0.41	0.45	0.39	0.35	0.35	0.20	0.13	0.17	1	0.27	0.20	0.17
	FeO	9.05	9.52	9.57	9.56	9.47	8.80	11.90	12.21	11.90 9.75	9.28	9.87	8.81	9.25	9.77 9.19	96.6	9.55	9.10	13.81	13.33	13.34	13.66 12.51	10.01 14 76	12.45	10.78	10.77	10.99		10.93	10.46	11.03
	Cr ₂ O3	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.44	b.d.l.	b.d.l.	b.d.l.	b.d.l. Ь.d.l	b.d.l.	b.d.l.	0.15	0.29	0.12 h.d.1	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	о.а.I. h d 1	b.d.l.	b.d.l.	b.d.l.	b.d.l.		b.d.l.	b.d.l.	0.14
	Al ₂ O ₃	1.10	0.86	0.79	0.98	0.96	0.69	1.38	1.11	1.29	0.93	0.76	0.79	0.82	1.07	0.80	0.92	0.82	1.44	1.15	1.48	1.11	1.34	1.50	1.09	1.17	1.28		1.14	1.24	1.43
	TiO ₂	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. Ь.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l. Ь.d.l	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.22	b.d.l.	b.d.l.	р.d.I.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	1	p.d.l.	b.d.l.	b.d.l.
e	SiO ₂	56.95	57.04	56.26	56.72	56.71	57.39	55.69	56.19	55.72 56.32	57.09	56.09	57.24	57.05	20.12	55.20	56.80	56.66	55.02 55.74	55.30	55.60	55.60 57.05	27.00	56.17	56.16	56.31	56.28		56.21	56.12	55.73
кени	№ точ- ки	15	16*	27	51*	55	56*	1	5*	4 °	11*	12	13*	58	30°	o, *	17*	21*	- ~	0 4	10	21 9	10 21*	23*	4	П	13		4	*15	16
сподо	Ми- нерал	Opx	0px	Opx	Opx	Opx	Opx	Opx	Opx	Opx Onv	ydo Valo	O_{px}	Opx	0px	C bx	vdo Opx	O_{px}	Opx	XdO	vdo Opx	хdО	0px	xdo Oux	Opx	0px	Opx	Opx	(Opx	Opx	Opx
ц 1. Пр	Эбразец	R17/2- I	R17/2-	R17/2-	R17/2- I	R17/2- I	R17/2- I	R17/2-3b	R17/2-3b	R17/2-3b P17/2-3b	R17/2-30	R17/2-3b	R17/2-3b	R17/2-3b	R17/2-30 R17/2-3b	R17/2-30 R17/2-3v	R17/2-3v	R17/2-3v	R17/2-2a P17/2-2a	R17/2-2a	R17/2-2a	R17/2-2a	R17/2-2a R17/2-2a	R17/2-2a	R17/2- V	R17/2-	V R17/2-	>	R17/2- V	R17/2-	V R17/2- V
Таблица,	Порода С	U d2H-Ind	$\begin{array}{c c} & & \\ \hline \\ \hline$	21 21 21 21	Phl-Hzb U	<i>PhI-Hzb</i> U 21	Phl-Hzb U	Dhl-Hzb U	Dhl-Hzb U	Dhl-Hzb U	Dhl-Hzb U	Phl-Hzb U	Phl-Hzb U	D q2H-14d	$\int \frac{d^2H}{d^2H} = \frac{1}{4} $	D drn-nut	Phl-Hzb U	Phl-Hzb U	PhI-Opt U	Phi-Opt U	Phl-Opt U	Phi-Opt U	PhI-Opt U	Phi-Opt U	Phl-Opt U	Phl-Opt U	21 21 Dhl-Opt	21	Phl-Opt U	Phi-Opt	<i>PhI-Opt</i> 0 2I

593

ГЕОХИМИЯ

том 68 № 6 2023

Wo	0	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	1	1	1	0	0	0	0	1	0	0	1	0	1	1	-	1	1
n Fs	4 15	3 17	9 21	9 21	7 23	3 22	7 22	5 14	4 16	2 18	2 18	2 17	2 17	9 21	2 17) 20	9 21	2 17	18	9 21	0 20	3 17	3 22) 20	9 21	2 18	19	9 21	5 25	9 21	19	7 22	7 22
Mg Ei	84 82	4 8	0 79	81 79	0 7	80 78	31 73	86	3 84	82	33	28 28	8.	31 79	8.	80	6 6	82	31 81	8 79	80	83	82 6.	98 6	6 6	80	¹⁹ 81	8 79	6 75	7	98 6	8 7.	6 77
ум- #] ла	4 8	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Ŭź	1	I	I	1	1	1	1	1	1	1	Ι	1		1		1	1	I	I	1	I	1	1	1	1	1	1	1	1	1		1	
×	Ι										I					I		I	I	I	I	I	I	I						I		I	Ι
Na	Ι	1	I	1	I	1	Ι	Ι	I	I	1		Ι	1		I	Ι	Ι	Ι	Ι	1	Ι	Ι	Ι	I	I	I	1	I	I		I	Ι
Ca	0.009	0.002	0.010	0.005	0.011	0.008	0.013	Ι	0.005	0.013	0.006	0.006	0.012	0.006	0.008	0.006	0.013	0.013	0.010	0.010	0.006	0.010	0.008	0.013	0.007	0.008	0.013	0.006	0.014	0.014	0.011	0.011	0.017
Mg	1.65	1.64	1.56	1.56	1.53	1.55	1.55	1.69	1.65	1.61	1.63	1.61	1.60	1.57	1.61	1.58	1.54	1.59	1.60	1.54	1.57	1.61	1.54	1.55	1.54	1.59	1.57	1.54	1.48	1.52	1.55	1.51	1.50
Mn	0.008	0.004	0.006	0.008	0.008	0.009	0.007	0.005	I	0.007	0.006	0.006	0.008	0.008	0.008	0.006	0.010	0.009	0.007	0.012	0.015	0.011	0.005	0.007	0.014	0.011	0.009	0.010	0.010	0.011	0.016	0.012	0.009
Fe ³⁺	0.012	I	I	I	I	Ι	I	0.030	0.013	I	Ι	I	0.034	I	0.045	I	0.002	0.069	0.009	0.029	0.006	0.053	Ι	0.028	I	0.044	0.054	0.027	I	0.057	0.046	0.005	0.034
Fe^{2+}	.300	.321	.386	.378	.393	.385	.371	.270	.317	.343	.329	.316	.338	.371	.336	.386	.407	.337	.364	.407	.393	.323	.422	.384	.410	.348	.365	.405	.455	.398	.373	.434	.433
_ خ	0	0	0	0	0	-	0	0	004 0	0	0	0	0	0	0	0	.004 0	0	0	0	.004 0	0	0	005 0	001 0	004 0	.003 0	0	0	0		0	.003 0
7	52	61	52	51	65	49	44	48	47 0	43	42	98	48	52	37	37	47 0	30	20	42	30 0.	32	44	48 0	45 0	31 0	38 0	46	48	56	58	59	47 0
<	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 0.0	0.0	0.0	0.0	1 0.0	0.0 0.0	1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H	-		- 6		- -	- 0	-	1	-	۱ ۲	-			-		۱ ۲	-	0.00	8 0.00	1	۱ ۲	5 0.00	8 0.00	5 0.00	۱ ۲	1		5 0.00	90.00				
	1.92	1.92	1.99	1.99	2.0	2.0	2.0	1.9	1.9	1.98	1.99	1.96	1.90	1.99	1.90	1.98	1.92	1.9	1.98	1.96	1.98	1.9	1.98	1.96	1.98	1.96	1.95	1.96	1.99	1.9	1.92	1.9	1.90
Cym Ma	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	. 100	100	. 100	. 100
ZiZ	. p.d.	. b.d.l	. b.d.	. p.d.l	. p.d.l	. p.d.	. p.d.	. p.d.	. p.d.l	. p.d.l	. b.d.l	. p.d.	. p.d.	. p.d.	. b.d.l	. p.d.	. p.d.l	. p.d.	. p.d.l	. b.d.l	. b.d.	. p.d.	. p.d.	. b.d.l	. p.d.l	. p.d.l	. p.d.l	.b.d.	. p.d.l	. b.d.l	.b.d.	. p.d.	. b.d.l
K ₂ C	l.b.d	b.d.l	b.d.l	b.d.l	l.b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	l.b.d	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	b.d.l	l.b.d	b.d.l	l.b.d	b.d.l
Na ₂ O	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.											
CaO	0.25	0.05	0.26	0.12	0.30	0.22	0.33	b.d.l.	0.14	0.34	0.17	0.16	0.31	0.16	0.21	0.16	0.35	0.35	0.27	0.25	0.15	0.25	0.21	0.35	0.18	0.20	0.34	0.15	0.37	0.36	0.29	0.29	0.45
MgO	31.53	31.30	29.45	29.53	28.72	29.18	29.23	32.34	31.40	30.64	30.97	30.71	30.35	29.68	30.44	29.88	29.01	30.05	30.35	28.82	29.51	30.59	28.97	29.26	29.04	30.14	29.47	28.97	27.62	28.49	29.14	28.31	27.99
MnO	0.26	0.13	0.20	0.27	0.26	0.29	0.23	0.18	b.d.l.	0.22	0.20	0.19	0.26	0.25	0.28	0.21	0.33	0.30	0.24	0.38	0.50	0.38	0.15	0.24	0.47	0.37	0.30	0.32	0.33	0.36	0.53	0.40	0.31
FeO	10.65	10.92	12.98	12.73	13.19	12.95	12.46	10.24	11.20	11.62	11.18	10.73	12.58	12.49	12.86	13.01	13.73	13.65	12.61	14.61	13.40	12.69	14.13	13.84	13.75	13.18	14.07	14.47	15.13	15.18	14.02	14.65	15.53
Jr2O3	o.d.l.	.l.b.c	0.15	.l.b.c	.l.b.c	.l.b.c	.l.b.c	.l.b.c	.l.b.c	.l.b.c	0.15	.l.b.c	.l.b.c	.l.b.c	0.13	.l.b.c	.l.b.c	0.16	0.03	0.13	0.10	.l.b.c	.l.b.c	.l.b.c	.l.b.c	.l.b.c	0.11						
1 ₂ 0 ₃ C	1.25	1.48 1	1.23 1	1.23 1	1.55 1	1.18 1	1.06	1.17	1.14	1.04	1.01	2.36 1	1.15	1.24	0.88	1 68.0	1.11	0.71	0.47	1 66.0	0.71	0.76	1.04	1.15	1.06	0.73	16.0	1.10	1.12	1.33 1	1.37	1.39 1	1.10
TiO ₂ A	o.d.l.	o.d.l.	.d.l.	o.d.l.	.d.l.	.d.l.	.d.l.	.d.l.	.d.l.	.d.l.	o.d.l.	.d.l.	.d.l.	.d.l.	.d.l.	o.d.l. 0	.d.l.	0.12	0.09	o.d.l. (.d.l.	0.05	0.01	0.05	o.d.l.	.d.l.	.d.l.	0.08	0.20	o.d.l.	.d.l.	o.d.l.	o.d.l.
i0, 1	6.05 b	6.12 b	5.88 b	6.12 b	5.97 b	6.18 b	6.68 b	6.08 b	5.97 b	6.14 b	6.47 b	5.84 b	5.36 b	6.19 b	5.33 b	5.85 b	5.32 t	4.81	5.95 (4.95 b	5.61 b	5.27	5.49	4.94	5.46 b	5.25 b	4.80 b	4.91	5.23	4.28 b	4.65 b	4.97 b	4.51 b
N ⁰ - S KN - S	28 5	29 5	32 5	35* 5	36* 5	37 5	41 5	45* 5	51* 5	52 5	53* 5	56 5	1* 5	2 5	3 5	12 5	19 5	20 5	21 5	22 5	23 5	24 5	25 5	26 5	33 5	34 5	t2 5	43* 5	44* 5	5 5	58* 5	5 5	50 5
Ми- не- т рал	C xdO	Opx 0	Opx 2	0px	0px	Opx	, xdO	opx .	орх	Opx :	Opx	Opx :	орх	орх	Npx	0px	0px	Opx 0	Opx 1	Opx 2	Opx V	Opx 0	Opx 0	Opx 0	Opx 0	Opx (opx ²	opx '	, xdO	opx :	0px	opx :	0 px
Образец	UR17/2-2IV	UR17/2-3a	UR17/2-3a	UR17/2-3a	UR17/2-3a	UR17/2-3a	UR17/2-3a	UR17/2-3a																									
Порода	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt											

Таблица Д1. Продолжение

594

ЛОБАЧ-ЖУЧЕНКО и др.

ОСОБЕННОСТИ	состава и	возможные	МЕХАНИЗМЫ	образования
OCODLINIOCINI	0001110/111	DOOMOMIDIL		obinioob/minini

	, Wo	0	-	0	0	0	0	0	1	1	1	-	-	1	1	-	-	-	-	-	1	-	-	-	1	-	1	-	1	0	1	0	1
	n Fs	6 24	6 23	6 23	8 22	7 42	4 36	9 41	0 40	1 39	9 41	1 38	5 35	0 39	3 36	4 35	1 38	5 44	1 38	2 37	5 34	7 42	2 37	9 50	9 40	8 51	9 50	5 43	3 36	7 23	8 22	0 20	8 21
	#Mg E	77 77	76 74	77 74	78 7.	59 5	66 6	61 5	62 6	61 6	60 5	62 6.	66 6.	61 6	64 6.	63	62 6	57 5.	63 6	63 6.	66 6.	60 5	63 6.	51 4	61 5:	49	49 4	57 5.	63 6.	80 7	7 7	79 8	80 7.
	ум- ма	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
	zi C	Ι	I			I	Ι	I	I	I	I	Ι	Ι	I	Ι	I	I	Ι		I	I	Ι	Ι	Ι	I	Ι	Ι	Ι	I	I	I	I	I
	a K		1	I	I	I	Ι	I	I	I	Ι	Ι	Ι	I	I	Ι	I	Ι	I	Ι	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	I	1
	ä	- 07	12 -	- 60	07 –	- 80	- 60	10 -	10 -			- 13	14	15 -	- 15	15 -	16 –	17 -	- 18	- 18	- 19	21 -	22 -	24 -	23 -	24 -	26 -	26 -	26 -	 	12 -	05 -	=
	lg C	50 0.00	49 0.0	49 0.00	53 0.00	14 0.00	27 0.00	17 0.0	19 0.0	0.0	16 0.0	20 0.0	27 0.0	18 0.0	23 0.0	23 0.0	0.0	0.0 80	20 0.0	22 0.0	27 0.0	13 0.0	21 0.0	98 0.0	16 0.0	93 0.0	94 0.0	0.0	21 0.0	54	53 0.0	55 0.00	55 0.0
	<u>л</u>	06 1.5	II 1.	38 1.4	07 1.:	10 1.1	1.1.1	20 1.	22 1.	1.	16 1.	1.1	1.1	1.	21 1.	20 1.	1.	27 1.0	22 1.	21 1.	1.	22 1.	14 1.	13 0.	24 1.	33 0.	36 0.	24 1.0	21 1.	38 1.:	1.1	06 1.5	05 1.:
	- W	0.0(2 0.01	0.0(0.0(0.01	0.01	0.02	0.02	10.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.0	0.02	0.02	0.01	0.02	0.01	0.01	0.02	0.0	4 0.03	0.0	5 0.02	0.0(0.01	8 0.00	0.0(
	· Fe ³	Ι	0.01	I	0.00	Ι		I	I	0.00	Ι	Ι	Ι	I	Ι	0.03	I	Ι		Ι	Ι	Ι	Ι	1	I	Ι	00.00	Ι	0.02	I	I	0.01	Ι
	c Fe ²⁺	0.453	0.447	0.455	0.432	0.786	0.664	0.743	0.729	0.755	0.777	0.736	0.654	0.743	0.687	0.679	0.724	0.812	0.704	0.717	0.638	0.767	0.722	0.946	0.744	0.982	0.972	0.817	969.0	0.396	0.403	0.394	0.396
	N CI	153 -)64 –	- 020	151 -	- 890)46 —	- 490)42 —	158 -	156 -	- 990	- 090	- 69	- 100	- 080	173 -	173 -	- 128	156 -	185 -	- 190	154 -	- 040	- 651)63 –	145 -	163 -)63 –)59 -)62 –	- 99()53 –
	Ti	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.0	- 0.C
	Si	1.98	1.96	1.97	1.97	1.99	2.00	2.00	2.01	1.97	1.98	1.98	1.99	1.98	1.98	1.94	1.98	1.99	1.98	1.97	1.98	2.00	1.98	2.00	1.99	1.97	1.98	1.99	1.96	2.00	1.98	1.96	1.98
	Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
	NiO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
	K ₂ O	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
	Va ₂ O	.d.l. 1	1 .I.b.c	l.l.b.	l.l.b.	1.d.l.	1.l.	l.l.b.o	1.d.l.	l.d.l.	1.d.l.	1.l.b.c	1.d.l.	l.l.b.c	1.l.	1.d.l.	l.l.b.o	1.d.l.	1.d.l.	J.d.l.	i .L.b.c	1.d.l.	1.d.l.	1.d.l.	l.l.b.o	J. 1. 1.	.d.l. l	1.l.d.	1.l.	I .I.b.c	1.l.h.d	1.d.l.	l .L.b.c
	CaO I	0.17 t	J.31 t).23 t	0.17 t	J.19 t).23 t	0.24 l	0.25 t	0.27 t	0.28 t).32 t).34 t).36 t).37 t	0.38 t).41 t).41 t).44 l).45 t	0.48 l	0.53 t).56 t	0.57 t).57 t	0.57 t).62 t).64 t).66 t	0.00 1	0.30	0.13 1).30 t
	MgO (38.05 (27.87 (27.87 (28.64 (30.19	22.92 (20.82 (21.29 (21.25 (20.62 (21.44 (22.99 (21.12 (22.22	22.17	21.38 (19.13	21.57 (21.84 (22.95 (20.12 (21.73 (16.98 (20.73 (16.02 (16.29 (19.17	21.80 (59.00	28.80 (29.27 (39.23
	AnO 1	0.20 2	.37 2	.25 2	.22 2	.32 2	.53 2	.62 2	0.70	.52 2	.50 2	.41 2	.57 2	.42	.65 2	.62 2	.61 2	.84 1	.68 2	.65 2	.56 2	.68 2	.43	.40 1	0.76 2	10.1	.10	0.75	.65 2).27	.40 2	0.20	0.15 2
	èO N	0 60.9	6.28 0	5.17 0	.64 0	.91 0	.41 0	.66 0	3.24 0	H.11 0	.68 0	151 0	111 0	69.9	0.06 0	0 62.3	3.13 0	.57 0	.54 0	0 96.0	.63 0	.32 0	3.11 0	.31 0	.68 0	.25 1	0.07	.74 0	.07 0	.29 0	.52 0	.82 0	.29 0
	203 F	d.l. 15	d.l. 15	d.l. 15	d.l. 14	d.l. 24	d.l. 21	d.l. 23	d.l. 23	d.l. 24	d.l. 24	d.l. 23	d.l. 21	d.l. 23	d.l. 22	d.l. 22	d.l. 23	d.l. 25	d.l. 22	d.l. 22	d.l. 20	d.l. 24	d.l. 23	d.l. 25	d.l. 23	d.l. 3(d.l. 3(d.l. 25	d.l. 23	d.l. 15	d.l. 13	d.l. 15	d.l. 13
	0 ₃ Cr	26 b.	52 b.	56 b.	20 b.	52 b.)5 b.	44 b.	Эб b.	31 b.	26 b.	50 b.	38 b.	56 b.	52 b.	33 b.	56 b.	53 b.	78 b.	26 b.	94 b.	38 b.	22 b.	87 b.	34 b.	38 b.	99 b.	41 b.	44 b.	40 b.	47 b.	56 b.	27 b.
	D ₂ M ₂	1. 1.2	I. 1.5	I. 1.6	I. 1.2	1. 1.5	1. 1.6	I. 1.4	1. 0.5	I. 1.5	I. 1.2	1. 1.5	I. 1.3	I. 1.5	1. 1.5	l. 1.8	I. 1.6	1. 1.6	I. 1.7	I. 1.2	L 1.5	L 1.3	I. 1.2	1. 0.5	I. 1.3	l. 1.5	J. 0.5	l. 1.∠	1. 1.4	J. 1.4	.l.	l. 1.5	1. 1.2
	ŢÏO	3 b.d.	5 b.d.	3 b.d.	b.d.	7 b.d.	5 b.d.	b.d.	5 b.d.	4 b.d.	5 b.d.	2 b.d.	l b.d.	5 b.d.	7 b.d.	2 b.d.) b.d.	3 b.d.	b.d.	4 b.d.	4 b.d.	5 b.d.	5 b.d.	7 b.d.	3 b.d.	7 b.d.	3 b.d.) b.d.	b.d.	4 b.d.	.b.d.	l b.d.	5 b.d.
ие	SiO ₂	55.23	54.65	54.83	55.13	52.87	53.85	53.21	53.55	52.54	52.66	52.82	53.61	52.85	53.17	52.22	52.80	52.43	52.95	52.84	53.44	52.96	52.95	51.87	52.93	50.77	50.95	52.30	52.39	56.0∠	55.49	55.01	55.75
жен	. № точ- ки	72	74*	75	76	86	91*	73*	66*	89	83	101	70	74	87	66	75	85	97	88	98*	45	90	39	71	11*	20	44	72	8	17	18	31
годо	Ми- не- рал	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	Opx	O_{px}	Opx	Opx	Opx	0px											
іД1. Пр	Образец	UR17/2-3a	UR17/2-3a	UR17/2-3a	UR17/2-3a	UR17/2-4	1559	1559	1559	1559																							
Таблица	Порода	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Prg-Opt	Включе- ние в Zrc	Включе- ние в Zrc	Включе- ние в Zrc	Включе-																							
	ГЕОХИ	МИ	я	Т	ом	68	J	Nº (6	20	23																						

Ca	0.949	0.946	0.935	0.901	0.960	0.921	0.960	0.938	0.940	0.950
Mg	0.944	0.925	0.958	0.979	0.949	0.978	0.945	0.946	0.944	0.919
Mn	0.002	I	0.002	0.004	I	0.002	I	0.000	0.002	0.002
Fe ³⁺		Ι	Ι	0.022	0.008	0.006	0.002	0.022	0.013	0.002
Fe ²⁺	0.076	0.084	0.073	0.085	0.065	0.079	0.077	0.055	0.074	0.088
Cr	0.010	0.015	0.010	0.010	0.009	0.002	0.006	0.015	0.011	0.008
N	0.038	0.050	0.027	0.031	0.036	0.033	0.029	0.043	0.041	0.043
Ш	I	0.004	Ι	I	I	0.005	I	Ι	Ι	0.003
Si	1.98	1.98	2.00	1.97	1.97	1.97	1.98	1.97	1.97	1.97
Сум- ма	100	100	100	100	100	100	100	100	100	100
NiO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	h.d.l.
K ₂ O	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	h.d.l.
Na ₂ O	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.20	0.07	0.13
CaO	24.34	24.22	24.00	23.12	24.66	23.66	24.64	24.11	24.11	24.34
MgO	17.41	17.01	17.68	18.05	17.51	18.06	17.42	17.47	17.41	16.92
OuM	0.05	b.d.l.	0.05	0.13	b.d.l.	0.07	b.d.l.	0.01	0.07	0.07
FeO	2.49	2.74	2.40	3.51	2.38	2.80	2.59	2.52	2.87	2.95
Cr ₂ O ₃	0.36	0.52	0.34	0.33	0.30	0.07	0.19	0.51	0.37	0.29
Al ₂ O ₃	0.89	1.17	0.63	0.73	0.85	0.77	0.68	1.01	0.96	1.00
TiO ₂	b.d.l.	0.16	b.d.l.	b.d.l.	b.d.l.	0.17	b.d.l.	b.d.l.	b.d.l.	0.12
SiO ₂	54.46	54.17	54.89	54.12	54.30	54.38	54.48	54.16	54.15	54.19
N <u>0</u> точ- ки	2	3	18^{*}	25*	45	46	48	58	59	60
Ми- не- рал	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	C_{mX}
Образец	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2	UR17/2
Порода	2hl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	PhI-Lh7

Na_2	p.d.
Ca0	24.34
OgM	17.41
OuM	0.05
FeO	2.49
Cr ₂ O ₃	0.36
Al_2O_3	0.89
TiO ₂	b.d.l.
SiO ₂	54.46
N ⁰ точ- ки	2
Ми- не- рал	Cpx

Таблица Д1. Продолжение

		_														_												
g En	48	47	48	50	48	49	48	49	48	47	46	48	48	47	48	48	48	49	49	49	48	49	47	49	48	48	50	47
#M	93	92	93	90	93	92	92	93	92	91	92	95	93	92	94	94	92	95	96	93	92	93	92	93	93	16	93	89
Сум- ма	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Ż	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0.001	0.001	0.002	0.001	0.001	0.001	0.002	0.003	0.001	Ι	Ι	I	Ι	Ι	Ι	Ι	I
K	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	Ι	0.001	Ι	0.001	I	Ι	0.001	0.001	I	Ι	I	Ι	I	Ι	I	I
Na	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0.014	0.005	0.009	Ι	0.006	0.009	0.008	0.006	0.006	0.007	0.013	0.010	0.007	0.011	0.007	0.004	Ι	I	0.002	0.017	I
Ca	0.949	0.946	0.935	0.901	0.960	0.921	0.960	0.938	0.940	0.950	0.953	0.957	0.955	0.947	0.956	0.949	0.948	0.940	0.943	0.937	0.945	0.928	0.926	0.930	0.956	0.955	0.960	0.943
Mg	0.944	0.925	0.958	0.979	0.949	0.978	0.945	0.946	0.944	0.919	0.929	0.953	0.931	0.928	0.947	0.950	0.938	0.942	0.954	0.957	0.927	0.954	0.933	0.974	0.946	0.937	0.955	0.919
Mn	0.002	Ι	0.002	0.004	Ι	0.002	Ι	0.000	0.002	0.002	Ι	0.002	0.003	0.002	0.002	0.003	0.002	0.003	0.004	0.004	0.004	0.007	0.002	0.001	0.007	0.003	I	0.004
Fe ³⁺	I	Ι	Ι	0.022	0.008	0.006	0.002	0.022	0.013	0.002	Ι	0.016	0.014	0.008	0.015	0.012	I	0.032	0.038	0.003	0.003	I	I	I	0.008	0.034	0.072	0.028
Fe ²⁺	0.076	0.084	0.073	0.085	0.065	0.079	0.077	0.055	0.074	0.088	0.080	0.053	0.065	0.079	0.061	0.063	0.077	0.052	0.041	0.073	0.078	0.074	0.084	0.074	0.066	0.061	0.005	0.083
Cr	0.010	0.015	0.010	0.010	000.C	0.002	0.006	0.015	0.011	0.008	0.006	0.003	0.008	0.006	0.002	0.004	0.002	0.006	0.004	0.002	0.011	600.0	600.0	0.011	0.007	600.0	1	
A	0.038	0.050	0.027	0.031	0.036	0.033	0.029	0.043	0.041	0.043	0.034	0.031	0.041	.044 (0:030	0.033	0.038	0.045	0.037	0.029	0.046	0.036	0.035 (0.030	0.036	0.039 ().036	0.073
Ti		0.004 (0.005				0.003		0.003	0.004	0.004 (0.002	0.004 (0.004	0.004 (0.004 (0.003		0.004 (0.005 (0.002 (0.008 (0	0.001		
Si	1.98	1.98	2.00	1.97	1.97	1.97	1.98	1.97	1.97	1.97	2.00	1.97	1.97	1.97	1.98	1.98	1.98	1.96	1.96	1.98	1.98	1.98	2.00	1.98	1.97	1.96	1.96	1.95
Сум- ма	100	100	100	100	100	100	100	100	100	100	100	101	101	101	102	102	102	101	102	102	100	100	100	100	100	100	100	100
NiO	b.d.l.	0.04	0.05	0.06	0.04	0.04	0.03	0.07	0.11	0.05	b.d.l.	b.d.l.	b.d.l.	b.d.l.	o.d.l.	o.d.l.	b.d.l.	b.d.l.										
K ₂ O	b.d.l.	0.00	0.01	0.00	0.01	b.d.l.	0.00	0.01	0.01	b.d.l.	b.d.l.	b.d.l.	b.d.l.	p.d.l	p.d.l.	b.d.l.	b.d.l.											
Na ₂ O	b.d.l.	0.20	0.07	0.13	b.d.l.	0.08	0.13	0.12	0.09	0.09	0.10	0.19	0.15	0.10	0.15	0.10	0.05	b.d.l.	b.d.l.	0.03	0.24	b.d.l.						
CaO	4.34	24.22	24.00	23.12	24.66	23.66	.4.64	24.11	24.11	24.34	24.41	24.92	24.74	24.59	25.02	24.79	24.77	24.42	24.59	24.61	24.23	23.84	23.72	3.90	24.51	24.46	24.74	24.15
MgO	17.41	10.71	17.68	18.05	17.51	18.06	17.42	17.47	17.41	16.92	11.71	17.83	17.34	17.32	12.81	17.84	17.62	17.59	17.89	18.07	17.09	19.21	17.17	2 66.71	17.44	17.26	17.69	16.91
MnO 1	0.05	.d.l.	0.05	0.13	.d.l.	0.07	.d.l.	0.01	0.07	0.07	o.d.l.	0.07	0.10	0.08	0.08	0.10	0.08	0.10	0.12	0.14	0.13	0.21	0.06	0.02	0.22	0.08	.l.b.c	0.13
FeO	2.49	2.74	2.40	3.51	2.38	2.80	2.59 1	2.52	2.87	2.95	2.61	2.30	2.61	2.90	2.54	2.49	2.57	2.79	2.62	2.54	2.66	2.42	2.75	2.43	2.42	3.14	2.54 1	3.63
Cr ₂ O ₃	0.36	0.52	0.34	0.33	0.30	0.07	0.19	0.51	0.37	0.29	0.19	0.12	0.28	0.20	0.07	0.13	0.08	0.22	0.15	0.07	0.39	0.30	0.32	0.37	0.24	0.31	b.d.l.	b.d.l.
Al ₂ O ₃	0.89	1.17	0.63	0.73	0.85	0.77	0.68	1.01	0.96	1.00	0.80	0.73	0.97	1.04	0.72	0.79	0.91	1.07	0.87	0.70	1.08	0.83	0.81	0.70	0.84	0.91	0.84	1.71
FiO ₂	o.d.l.	0.16	.d.l.	.d.l.	.d.l.	0.17	.d.l.	.d.l.	.l.b.c	0.12	.d.l.	0.11	0.16	0.15	0.08	0.13	0.15	0.14	0.14	0.12	.l.b.c	0.13	0.19	0.07	0.30	0.03	.l.b.c	.l.b.c
SiO ₂	54.46	54.17	54.89	54.12	54.30	54.38	54.48	54.16	54.15	54.19	54.88	55.09	54.66	54.86	55.45	55.30	55.52	54.61	54.85	55.83	54.28	54.55	54.94	54.52	54.02	53.78	53.96	53.46 1
гоч- КИ	2	<i>с</i>	18* 5	25* 5	45	46	48	58	59 5	60	61* 5	36 5	38	40	44	50 5	51 5	54	56 5	61 5	1*	*	15* 5	16* 5	26* 5	35*	с	30* 5
не- 1 рал	Cpx	Cpx*	хdС	Zpx	Cpx	Zpx	хdС	Zpx	хdС	Cpx																		
бразец	JR17/2	JR17/	JR17/																									
Порода С	Phi-Lhz L	PhI-Lhz L	PhI-Lhz U	Phi-Lhz U	Phi-Lhz L	Phi-Lhz U	Phi-Lhz L	Phi-Lhz U	PhI-Lhz U	PhI-Lhz L	Phi-Lhz L	Phi-Lhz L	Phi-Lhz U	Phi-Lhz U	PhI-Lhz L	Phl-Hzb 1	Phi-Hzb 1	Phl-Opt 1										

4 9 % % 4 % % 4 % 7

 Wo

 $\mathbf{F}_{\mathbf{S}}$

v 4 w

4 ω 4

ГЕОХИМИЯ том 68 Nº 6

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

Wo	49	52	47	47	48	46	46	49	46	49	48	45	46	46	48	48	146	46	47	42	47
En	t6 5	18 0	46 8	47 6	47 4	47 7	47 7	t6 5	18 6	47	15 7	47 8	46 8	t5 9	34 18	35 17	33 20	35 20	33 20	34 23	37 16
Mg [#]	68	16	88	, 06	89 4	86	87	87	87	68	88	68	88	86 4	61	63	61	64	62	62	71
Сум- ма	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
ζ Ni																					
Na	- 014	.013	- 018	1	.025 -	- 016	.033	- 017	.028 -	.033	- 020	- 016	- 034	- 024	-044	.037	- 036	.034 -	.025 -	.027 -	.028 -
Са	958 0	0 766	912 0	940	919 0	892 0	873 0	939 0	872 0	937 0	927 0	885 0	882 0	882 0	881 0	885 0	867 0	870 0	0 006	798 0	892 0
Mg	.882 0.	908 0.	.887 0.	930 0.	906	0 106	.896 0.	.884 0.	925 0.	.0 668.	.875 0.	928 0.	877 0.	870 0.	624 0	646 0.	.626 0.	.655 0.	.619 0.	.652 0.	.710 0.
An 1	004 0.	0.	003 0.	004 0.	004 0.	004 0.	007 0.	000 0.	005 0.	004 0.	0.	006 0.	002 0.	011 0.	018 0.	016 0.	015 0.	010 0.	013 0.	015 0.	003 0.
e ³⁺ N	0.0	093	- 0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	-0.	0.	0.0	0.49	0.0	0.4 0.	0	0	<u>-</u>
2+ F	.0 760	0.0	. 611	00	0.0	0.0	34 0.0	0.0	113 0.0	0.0	24	. 611	. 121	. 39	324 0.	324 0.0	376 0.	370 0.0	375	. 968	. 562
т. Т	- 0.0	- 10	08 0.1	04 0.1	04 0.0	04 0.1	08 0.1	00 0.0	03 0.1	- 0.0	- 0.1	- 0.]	- 0.]	- 0.1	- 0.3	- 0.3	- 0.5	- 0.5	- 0.5	- 0.3	- 0.2
	- 29	50 0.0	0.0	37 0.0	68 0.0	84 0.0	174 0.0	0.0	58 0.0	43	- 87	-	- 6	92 -	02	- 86	04	85 -	- 05	53 -	- 66
Li A	- 0.0	- 0.0	005 0.0	003 0.0	001 0.0	003 0.0	006 0.0	002 0.0	003 0.0	003 0.0	004 0.0	003 0.0	0.0	003 0.0	006 0.1	0.0	004 0.1	002 0.0	005 0.1	0.0 0.1	007 0.0
Si	.97	.93	.98 0.	.98 0.	.0 96	.95 0.	.97 0.	.95 0.	.97 0.	.97 0.	.0 96.	.00 00.	66.	.086.	.93 0.	.94 0.	.95 0.	.97 0.	.96 0.	.95 0.	.97 0.
ум- ма	100 1	100 1	100 1	100 1	100 1	100 1	100 1	100 1	100 1	100 1	100 1	100 2	100 1	100 1	100 1	100 1	100 1	100 1	100 1	100 1	100 1
NiO	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
K ₂ 0	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Na ₂ O	0.20	0.19	0.25	b.d.l.	0.36	0.22	0.46	0.24	0.39	0.46	0.28	0.22	0.48	0.34	0.60	0.51	0.49	0.46	0.34	0.37	0.38
CaO	24.50	25.55	23.27	24.04	23.55	22.79	22.31	23.98	22.33	24.00	23.68	22.65	22.57	22.49	21.75	21.89	21.39	21.51	22.19	19.70	22.26
MgO	16.21	16.72	16.27	17.10	16.68	16.54	16.46	16.24	17.02	16.55	16.07	17.06	16.14	15.94	11.06	11.49	11.09	11.65	10.96	11.57	12.74
MnO	0.14	b.d.l.	0.10	0.12	0.13	0.13	0.24	0.01	0.16	0.14	b.d.l.	0.19	0.07	0.35	0.55	0.50	0.48	0.31	0.40	0.47	0.10
FeO	3.49	3.04	3.88	3.28	3.69	4.64	4.42	4.35	4.59	3.63	4.07	3.90	3.97	4.53	12.55	11.80	12.50	11.86	11.83	12.54	9.42
Cr ₂ O	b.d.l.	0.33	0.27	0.14	0.12	0.12	0.26	0.01	0.11	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.
Al ₂ O ₃	1.50	1.17	1.64	0.85	1.59	1.96	1.71	1.83	1.34	0.99	2.02	0.96	2.13	2.13	2.29	2.21	2.32	1.92	2.35	3.43	2.24
TiO ₂	b.d.l.	b.d.l.	0.19	0.09	0.02	0.12	0.20	0.07	0.11	0.09	0.14	0.11	b.d.l.	0.11	0.21	0.15	0.13	0.08	0.17	0.32	0.25
SiO ₂	53.96	52.99	54.12	54.39	53.86	53.49	53.96	53.27	53.95	54.15	53.75	54.91	54.64	54.11	50.99	51.45	51.60	52.21	51.76	51.59	52.61
. N ⁰ точ- ки	31*	49*	16	17	18	38	39	40	41	45	11	16*	17*	20*	10^{*}	19	25	29*	35	42*	43*
Ми- не- рал	/ Cpx	/ Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx	Cpx
Образец	UR17/2-2IV	UR17/2-2IV	UR 17/2-3a	UR17/2-3a	UR 17/2-3a	UR 17/2-3a	UR17/2-3a	UR 17/2-3a	UR17/2-3a	UR17/2-3a	UR 17/2-2a	UR 17/2-2a	UR17/2-2a	UR17/2-2a	UR17/2-4						
Порода	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt 1	Phl-Opt	Phl-Opt 1	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Prg-Opt 1						

Таблица Д1. Продолжение

ГЕОХИМИЯ

том 68 № 6 2023

Таблиц	а Д1. Пг	жиодос	ение													
Порода	Образец	Мине- рал	№ точки	SiO ₂	TiO ₂	Al_2O_3	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K_2O	NiO	CI	-
2hl-Lhz	UR17/2	lhI	4	42.60	1.73	14.51	0.61	3.25	b.d.l.	26.00	b.d.l.	0.37	10.93	b.d.l.	b.d.l.	I
Phl-Lhz	UR17/2	Phl	9	42.26	2.03	15.30	0.38	3.65	b.d.l.	24.69	b.d.l.	0.68	10.79	0.07	0.16	
PhI-Lh7	UR17/2	PhI	7	42.32	1.55	14.96	0.49	3.49	h.d.l.	25.75	h.d.l.	0.21	11.24	h.d.l.	h.d.l.	

Сум- ма	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	×
ū	I	0.019	I	0.013	0.012	0.013	0.012	Ι	0.010	0.009	0.016	0.014	Ι	Ι	I	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	0.015	0.002	0.015	Ι	I	0.012
ï	Ι	0.004	I	I	I	0.009	0.008	0.009	I	0.007	0.012	0.019	0.008	0.010	0.010	0.011	0.008	Ι	I	0.026	Ι	0.019	0.010	Ι	Ι	I	I	I	Ι	0.006	0.006	0.001	0.005
ч	0.948	0.940	0.976	0.958	0.983	0.975	0.902	0.959	1.029	0.986	0.965	0.999	0.860	0.860	0.913	0.911	0.911	0.903	0.976	0.881	0.943	0.913	0.911	066.0	0.946	096.0	0.983	0.947	0.941	0.961	0.991	0.948	0.945
Na	0.049	060.0	0.028	0.028	0.044	0.050	0.071	0.050	0.038	0.028	0.030	0.039	0.060	0.064	0.037	0.041	0.039	0.041	0.033	0.034	0.033	0.033	0.067	0.016	0.038	0.030	0.025	0.052	0.058	0.022	0.042	0.044	0.034
Ca	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0.001	0.001	0.001	0.001	0.001	0.004	0.009	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι
Mg	2.64	2.51	2.61	2.60	2.62	2.57	2.52	2.59	2.60	2.63	2.61	2.61	2.61	2.63	2.63	2.59	2.58	2.54	2.53	2.57	2.59	2.65	2.58	2.58	2.59	2.60	2.62	2.62	2.55	2.62	2.63	2.55	2.64
Mn	Ι	Ι	Ι	0.006	Ι	Ι	Т	Ι	Ι	Т	Ι	Ι	0.002	0.002	Ι	0.001	0.001	Ι	0.008	Ι	0.005	Ι	0.004	Ι	Ι	Ι	Ι	Ι	Ι	0.008	0.00	Ι	Ι
Fe^{3+}	0.015	Ι	0.006	0.039	0.006	Ι	0.011	0.065	I	0.035	0.026	Ι	0.101	0.107	0.077	0.046	0.049	0.130	Ι	0.104	0.054	0.111	0.041	I	Ι	0.047	0.060	Ι	0.026	0.060	0.131	Ι	0.085
Fe ²⁺	0.169	0.209	0.192	0.170	0.191	0.174	0.214	0.157	0.198	0.148	0.168	0.194	0.088	0.063	0.102	0.145	0.151	0.145	0.284	0.095	0.166	0.084	0.150	0.187	0.170	0.164	0.148	0.185	0.192	0.140	0.079	0.194	0.095
Cr	0.033	0.021	0.026	0.018	0.021	0.031	0.042	0.026	0.023	0.026	0.033	0.029	0.022	0.020	0.019	0.022	0.025	0.024	0.014	0.042	0.037	0.029	0.034	0.026	0.025	0.038	0.026	0.032	0.035	0.014	0.029	0.032	0.045
AI	1.16 (1.23 (1.20 (1.21	1.21	1.17	1.25 (1.28 (1.20 (1.22 (1.19 (1.19 (1.21	1.23 (1.22 (1.21	1.22 (1.26 (1.17	1.21 (1.18 (1.15 (1.21 (1.21	1.22 (1.20 (1.20 (1.16 (1.27 (1.20 (1.20	1.19 (1.19
Ë	0.089	0.104	0.079	0.080	0.088	0.096	0.095	0.062	0.075	0.084	0.088	0.084	0.091	0.084	0.075	0.091	0.092	0.085	0.063	0.088	060.0	0.076	0.109	0.082	0.091	0.088	0.092	0.079	0.089	0.083	0.115	0.096	0.094
Si	2.90	2.89	2.88	2.87	2.87	2.92	2.86	2.81	2.88	2.85	2.88	2.87	2.87	2.86	2.87	2.88	2.88	2.82	2.91	2.87	2.88	2.88	2.87	2.90	2.90	2.86	2.85	2.91	2.83	2.87	2.80	2.92	2.85
Сум- ма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
CI	b.d.l.	0.16	b.d.l.	0.11	0.10	0.11	0.10	b.d.l.	0.09	0.08	0.14	0.12	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.16	0.02	0.16	b.d.l.	b.d.l.	0.13
NiO	b.d.l.	0.07	b.d.l.	b.d.l.	b.d.l.	0.16	0.14	0.16	b.d.l.	0.13	0.22	0.35	0.15	0.18	0.19	0.20	0.15	b.d.l.	b.d.l.	0.48	b.d.l.	0.35	0.19	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.11	0.11	0.02	0.09
K ₂ 0	10.93	10.79	11.24	11.03	11.28	11.21	10.36	11.05	11.79	11.34	11.09	11.43	10.00	10.02	10.60	10.54	10.53	10.42	11.18	10.21	10.86	10.58	10.49	11.40	10.93	11.05	11.31	10.92	10.82	11.07	11.36	10.93	10.90
Na ₂ O	0.37	0.68	0.21	0.21	0.33	0.38	0.54	0.38	0.29	0.21	0.23	0.29	0.46	0.49	0.28	0.31	0.30	0.31	0.25	0.26	0.25	0.25	0.51	0.12	0.29	0.23	0.19	0.40	0.44	0.17	0.31	0.33	0.26
CaO	b.d.l.	0.02	0.01	0.02	0.01	0.01	0.06	0.12	b.d.l.																								
MgO	26.00	24.69	25.75	25.65	25.70	25.28	24.78	25.55	25.51	25.84	25.62	25.53	25.93	26.19	26.15	25.62	25.50	25.08	24.80	25.50	25.56	26.30	25.40	25.48	25.63	25.59	25.78	25.88	25.11	25.78	25.74	25.14	26.01
MnO	b.d.l.	b.d.l.	b.d.l.	0.11	b.d.l.	0.04	0.03	b.d.l.	0.02	0.01	b.d.l.	0.14	b.d.l.	0.09	b.d.l.	0.07	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.14	0.15	b.d.l.	b.d.l.							
FeO	3.25	3.65	3.49	3.67	3.44	3.05	3.95	3.90	3.46	3.22	3.40	3.38	3.35	3.02	3.17	3.38	3.51	4.84	4.96	3.53	3.86	3.44	3.35	3.28	2.99	3.72	3.64	3.25	3.82	3.52	3.67	3.41	3.15
Cr_2O_3	0.61	0.38	0.49	0.34	0.38	0.58	0.78	0.49	0.43	0.49	0.61	0.53	0.42	0.37	0.36	0.41	0.47	0.44	0.25	0.79	0.68	0.54	0.63	0.48	0.47	0.70	0.49	0.59	0.64	0.26	0.53	0.59	0.85
Al ₂ O ₃	14.51	15.30	14.96	15.09	15.04	14.53	15.51	15.96	14.84	15.21	14.80	14.79	15.25	15.54	15.32	15.16	15.28	15.71	14.49	15.15	14.67	14.38	15.03	15.06	15.23	14.99	14.97	14.44	15.84	15.02	14.94	14.79	14.85
TIO ₂	1.73	2.03	1.55	1.57	1.71	1.88	1.85	1.21	1.45	1.64	1.71	1.63	1.79	1.65	1.47	1.79	1.80	1.66	1.23	1.72	1.75	1.50	2.12	1.61	1.79	1.72	1.80	1.54	1.74	1.62	2.23	1.88	1.84
SiO ₂	42.60	42.26	42.32	42.22	42.01	42.83	41.98	41.30	42.15	41.83	42.18	41.95	42.60	42.51	42.45	42.55	42.43	41.47	42.58	42.36	42.28	42.66	42.20	42.57	42.68	42.00	41.83	42.82	41.57	42.16	40.95	42.90	41.93
№ гочки	4	9	7	11	15	16	17	23	49	55	56	57	39	41	45	53	57	5	9	14	17	27	31	2	13	4	5	6*	19	21	22*	26	31
ине- рал	Phl	Phl*	Phl*	Phl^*	Phl*	Phl*	Phl	PhI	PhI	Ihl																							
зец 1	2	, C	, C	, C)	, C)	, C	, C)	, C	, C)	, C)	, C)	, C)	, C)	, C)	<u>,</u>	, C)	, C)	2-2b	2-2b	2-2b	2-2b	2-2b	2-2b	2-2v	2-2v	2-2I							
Oбpas	UR17/2	UR17/2	UR17/2	UR 17/.	UR17/2																												
Порода	Phl-Lhz	2h1-1h2	Phl-Lhz	Phl-Lhz	Phl-Lhz	Phl-Lhz	Zh1-Lhz	Phl-Lhz	2h1-1h2	Zh1-Lhz	dzH-1hq	dzH-1hq	dzH-1hq	d2H-1hq	dzH-1hq	dzH-1hq	dzH-1hq	dzH-1hq	Phl-Hzb	d2H-1hq	d2H-lhq	d2H-1hq	d2H-1hq	d2H-lhq	d2H-lhq	Phl-Hzb							

95

 ∞

Ι Т

0.034 0.964

42.19 1.75 14.75 0.64 3.30 b.d.1. 26.00 b.d.1. 0.26 11.11 b.d.1. b.d.1. b.d.1. 100 2.87 0.090 1.18 0.034 0.142 0.045 - 2.64 - 1

32*

PhI-Hzb UR17/2-21 PhI

93 97

#Mg

92

94

95

ГЕОХИМИЯ том 68 Nº 6 2023

L 50	1																												
#Mg	95 98		56	94	94	93	93	94	93	94	93	93	93	92	92	93	92	93	94	93	96	94	89	88	89	89	90	66	95
Сум- ма	~ ~	o (×	~	×	8	8	8	8	8	8	8	8	~	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
CI	I I		Ι	Ι	I	Ι	I	Ι	I	I	Ι	I	I	Ι	I	I	I	I	0.012	I	0.013	I	0.014	I	Ι	I	I	Ι	I
ïŻ			Ι	0.010	0.011	0.011	0.011	0.013	0.010	0.010	0.008	I	0.008	Ι	0.001	I	0.010	I	T	0.007	I	I	Ι	I	Ι	I	I	0.006	0.009
м	0.853		0.945	0.916	0.897	0.946	0.907	0.916	0.931	0.890	0.903	0.971	0.987	1.004	0.917	1.019	0.971	0.980	0.952	1.014	0.988	0.967	0.948	0.964	0.939	0.918	0.880	0.826	0.896
Na	090.0	070.0	.027	0.038	0.31	.044	0.030	0.037	0.034	0.041	0.042	0.043).050).036	.045	.018).026	I	0.044	.022).020	0.032	I	0.033	0.012	.008	I	0.062	.066
Ca			1	0.003 0	0.006 0	0.002 C	0.001	0.002 0	0.001	0.001	0.002 0	1		1	1	1	1	I	1	1		1	I		1	0.004 0	.004	1	
Mg	2.70	C0.7	2.61	2.61	2.60 (2.61 (2.62 (2.60 (2.62 (2.64 (2.61 (2.60	2.61	2.62	2.62	2.57	2.56	2.60	2.63	2.62	2.65	2.62	2.45	2.44	2.48	2.43 0	2.43 0	2.52	2.54
Mn	1 1		0.003	0.001	0.003	0.002	I	0.001	I	0.002	I	I	I	Ι	I	I	0.005	I	I	I	I	I	I	I	Ι	I	0.00	0.010	I
Fe ³⁺	0 108	001.0	1	0.027	0.049	0.060	0.099	0.071	0.041	0.088	0.053	I	I	Ι	I	I		I	0.045	I	0.080	0.038	0.026	I	Ι	I	1	0.345	0.129
Fe ²⁺	0.148		0.142	0.152	0.132	0.128	0.086	0.110	0.146	0.092	0.139	0.196	0.211).216).224	.199).211	0.186	0.166	0.190	0.110	0.157	.298	0.327).292).298).280	0.016	0.145
Ċ	0.025 (0		.028 (.023	.025 (.031	.005	.024 (.020	.016 (.021	.026 (.029 (.024 (.028 (.027 0	.029 (.029 (.031 (.018 (.029 (.036 (.029 (019 0
R	1.20 0		1.21 0	1.20 0	1.20 0	1.21 0	1.22 0	1.23 0	1.19 0	1.20 0	1.21 0	1.20 0	0 01.1	1.18 0	1.18 0	1.18 0	1.16 0	1.20 0	1.17 0	1.20 0	1.20 0	1.21 0	1.26	1.24	1.23	1.28	1.29	1.18 0	1.20 0
Έ	0.084		0/0.0	0.087	.082	.094	0.088	160.0	080.	0.076	.077	.079	.082	.084	080.	0.082	060.0	.081	.081	.089	.086	.076	.085	.074	0.73	.074	0.076	.111	0.116
Si	2.84 0		2.91 0	2.90 0	2.89 0	2.86 0	2.87 0	2.86 0	2.89 0	2.88 0	2.88 0	2.90 0	2.87 0	2.87 0	2.86 0	2.94 0	2.93 0	2.90 0	2.88 0	2.88 0	2.84 0	2.86 0	2.89 0	2.90 0	2.92 0	2.91 0	2.91 0	2.78 0	2.84 0
Сум- ма	100		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
ū	b.d.l. b.d.l		b.d.l.	0.13	b.d.l.	0.11	b.d.l.	0.12	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.															
NiO	b.d.l. h.d.l		b.d.l.	0.19	0.20	0.20	0.20	0.23	0.18	0.18	0.15	b.d.l.	0.15	b.d.l.	0.02	b.d.l.	0.18	b.d.l.	b.d.l.	0.13	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.11	0.17
K_2O	10.15 9 97	10.0	10.98	10.60	10.41	10.90	10.54	10.61	10.77	10.36	10.47	11.17	11.32	11.50	10.61	11.65	11.14	11.30	10.96	11.63	11.37	11.15	10.85	11.03	10.80	10.58	10.18	9.54	10.30
Na ₂ O	0.46	07.0	0.21	0.29	0.24	0.33	0.23	0.28	0.26	0.31	0.32	0.32	0.38	0.27	0.34	0.14	0.20	b.d.l.	0.33	0.17	0.15	0.24	b.d.l.	0.25	0.09	0.06	b.d.l.	0.47	0.50
CaO	b.d.l. h.d.l		b.d.l.	0.04	0.08	0.02	0.01	0.02	0.01	0.01	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.05	0.05	b.d.l.	b.d.l.										
MgO	27.02 26.35	CC.02	25.98	25.81	25.85	25.77	26.09	25.79	25.96	26.24	25.89	25.62	25.65	25.70	25.96	25.09	25.15	25.68	25.88	25.75	26.12	25.89	24.01	23.90	24.38	23.95	24.09	24.93	24.94
MnO	b.d.l. b.d.l		c0.0	0.02	0.05	0.03	b.d.l.	0.01	b.d.l.	0.03	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.16	0.17	b.d.l.
FeO	2.64 2.98	07.2	2.52	3.16	3.19	3.30	3.27	3.19	3.30	3.19	3.39	3.43	3.69	3.77	3.96	3.48	3.68	3.27	3.71	3.32	3.35	3.44	5.66	5.71	5.12	5.24	4.94	6.36	4.80
Cr ₂ O ₃	0.67	6.0	0.52	0.43	0.46	0.58	0.09	0.45	0.38	0.30	0.40	0.48	0.54	0.45	0.52	0.50	0.53	0.54	0.57	0.33	0.53	0.66	b.d.l.	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.54	0.36
Al ₂ O ₃	15.20 14 94		15.21	15.00	15.12	15.04	15.29	15.38	14.90	15.10	15.17	14.93	14.77	14.67	14.76	14.62	14.42	14.98	14.56	14.86	14.97	15.10	15.57	15.31	15.30	15.94	16.12	14.79	14.96
TIO2	1.66		1.37	1.70	1.62	1.84	1.74	1.79	1.57	1.50	1.52	1.55	1.59	1.64	1.58	1.59	1.74	1.58	1.59	1.72	1.68	1.48	1.64	1.44	1.43	1.44	1.49	2.17	2.27
SiO ₂	42.39 43 73	C7.C+	43.16	42.77	42.79	41.98	42.54	42.26	42.67	42.79	42.67	42.50	41.92	42.00	42.25	42.93	42.86	42.65	42.27	42.09	41.71	42.04	42.15	42.36	42.88	42.75	42.98	40.92	41.71
N⁰ Toy- KM	51* 54	5 1	55	ŝ	9	10	17	18	22	24	30	5	9	10	18*	29*	31	34	43*	46	5	52	2*	6^*	7*	19*	24*	4	5
Ми- не- рал	INI INI		lud	Phl*	Phl^*	ЫN	Ihl	Ыı	Ihl	Ihl	Ihl	ЫN	ЫN	Ihl	Ыhl	ЫN	lЧd	lнI	lhI	lhЧ	lhl	lhI	lhl						
Образец	UR17/2-21	17-7/1100	UKI7/2-21	UR17/2-21	UR17/2-21	UR17/2-2I	UR17/2-2I	UR17/2-2I	UR17/2-2I	UR17/2-21	UR17/2-21	UR17/ 2-211	UR17/ 2-211	UR17/2- 211	UR17/2- 211	UR17/2- 211	UR17/2- 211	UR17/2- 211	UR17/2- 2II	UR17/2- 211	UR17/2- 211	UR17/2- 2II	UR 17/2-2a	UR 17/2-3a	UR 17/2-3a				
Порода	PhI-Hzb PhI-	Hyzb	d2H-luA	Phl-Hzb	Phl-Hzb	dzH-lhq	Phl-Hzb	dzH-lhq	d2H-lhq	Phl-Hzb	Phl-Hzb	Phl-Hzb	Phl-Hzb	dzH-Ihq	dzH-Ind	dzH-Ind	Phl-Hzb	Phl-Hzb	PhI-Hzb	dzH-Ihq	PhI-Hzb	Phl-Hzb	Phl-Opt	Phl-Opt	Phl-Opt	Phl-Opt	Ph1-Opt	Phl-Opt	Phl-Opt

Таблица Д1. Продолжение

ГЕОХИМИЯ том 68 № 6 2023

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

Таблица	Д1. Про	кпод	кени	e																											
Порода	Образец	Ми- не- рал	№ точ- ки	SiO ₂	TiO ₂ ,	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	NiO	J	Сум- ма	Si	Ē	ر ح	L L	e ²⁺ F	e ³⁺	Mn	Mg (Ca	Na	۲ ۲	5	T CY	M- #N a	Ag
Phl-Opt	UR 17/2-3a	lчd	9	41.18	2.41	14.76	0.44	5.64	0.01	24.94	b.d.l.	0.46	9.83	0.33	b.d.l.	100 2	2.80 0.	.123 1	.18 0.	024 0	.044 0	.277 0	.001 2	2.53	- 0.	061 0.8	353 0.0	- 118	-	36	~
Phl-Opt	UR 17/2-3a	Ihl	29	40.73	2.37	14.96	0.58	5.56	0.01	24.10	b.d.l.	0.28	11.42	b.d.l.	b.d.l.	100 2	2.82 0.	.123 1.	.22 0.	032 0.	.254 0	.068 0	.001 2	2.49	-0 -	038 1.0	- 800	· ·	~	6	-
Phl-Opt	UR 17/2-3a	lhl	37	42.18	1.18	14.56	0.26	5.25	b.d.l.	25.66	0.12	0.37	10.42	b.d.l.	b.d.l.	100	2.86 0.	060 1	.17 0.	014 0.	.175 0	.123		2.60 0.	000	049 0.9	903 -		~	6	4
Phl-Opt	UR 17/2-3a	Phl	46	41.31	1.86	15.08	0.35	6.05	b.d.l.	24.08	b.d.l.	0.32	10.95	b.d.l.	b.d.l.	100	2.84 0.	096 1.	.22 0.	019 0	.280 0	.068	1	2.47	0 	043 0.9	- 196		~	6	0
Phl-Opt	UR 17/2-3a	Phl	49*	41.14	2.13	16.53	0.45	6.20	b.d.l.	22.49	b.d.l.	0.21	10.77	b.d.l.	0.07	100 2	2.84 0.	.111 1.	.34 0.	025 0.	.358	I	(1	2.31	-0 -	028 0.9	948	- 0.0	80	8	4
Phl-Opt	UR 17/2-3a	Phl	50	41.81	1.76	14.63	0.17	6.19	0.06	24.18	b.d.l.	0.00	11.07	b.d.l.	0.15	100 2	2.88 0.	091 1	.19 0.	0 600	.273 0	.083 0	.004 2	2.48	1	- 0.9	- 126	- 0.0	18 8	6	0
Phl-Opt	UR 17/2-3a	lhl	61	41.77	1.86	15.50	0.06	5.46	0.17	23.69	b.d.l.	0.14	11.35	b.d.l.	b.d.l.	100	2.88 0.	096 1.	.26 0.	003 0.	.314	0	.010 2	2.43	0. I	019 0.9	- 166		~~	8	6
Phl-Opt	UR 17/2-3a	Ihl	62	41.45	1.76	15.32	0.04	5.72	b.d.l.	24.04	b.d.l.	0.13	11.45	b.d.l.	0.10	100 2	.86 0.	091 1.	.25 0.	002 0.	.321 0	600.	1	2.47	- 0.	017 1.0	- 800	- 0.0	12 8	<u>∞</u>	6
Phl-Opt	UR 17/2-3a	Ihl	63	42.07	1.44	15.36	0.14	5.66	b.d.l.	23.76	b.d.l.	0.15	11.34	b.d.l.	0.07	100 2	2.89 0.	.074 1.	.24 0.	008 0	.325	I		2.43	0. 	020 0.9	- 194	- 0.0	80	88	x
Phl-Opt	UR 17/2-3a	lчI	65	40.29	1.54	17.69	0.29	6.74	0.01	22.13	b.d.l.	0.09	11.10	b.d.l.	0.12	100	2.78 0.	080 1.	44 0.	016 0	.390	-	.001 2	2.28	- 0	012 0.9	- 626	- 0.0	14 8	<u>~</u>	\$
Phl-Opt	UR 17/2-3a	Ihl	66*	42.02	0.86	15.40	0.13	5.68	b.d.l.	24.50	b.d.l.	0.05	11.26	b.d.l.	0.11	100 2	2.88 0.4	044 1.	.24 0.	007 0	.323 0	.003		2.50	-0 -	007 0.5	- 184	- 0.0	13 8	<u>∞</u>	6
Phl-Opt	UR 17/2-3a	Ihl	67*	41.22	1.84	14.91	b.d.l.	6.52	0.01	24.74	b.d.l.	0.02	10.67	b.d.l.	0.08	100	2.81 0.	095 1.	.20	0	.133 0	.239 0	.001 2	2.52	-0 -	003 0.9	- 620	- 0.0	3 60	6	2
Phl-Opt	UR 17/2-3a	Ihl	68	41.98	1.20	15.65	b.d.l.	5.20	0.02	24.40	b.d.l.	0.17	11.31	b.d.l.	0.08	100 2	2.87 0.	062 1.	.26	0	.298	- 0	.001 2	.49	0. 	023 0.9	- 886	- 0.0	3 60	8	6
Phl-Opt	UR 17/2-3a	Ihl	71	41.69	1.38	15.59	b.d.l.	5.48	0.03	24.86	b.d.l.	0.10	10.75	b.d.l.	0.12	100 2	2.84 0.	.071 1.	.25	0	.190 0	.122 0	.002 2	2.52	0 	013 0.9	934 -	- 0.0	14 8	6	3
Phl-Opt	UR 17/2-3a	Ihl	78	42.38	1.79	15.23	b.d.l.	5.50	b.d.l.	23.82	b.d.l.	0.00	11.17	b.d.l.	0.10	100	.01 0.3	092 1.	.23	0	.316	I		.44	1	- 0.9	- 226	- 0.0	12 8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6
Phl-Opt	UR 17/2-3a	Ihl	79	42.04	1.94	14.99	b.d.l.	5.95	b.d.l.	23.42	b.d.l.	0.36	11.23	b.d.l.	0.06	100 2	.90 0.	.101 1.	.22	0	.343	I		2.41	- 0.	048 0.9	- 886	- 0.0	07 8	88	x
Phl-Opt	UR 17/2-3a	lhl	82	41.43	1.61	15.75	b.d.l.	5.90	b.d.l.	23.60	b.d.l.	0.16	11.41	b.d.l.	0.15	100 2	.86 0.	084 1.	.28	0	.340	I		2.43	-0 -	021 1.0	- 04	- 0.0	18	×	~
Включе- ние в Zrc	1559	lhq	4	42.31	1.58	15.55	b.d.l.	6.35	0.22	23.17	b.d.l.	0.54	10.27	b.d.l.	b.d.l.	100	2.90 0.	082 1	.26	0	.364	0	.013 2	2.37	- 0.	072 0.8	- 868	· ·	~	8	
Включе- ние в Zrc	1559	lhq	10	42.11	1.31	15.62	b.d.l.	5.18	b.d.l.	24.95	b.d.l.	0.39	10.44	b.d.l.	b.d.l.	100	2.86 0.	067 1	.25	0	.223 0	.071		2.53	- <u>0</u>	051 0.9	905 -		~	<u> </u>	5
Включе- ние в Zrc	1559	lhq	11	41.93	1.59	16.38	b.d.l.	6.11	b.d.l.	22.80	b.d.l.	0.37	10.82	b.d.l.	b.d.l.	100	2.88 0.	082 1	.32	0	.351	1		2.33	- 0.	049 0.9	947 -			8	~
Включе- ние в Zrc	1559	lhq	16	41.85	1.33	15.96	b.d.l.	5.02	0.03	24.79	b.d.l.	0.51	10.40	b.d.l.	0.11	100	2.85 0.	068 1	.28	0	.234 0	.052 0	.002 2	2.52	- 0.	067 0.9	903 -	- 0.0	13 8	6	_
Включе- ние в Zrc	1559	lhq	4	42.32	1.58	15.55	b.d.l.	6.36	0.22	23.17	b.d.l.	0.54	10.27	b.d.l.	b.d.l.	100	2.90 0.	.081 1	.26	0	.364	0	.013 2	2.37	- 0.	072 0.8	- 868			8	~
Включе- ние в Zrc	1559	lhq	10	42.11	1.31	15.62	b.d.l.	5.18	b.d.l.	24.96	b.d.l.	0.39	10.44	b.d.l.	b.d.l.	100	2.86 0.	.067 1	.25	0	.223 0	.072		2.53	- <u>0</u>	051 0.9	905 -		~	6	2
Включе- ние в Zrc	1559	lud	11	41.93	1.59	16.38	b.d.l.	6.11	b.d.l.	22.80	b.d.l.	0.37	10.82	b.d.l.	b.d.l.	100	2.88 0.	082 1	.32	0	.351	I		2.33	0.	049 0.9	947 -	1	~	8	~
Включе- ние в Zrc	1559	lhq	16	41.84	1.33	15.96	b.d.l.	5.02	0.03	24.79	b.d.l.	0.51	10.39	b.d.l.	b.d.l.	100	2.85 0.	068 1	.28	0	.234 0	.052 0	.002 2	2.52	- 0.	068 0.9	903 -	- 0.0	13 8		2

ЛОБАЧ-ЖУЧЕНКО и др.

Продолжение
Д1.
Таблица

٩'n	36	35	37	36	36	43	39	37	44 44	53	12	76	45	46	52	52	50
1		07				7			7		7		7	7		41	41
Сумма	S	5	Ś	S	Ś	5	5	S	Ś	5	S	Ś	5	Ś	S	5	S
К	0.01	0.02	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.00	0.01	I	0.00	0.01	0.01	I	0.01
Na	0.63	0.65	0.61	0.63	0.61	0.56	0.59	0.61	0.55	0.35	0.57	0.24	0.54	0.53	0.38	0.46	0.50
Ca	0.35	0.36	0.36	0.36	0.36	0.43	0.39	0.37	0.44	0.61	0.43	0.74	0.45	0.45	0.62	0.50	0.50
M	1.39	1.37	1.39	1.41	1.39	1.46	1.43	1.39	1.47	1.68	1.47	1.76	1.50	1.47	1.67	1.55	1.53
Si	2.62	2.61	2.62	2.59	2.63	2.54	2.58	2.62	2.53	2.35	2.53	2.26	2.51	2.54	2.32	2.48	2.47
Сумма	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
K ₂ O	0.12	0.29	0.21	0.31	0.34	0.28	0.17	0.17	0.19	0.04	0.19	b.d.l.	0.08	0.13	0.16	b.d.l.	0.15
Na ₂ O	7.27	7.53	7.07	7.27	7.02	6.46	6.80	7.10	6.39	4.02	6.58	2.68	6.22	6.04	4.30	5.32	5.70
CaO	7.36	7.48	7.52	7.51	7.50	8.91	8.10	7.68	9.17	12.60	8.93	15.03	9.36	9.44	12.85	10.43	10.34
Al ₂ O ₃	26.40	26.06	26.44	26.80	26.37	27.62	27.20	26.36	27.83	31.53	27.82	32.73	28.32	27.80	31.34	29.26	28.87
SiO ₂	58.85	58.64	58.76	58.11	58.78	56.72	57.73	58.68	56.42	51.82	56.48	49.56	56.01	56.58	51.35	54.99	54.94
№ точки	12	15*	26	33	36	46	47*	49*	77	78	80	81	93*	96	104	37	43
Минерал	Ы	Ы	Ы	Ы	Ы	Ы	Ы	Ы	Ы	Pl	Ы	Ы	Ы	Ы	Ы	PI	Ы
Образец	UR 17/2-4	1559	1559														
Порода	Prg-Opt	Включение в Zrn	Включение в Zrn														
ΓΕΟΧΙ	1МИЯ	том	68	Nº 6	2023												

ОСОБЕННОСТИ СОСТАВА И ВОЗМОЖНЫЕ МЕХАНИЗМЫ ОБРАЗОВАНИЯ

Таблица Д1. Окончание

	Порода	Образец	Мине- рал	№ точки	SiO ₂	TiO ₂	Al ₂ O ₃	Cr_2O_3	FeO	MnO	MgO (CaO N	Va2O F	ζ ₂ 0 (С́ П	/мма	is	. A	LC Cr	Fe ²⁺	Fe ³⁺	. Mn	Mg	Ca	Na	C M	I Cys	има #1	Иg
	Phl-Opt	UR17/2-2IV	Amph	5*	48.79	0.26	9.06	0.41	5.91	b.d.l.	19.71	3.22	2.29 ().36 b.0	J.I. 1	100 6	.75 0.0	03 1.4	8 0.0	l 0.38	0.31	З	4.06	1.96 ().61 0.	- 90	. 15	.7 8	9
	Phl-Opt	UR17/2-2IV	Amph	34*	49.97	0.26	8.86	b.d.l.	6.07	0.11	19.79	2.88	1.87 ().19 b.(J.L. 1	100 6	.87 0.	03 1.4	4 	0.41	0.29	0.01	4.06	1.90 (0.50 0.	- 03	. 15	.5 8	5
	Phl-Opt	UR17/2-2IV	Amph	38	49.51	0.31	10.39	0.23	5.04	b.d.l.	19.55	2.86	1.48 ().62 b.4	J.L.	100 6	.79 0.	03 1.6	8 0.0	0.37	0.20	I	4.00	1.89 (0 0.39	н. Н	. 15	.5 8	5
	Phl-Opt	UR17/2-2IV	Amph	57*	51.67	0.23	7.58	0.25	4.16	b.d.l.	20.34	3.66	1.66 0).45 b.(J.L.	100 7	08 0.	02 1.2	2 0.0	0.42	0.06	I	4.16	2.01).44 0.	- 80	. 15	5.5 9	0
	Phl-Opt	UR17/2-3a	Amph	27*	48.10	0.68	10.21	0.52	6.37	0.13	18.98	2.57	1.55 0).d 06.(J.L.	100 6	.0 99.	07 1.6	7 0.00	0.37	0.37	0.02	3.92	1.87 (0.42	- 16	. 15	.6	4
	Phl-Opt	UR17/2-3a	Amph	28	57.05	0.09	2.18	0.29	3.87	0.06	22.58 1	3.35 (0.54 b	.d.l. b.	J.L.	100 7	70 0.	01 0.3	5 0.0	0.35	0.09	0.01	4.54	1.93 (0.14 0.	00	. 15	6.1 9	1
	Phl-Opt	UR17/2-3a	Amph	47	50.04	0.54	96.6	0.38	5.42	0.04	18.04	13.13	1.40 1	l.06 b.4	J.L.	100 6	.93 0.	06 1.6	3 0.0	1 0.63	I	0.00	3.72	1.95 (0.38	- 19	. 15	.5 8	9
	Ph1-Opt	UR17/2-3a	Amph	48	48.51	0.37	11.00	0.23	5.88	0.17	18.40 1	3.05	1.50 0).88 b.(J.L.	100 6	.71 0.0	04 1.7	9 0.0	0.48	0.20	0.02	3.80	1.93 (0.40	- 16	. 15	.6	3
	Phl-Opt	UR 17/2-2a	Amph	8	48.73	0.31	10.78	b.d.l.	6.19	0.08	18.74 1	2.82	1.42 0).94 b.(3.1.	100 6	.73 0.	03 1.7	9	0.48	0.24	0.01	3.86	1.90 (0.38	- 17	. 15	.5 8	4
	Phl-Opt	UR 17/2-2a	Amph	6	48.93	0.50	9.83	b.d.l.	6.17	0.06	18.95	3.02	1.66 0).87 b.0	J.L. 1	100 6	.78 0.	05 1.6	- 0	0.47	0.24	0.01	3.91	1.93 (0.45	-15	. 15	6 8	5
	Phl-Opt	UR 17/2-2b	Amph	3*	49.01	0.50	9.85	0.44	5.49	0.15	19.66	2.77	1.58 0).55 b.(J.L.	100 6	.74 0.	05 1.6	0.0	0.28	0.35	0.02	4.03	1.88 (0.42	- 10	. 15	5.5 8	9
	Phl-Opt	UR 17/2-2b	Amph	29	46.92	0.75	11.18	1.01	5.13	b.d.l.	19.29	2.82	1.82	1.10 b.4	J.L.	100 6	.50 0.0	08 1.8	3 0.11	0.22	0.38	I	3.99	1.90 (0.49	- 19	. 15	.7 8	2
	Phl-Opt	UR 17/2-2b	Amph	32	48.53	0.69	11.90	0.75	3.87	b.d.l.	18.60 1	2.99	1.83 ().83 b.0	J.L.	100 6	.70 0.	07 1.9	4 0.0	0.45	I	Ι	3.83	1.92 (0.49	-15	. 15	.6 9	0
	Phl-Opt	UR17/2-3a	Amph	30	48.24	0.6	10.75	0.51	5.94	b.d.l.	18.47	2.79	1.88 0).65 0.	.17 1	100 6	.70 0.	96 1.7	6 0.00	0.53	0.16	Ι	3.83	1.90 (0.51 0.	.12 0.0	15	.6 8	5
	Phl-Opt	UR17/2-3a	Amph	31*	48.95	0.48	9.69	0.33	5.54	0.09	19.27	3.05	1.72 0).88 b.(3.1.	100 6	.77 0.	05 1.5	8 0.0	l 0.42	0.22	0.01	3.97	1.93 (0.46	- 16	. 15	.6	9
	Prg-Opt	UR 17/2-4	Amph	57*	44.02	1.37	12.14	0.65	13.36	0.36	12.58 1	2.25	1.48	1.59 0.	19 1	100 6	.40 0.	15 2.0	8 0.07	1.28	0.34	0.04	2.73	1.91 ().42 0.	29 0.0	5 15	.7 6	3
	Prg-Opt	UR 17/2-4	Amph	58	43.93	1.40	12.93	0.84	12.58	0.20	12.44 1	2.42	1.29	1.75 0.	22 1	100 6	.37 0.	15 2.2	1 0.10	1.26	0.27	0.02	2.69	1.93 ().36 0.	32 0.0	5 15	.7 6	4
	Prg-Opt	UR 17/2-4	Amph	59*	44.15	1.23	12.90	0.96	12.36	0.21	12.61	2.14	1.57	1.67 0.	21 1	100 6	.41 0.	13 2.2	1 0.11	1.38	0.12	0.03	2.73	1.89 ().44 0.	31 0.0	5 15	8.	5
T	Prg-Opt	UR 17/2-4	Amph	60	42.41	1.27	13.22	0.69	14.05	0.21	12.59 1	2.03	1.62	1.70 0.	21 1	100 6	.17 0.	14 2.2	7 0.08	1.17	0.54	0.03	2.73	1.88 ().46 0.	32 0.0	5 15	8.	17
ΈO	Prg-Opt	UR 17/2-4	Amph	61*	44.68	0.99	12.92	0.53	13.14	0.02	12.61	1.57	1.62	1.76 0.	18 1	100 6	.48 0.	11 2.2	1 0.00	1.59	I	0.00	2.73	1.80 ().46 0.	33 0.0	15	8.	3
хиг	Prg-Opt	UR 17/2-4	Amph	62*	44.92	1.18	12.66	0.77	12.32	0.13	12.98	1.87	1.44	1.54 0.	19 1	100 6	.49 0.	13 2.1	6 0.05	1.40	0.09	0.02	2.80	1.84 (0.40	28 0.0	5 15	.7 6	5
ии	Prg-Opt	UR 17/2-4	Amph	63	43.87	1.05	12.72	0.76	12.71	0.23	12.45	2.88	1.53 1	1.68 0.	. 11	100 6	.36 0.	11 2.1	7 0.05	1.27	0.27	0.03	2.69	2.00 (0.43 0.	31 0.0	3 15	.7 6	4
я	Prg-Opt	UR 17/2-4	Amph	64	43.86	1.05	13.21	0.66	12.22	b.d.l.	13.00	2.48	1.54	1.81 0.	17 1	100 6	.34 0.	11 2.2	5 0.08	1.26	0.22	Ι	2.80	1.93 (0.43 0.	33 0.0	15	8.	5
том	Prg-Opt	UR 17/2-4	Amph	92*	44.30	0.99	12.80	0.81	12.49	0.01	13.35	12.11	1.47	1.46 0.	20 1	100 6	.38 0.	11 2.1	7 0.05	1.22	0.29	0.00	2.87	1.87 (0.41	27 0.0	5 15	.7 6	9
л 68	Prg-Opt	UR 17/2-4	Amph	105	43.25	1.09	13.15	1.00	12.49	0.15	12.86	2.50	1.71	1.80 b.4	J.L. 1	100 6	.27 0.	12 2.2	5 0.11	1.22	0.29	0.02	2.78	1.94 (0.48 0.	33 -	. 15	8.	5
	Prg-Opt	UR 17/2-4	Amph	106^{*}	43.80	1.31	13.61	0.94	11.79	0.15	13.39	1.88	1.84	1.16 0.	13 1	100 6	.30 0.	14 2.3	1 0.11	1.16	0.25	0.02	2.87	1.83 (0.51 0.	21 0.0	3 15	.7 6	1
№ 6	Включение в Zrn	1559	Amph	58	48.83	0.55	11.54	b.d.l.	6.17	0.07	17.46	12.61	1.71	l.07 b.4	d.l. 1	100 6	.78 0.	06 1.8	6	0.72	I	0.01	3.62	1.88 (0.46 0	- 19	. 15	.6 8	3
	Включение в Zrn	1559	Amph	09	56.76	0.00	0.61	b.d.l.	12.98	0.65	21.14	6.68	1.12 0).06 b.(J.I. 1	100 7.	- 87	- 0.1	- 0	1.51	I	0.08	4.37) 66.0	0.30 0.	- 10	. 15	.2	4
2023	Примечания. сенит; минера 2200 (JEOL) (1	<i>РhI-Lhz</i> — ф лл* — измер ИГГД РАН)	логопи ение вы . № точн	товый полне ки* – о	лерцо но на утмече	лит, . элек: зны м	<i>РһІ-Н</i> тронн инера	zb - c to-30F auth, v	рлого довол сполн	IИТОВ A MИК ЗОВАН	ый гај роана нные д	рцбур лизат цля <i>Р'</i>	гит; <i>I</i> rope J <i>T</i> -мет	<i>Рhl-Of</i> XA-82 рии, t	$ut - \Phi$ 230, o 5.d.l	логог осталь – ниж	питон Ные се пој	зый о – с п рога	ртоп рим(чувст	ирок(нени вител	сенит см эн іьнос	; Prg tepro TH MG	- <i>Орt</i> лдисп этода	– па lepcи ı, n.d.	ргаси онно – не	товы го де сопре	й орт текто деля.	опирс pa JE лось.	μ¥

Минерал			Ol				Op	рх	
№ зерна	1	2	5	23	25	7	8	10	11
Al	92.8	63.7	56.7	58.5	76.1	3134	3818	3746	3715
Ti*	25.4	25.9	30.7	25.7	33.7	193	103	132	131
V	6.42	13.0	14.4	18.9	14.9	32.9	32.5	29.2	32.3
Cr	336	349	405	454	394	758	527	495	656
Ni	4730	5575	4858	5149	5612	980	n.d.	1018	841
Rb	1.79	2.30	2.08	2.31	2.72	0.98	1.35	1.03	1.35
Sr	0.87	1.02	1.09	1.45	1.51	0.24	0.38	0.30	0.38
Y	0.05	0.12	0.13	0.49	0.08	2.64	3.67	4.31	3.14
Zr	0.37	0.46	0.32	0.73	0.32	0.40	0.69	0.98	0.49
Nb	0.02	0.02	0.01	0.03	0.03	0.03	0.13	0.02	0.07
Ba	0.07	0.16	0.18	0.38	0.27	0.12	1.16	0.15	0.15
Hf	0.05	b.d.l.	b.d.l.	0.03	0.06	0.18	0.12	0.15	0.13
La	0.02	0.03	0.01	0.31	0.02	0.02	0.04	0.02	0.02
Ce	0.03	0.10	0.01	0.46	0.04	0.03	0.08	0.09	0.08
Pr	b.d.l.	0.01	0.01	0.03	b.d.l.	0.01	0.01	0.01	0.00
Nd	b.d.l.	b.d.l.	b.d.l.	0.16	b.d.l.	0.03	0.04	0.12	0.05
Sm	b.d.l.	0.04	b.d.l.	0.04	b.d.l.	0.08	0.05	0.09	0.03
Eu	0.02	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00
Gd	b.d.l.	0.01	b.d.l.	0.10	0.03	0.09	0.13	0.16	0.07
Dy	b.d.l.	0.02	0.02	0.06	0.02	0.29	0.50	0.44	0.31
Er	b.d.l.	0.03	0.02	0.03	0.03	0.44	0.63	0.69	0.65
Yb	0.03	0.05	0.06	0.15	0.04	0.75	0.97	1.03	1.01
Lu	0.01	0.01	0.01	0.02	0.01	0.11	0.13	0.13	0.15
Минерал	Opx		C_{l})X			Pl	hl	L
№ зерна	26	17	19	30	31	11	17	16	18
Al	4659	4043	2925	5929	6870	n.d.	n.d.	n.d.	n.d.
Ti*	191	809	667	333	459	9418	11014	8950	11 117
V	34.3	101	81.2	92.4	92.1	276	308	218	271
Cr	578	1535	911	590	580	2675	2408	1748	1030
Ni	997	438	353	436	468	n.d.	n.d.	n.d.	n.d.
Rb	1.31	10.3	8.37	4.12	2.11	599	582	435	389
Sr	0.35	15.6							
Y		15.0	11.6	16.1	17.0	8.90	18.2	5.67	3.46
	4.51	44.5	11.6 46.0	16.1 103	17.0 111	8.90 0.05	18.2 0.08	5.67 0.06	3.46 0.07
Zr	4.51 0.48	44.5 17.4	11.6 46.0 6.75	16.1 103 10.2	17.0 111 18.7	8.90 0.05 0.84	18.2 0.08 1.28	5.67 0.06 1.09	3.46 0.07 0.81
Zr Nb	4.51 0.48 0.03	44.5 17.4 0.14	11.6 46.0 6.75 0.12	16.1 103 10.2 0.09	17.0 111 18.7 0.09	8.90 0.05 0.84 20.0	18.2 0.08 1.28 19.1	5.67 0.06 1.09 31.1	3.46 0.07 0.81 29.6
Zr Nb Ba	4.51 0.48 0.03 0.25	13.0 44.5 17.4 0.14 0.37	11.6 46.0 6.75 0.12 1.23	16.1 103 10.2 0.09 0.48	17.0 111 18.7 0.09 0.65	8.90 0.05 0.84 20.0 5972	18.2 0.08 1.28 19.1 5272	5.67 0.06 1.09 31.1 2910	3.46 0.07 0.81 29.6 2892
Zr Nb Ba Hf	4.51 0.48 0.03 0.25 0.15	13.0 44.5 17.4 0.14 0.37 2.97	11.6 46.0 6.75 0.12 1.23 2.93	16.1 103 10.2 0.09 0.48 5.93	17.0 111 18.7 0.09 0.65 6.84	8.90 0.05 0.84 20.0 5972 2.16	18.2 0.08 1.28 19.1 5272 1.92	5.67 0.06 1.09 31.1 2910 1.12	3.46 0.07 0.81 29.6 2892 1.31
Zr Nb Ba Hf La	4.51 0.48 0.03 0.25 0.15 0.02	13.0 44.5 17.4 0.14 0.37 2.97 14.1	11.6 46.0 6.75 0.12 1.23 2.93 9.99	16.1 103 10.2 0.09 0.48 5.93 7.92	17.0 111 18.7 0.09 0.65 6.84 31.0	8.90 0.05 0.84 20.0 5972 2.16 2.84	18.2 0.08 1.28 19.1 5272 1.92 2.25	5.67 0.06 1.09 31.1 2910 1.12 1.13	3.46 0.07 0.81 29.6 2892 1.31 1.04
Zr Nb Ba Hf La Ce	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \end{array}$	13.0 44.5 17.4 0.14 0.37 2.97 14.1 48.9	11.6 46.0 6.75 0.12 1.23 2.93 9.99 40.6	16.1 103 10.2 0.09 0.48 5.93 7.92 44.9	17.0 111 18.7 0.09 0.65 6.84 31.0 73.4	8.90 0.05 0.84 20.0 5972 2.16 2.84 0.01	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02
Zr Nb Ba Hf La Ce Pr	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \end{array}$	13.0 44.5 17.4 0.14 0.37 2.97 14.1 48.9 7.31	$ \begin{array}{r} 11.6 \\ 46.0 \\ 6.75 \\ 0.12 \\ 1.23 \\ 2.93 \\ 9.99 \\ 40.6 \\ 6.84 \\ \end{array} $	16.1 103 10.2 0.09 0.48 5.93 7.92 44.9 8.45	17.0 111 18.7 0.09 0.65 6.84 31.0 73.4 13.3	8.90 0.05 0.84 20.0 5972 2.16 2.84 0.01 0.01	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.l.	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.l.
Zr Nb Ba Hf La Ce Pr Nd	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \\ 0.09 \end{array}$	13.0 44.5 17.4 0.14 0.37 2.97 14.1 48.9 7.31 40.0	11.6 46.0 6.75 0.12 1.23 2.93 9.99 40.6 6.84 37.8	16.1 103 10.2 0.09 0.48 5.93 7.92 44.9 8.45 59.2	17.0 111 18.7 0.09 0.65 6.84 31.0 73.4 13.3 74.4	$\begin{array}{c} 8.90\\ 0.05\\ 0.84\\ 20.0\\ 5972\\ 2.16\\ 2.84\\ 0.01\\ 0.01\\ 0.06\end{array}$	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01 b.d.1.	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.1. 0.04	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.1. 0.06
Zr Nb Ba Hf La Ce Pr Nd Sm	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \\ 0.09 \\ 0.03 \end{array}$	13.0 44.5 17.4 0.14 0.37 2.97 14.1 48.9 7.31 40.0 11.6	11.6 46.0 6.75 0.12 1.23 2.93 9.99 40.6 6.84 37.8 11.9	$ \begin{array}{r} 16.1 \\ 103 \\ 10.2 \\ 0.09 \\ 0.48 \\ 5.93 \\ 7.92 \\ 44.9 \\ 8.45 \\ 59.2 \\ 22.0 \\ \end{array} $	$17.0 \\ 111 \\ 18.7 \\ 0.09 \\ 0.65 \\ 6.84 \\ 31.0 \\ 73.4 \\ 13.3 \\ 74.4 \\ 23.4$	$\begin{array}{c} 8.90\\ 0.05\\ 0.84\\ 20.0\\ 5972\\ 2.16\\ 2.84\\ 0.01\\ 0.01\\ 0.06\\ 0.14\end{array}$	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01 b.d.1. 0.21	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.1. 0.04 0.12	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.1. 0.06 0.10
Zr Nb Ba Hf La Ce Pr Nd Sm Eu	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \\ 0.09 \\ 0.03 \\ 0.00 \end{array}$	13.0 44.5 17.4 0.14 0.37 2.97 14.1 48.9 7.31 40.0 11.6 1.26	$ \begin{array}{r} 11.6 \\ 46.0 \\ 6.75 \\ 0.12 \\ 1.23 \\ 2.93 \\ 9.99 \\ 40.6 \\ 6.84 \\ 37.8 \\ 11.9 \\ 1.29 \\ \end{array} $	$ \begin{array}{c} 16.1 \\ 103 \\ 10.2 \\ 0.09 \\ 0.48 \\ 5.93 \\ 7.92 \\ 44.9 \\ 8.45 \\ 59.2 \\ 22.0 \\ 1.94 \\ \end{array} $	$17.0 \\ 111 \\ 18.7 \\ 0.09 \\ 0.65 \\ 6.84 \\ 31.0 \\ 73.4 \\ 13.3 \\ 74.4 \\ 23.4 \\ 1.99 $	8.90 0.05 0.84 20.0 5972 2.16 2.84 0.01 0.01 0.06 0.14 n.d.	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01 b.d.1. 0.21 n.d.	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.1. 0.04 0.12 n.d.	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.1. 0.06 0.10 n.d.
Zr Nb Ba Hf La Ce Pr Nd Sm Eu Gd	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \\ 0.09 \\ 0.03 \\ 0.00 \\ 0.20 \end{array}$	$ \begin{array}{c} 13.0 \\ 44.5 \\ 17.4 \\ 0.14 \\ 0.37 \\ 2.97 \\ 14.1 \\ 48.9 \\ 7.31 \\ 40.0 \\ 11.6 \\ 1.26 \\ 11.3 \\ \end{array} $	$ \begin{array}{r} 11.6 \\ 46.0 \\ 6.75 \\ 0.12 \\ 1.23 \\ 2.93 \\ 9.99 \\ 40.6 \\ 6.84 \\ 37.8 \\ 11.9 \\ 1.29 \\ 1.29 \\ 12.0 \\ \end{array} $	$ \begin{array}{c} 16.1 \\ 103 \\ 10.2 \\ 0.09 \\ 0.48 \\ 5.93 \\ 7.92 \\ 44.9 \\ 8.45 \\ 59.2 \\ 22.0 \\ 1.94 \\ 21.0 \\ \end{array} $	17.0 111 18.7 0.09 0.65 6.84 31.0 73.4 13.3 74.4 23.4 1.99 26.3	8.90 0.05 0.84 20.0 5972 2.16 2.84 0.01 0.01 0.06 0.14 n.d. b.d.l.	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01 b.d.1. 0.21 n.d. b.d.1.	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.1. 0.04 0.12 n.d. b.d.1.	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.1. 0.06 0.10 n.d. b.d.1.
Zr Nb Ba Hf La Ce Pr Nd Sm Eu Gd Dy	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \\ 0.09 \\ 0.03 \\ 0.00 \\ 0.20 \\ 0.45 \end{array}$	$ \begin{array}{c} 13.0 \\ 44.5 \\ 17.4 \\ 0.14 \\ 0.37 \\ 2.97 \\ 14.1 \\ 48.9 \\ 7.31 \\ 40.0 \\ 11.6 \\ 1.26 \\ 11.3 \\ 10.6 \\ \end{array} $	$ \begin{array}{r} 11.6 \\ 46.0 \\ 6.75 \\ 0.12 \\ 1.23 \\ 2.93 \\ 9.99 \\ 40.6 \\ 6.84 \\ 37.8 \\ 11.9 \\ 1.29 \\ 12.0 \\ 10.4 \\ \end{array} $	$ \begin{array}{c} 16.1 \\ 103 \\ 10.2 \\ 0.09 \\ 0.48 \\ 5.93 \\ 7.92 \\ 44.9 \\ 8.45 \\ 59.2 \\ 22.0 \\ 1.94 \\ 21.0 \\ 23.0 \\ \end{array} $	$17.0 \\ 111 \\ 18.7 \\ 0.09 \\ 0.65 \\ 6.84 \\ 31.0 \\ 73.4 \\ 13.3 \\ 74.4 \\ 23.4 \\ 1.99 \\ 26.3 \\ 24.8 \\ 1.91 \\ 26.3 \\ 2$	8.90 0.05 0.84 20.0 5972 2.16 2.84 0.01 0.01 0.01 0.06 0.14 n.d. b.d.l. 0.58	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01 b.d.1. 0.21 n.d. b.d.1. 0.61	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.1. 0.04 0.12 n.d. b.d.1. 0.36	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.l. 0.06 0.10 n.d. b.d.l. 0.35
Zr Nb Ba Hf La Ce Pr Nd Sm Eu Gd Dy Er	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \\ 0.09 \\ 0.03 \\ 0.00 \\ 0.20 \\ 0.45 \\ 0.87 \end{array}$	$ \begin{array}{c} 13.0 \\ 44.5 \\ 17.4 \\ 0.14 \\ 0.37 \\ 2.97 \\ 14.1 \\ 48.9 \\ 7.31 \\ 40.0 \\ 11.6 \\ 1.26 \\ 11.3 \\ 10.6 \\ 5.19 \\ \end{array} $	$ \begin{array}{r} 11.6 \\ 46.0 \\ 6.75 \\ 0.12 \\ 1.23 \\ 2.93 \\ 9.99 \\ 40.6 \\ 6.84 \\ 37.8 \\ 11.9 \\ 1.29 \\ 12.0 \\ 10.4 \\ 4.81 \\ \end{array} $	$ \begin{array}{c} 16.1 \\ 103 \\ 10.2 \\ 0.09 \\ 0.48 \\ 5.93 \\ 7.92 \\ 44.9 \\ 8.45 \\ 59.2 \\ 22.0 \\ 1.94 \\ 21.0 \\ 23.0 \\ 11.8 \\ \end{array} $	17.0 111 18.7 0.09 0.65 6.84 31.0 73.4 13.3 74.4 23.4 1.99 26.3 24.8 12.6	8.90 0.05 0.84 20.0 5972 2.16 2.84 0.01 0.01 0.06 0.14 n.d. b.d.l. 0.58 0.15	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01 b.d.1. 0.21 n.d. b.d.1. 0.61 0.25	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.1. 0.04 0.12 n.d. b.d.1. 0.36 0.09	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.1. 0.06 0.10 n.d. b.d.1. 0.35 0.12
Zr Nb Ba Hf La Ce Pr Nd Sm Eu Gd Dy Er Yb	$\begin{array}{c} 4.51 \\ 0.48 \\ 0.03 \\ 0.25 \\ 0.15 \\ 0.02 \\ 0.08 \\ 0.01 \\ 0.09 \\ 0.03 \\ 0.00 \\ 0.20 \\ 0.45 \\ 0.87 \\ 1.28 \end{array}$	$\begin{array}{c} 13.0\\ 44.5\\ 17.4\\ 0.14\\ 0.37\\ 2.97\\ 14.1\\ 48.9\\ 7.31\\ 40.0\\ 11.6\\ 1.26\\ 11.3\\ 10.6\\ 5.19\\ 3.70\end{array}$	$ \begin{array}{r} 11.6 \\ 46.0 \\ 6.75 \\ 0.12 \\ 1.23 \\ 2.93 \\ 9.99 \\ 40.6 \\ 6.84 \\ 37.8 \\ 11.9 \\ 1.29 \\ 12.0 \\ 10.4 \\ 4.81 \\ 3.28 \\ \end{array} $	$16.1 \\103 \\10.2 \\0.09 \\0.48 \\5.93 \\7.92 \\44.9 \\8.45 \\59.2 \\22.0 \\1.94 \\21.0 \\23.0 \\11.8 \\8.41$	17.0 111 18.7 0.09 0.65 6.84 31.0 73.4 13.3 74.4 23.4 1.99 26.3 24.8 12.6 9.00	8.90 0.05 0.84 20.0 5972 2.16 2.84 0.01 0.01 0.01 0.06 0.14 n.d. b.d.l. 0.58 0.15 0.09	18.2 0.08 1.28 19.1 5272 1.92 2.25 0.03 0.01 b.d.1. 0.21 n.d. b.d.1. 0.61 0.25 0.06	5.67 0.06 1.09 31.1 2910 1.12 1.13 0.01 b.d.1. 0.04 0.12 n.d. b.d.1. 0.36 0.09 0.04	3.46 0.07 0.81 29.6 2892 1.31 1.04 0.02 b.d.1. 0.06 0.10 n.d. b.d.1. 0.35 0.12 0.03

Таблица Д2. Химический состав минералов флогопитовых перидотитов изученной линзы, ppm

Примечания. b.d.l. – ниже порога чувствительности метода, n.d. – не определялось, * – среднее значение, между двумя разновременными измерениями.

тиолици до	ениевкевкращении
Al-Crt	Al-хромит
Al-Mgt	Al-магнетит
Amph	амфибол
Ap	апатит
Cpx	клинопироксен
Cr-Mgt	Cr-магнетит
Carb	карбонат
Сср	халькопирит
Dol	доломит
Fe-Crt	хромит
Fa	фаялит
Fo	форстерит
fO ₂	фугитивность кислорода
HREE	тяжелые редкоземельные элементы
LREE	легкие редкоземельные элементы
MREE	средние редкоземельные элементы
Mgt	магнетит
Ol	оливин
Opx	ортопироксен
OSMA	оливин-шпинелевый мантийный тренд
Pc	пикотит
Phl	флогопит
Pl	плагиоклаз
Pn	пентландит
Pns	плеонаст
Prg	паргасит
Prx	пироксен
REE	редкоземельные элементы
Spl	шпинель
Srp	серпентин
Zrc	циркон
Р	давление
PM	примитивная мантия
Т	температура

Таблица ДЗ. Список сокращений

СПИСОК ЛИТЕРАТУРЫ

Балтыбаев Ш.К., Лобач-Жученко С.Б., Балаганский В.В., Юрченко А.В., Егорова Ю.С., Богомолов Е.С. (2014) Возраст и метаморфизм кристаллосланцев побужского гранулитового комплекса Украинского щита — древнейших вулканитов фундамента Восточно-Европейской платформы. *Региональная геология и металлогения*. **58**, 33-44.

Балтыбаев Ш.К., Лобач-Жученко С.Б., Егорова Ю.С., Галанкина О.Л., Юрченко А.А. (2018) Преобразование перидотитов в коровых условиях: термодинамическое моделирование минералообразовани. Эволюция вещественного и изотопного состава докембрийской литосферы. (Под ред. В.А. Глебовицкого, Ш.К. Балтыбаева). СПб.: Издательско-полиграфическая ассоциация Высших учебных заведений, 170-189.

Бухарев В.П. (1991) Квазикратонный гипербазитовый магматизм позднего архея Украинского щита (Среднее Побужье). *Геологический Журн.* **6**, 92-100.

Бибикова Е.В., Клайсен С., Федотова А.А., Степанюк Л.М., Шумлянский Л.В., Кирнозова Т.И., Фузган М.М., Ильинский Л.С. (2013). Изотопно-геохронологическое (U-Th-Pb, Lu-Hf) изучение цирконов из архейских магматических и осадочных пород Подольского домена Украинского щита. *Геохимия*. (2), 99-121. Bibikova E.V., Fedotova A.A., Kirnozova T.I., Fugzan M.M., Claesson S., Il'insky L.S., Stepanyuk L.M., Shumlyansky L.V. (2013) Isotope- geochronological (U-Th-Pb, Lu-Hf) study of the zircons from the Archean magmatic and metasedimentary rocks of the Podolia domain, Ukrainian Shield. *Geochem. Int.* **51**(2), 87-108.

Каневский А.Я. (1992) Акцессорные хромшпинелиды – индикаторы рудной специализации мафитовых и ультрамафитовых интрузий на никель и хром: поисковый аспект. *Геологический Журн.* **6**, 118-125.

Криволуцкая Н.А. (2011) Формирование платино-медно-никелевых месторождений в процессе развития траппового магматизма в Норильском районе. *Геолоеия рудных месторождений*. **53**(4), 346-378.

Лобач-Жученко С.Б., Арестова Н.А., Вревский А.Б., Егорова Ю.С., Балтыбаев Ш.К., Балаганский В.В., Богомолов Е.С., Степанюк Л.М., Юрченко А.В. (2014) Происхождение кристаллосланцев Побужского гранулитового комплекса Украинского щита. *Региональная геология и металлогения*. **59**, 1-12.

Лобач-Жученко С.Б., Аносова М.О., Юрченко А.В., Галанкина О.Л. (2021б) Распределение умеренно- и высокосидерофильных элементов в сульфидах для реконструкции эволюции архейского гарцбургита побужского комплекса Украинского щита. *Геология рудных месторождений*. 63(3), 265-282.

Лобач-Жученко С.Б., Балтыбаев Ш.К. Егорова Ю.С., Сергеев С.А., Каулина Т.В., Салтыкова Т.Е. (2022) Этапы базит-ультрабазитового магматизма Сарматии от палеоархея до палеопротерозоя. *Геология и геофизика.* **63**(3), 267-290.

Лобач-Жученко С.Б., Балтыбаев Ш.К., Глебовицкий В.А., Сергеев С.А., Лохов К.И., Егорова Ю.С., Балаганский В.В., Скублов С.Г., Галанкина О.Л., Степанюк Л.М. (2017) U-Pb-SHRIMPII возраст и происхождение циркона из лерцолита Побужского палеоархейского комплекса (Украинский щит). ДАН. 477(5), 567-571.

Лобач-Жученко С.Б., Егорова Ю.С., Балтыбаев Ш.К., Балаганский В.В., Степанюк Л.М., Юрченко А.В., Галанкина О.Л., Богомолов Е.С., Сукач В.В. (2018а) Перидотиты в палеоархейских ортогнейсах Побужской гранулито-гнейсовой области Украинского щита: геологическое положение, особенности состава, генезис. Эволюция вещественного и изотопного состава докембрийской литосферы. (Под ред. В.А. Глебовицкого, Ш.К. Балтыбаева). СПб.: Издательско-полиграфическая ассоциация Высших учебных заведений, 164-192. Лобач-Жученко С.Б., Скублов С.Г., Егорова Ю.С., Прищепенко Д.В., Галанкина О.Л. (2018б) Особенности состава и строения циркона из включения гарцбургита Побужского комплекса, Украинский щит. Зап. РМО. 147(6), 22-40.

Лобач-Жученко С.Б., Каулина Т.В., Егорова Ю.С. (2021а) Следы импактных событий в архее Побужского гранулито-гнейсового комплекса Украинского щита. *Труды Ферсмановской научной сессии ГИ КНЦ РАН*. **18**, 275-281. Пушкарев Е.В., Вотяков С.Л., Чашухин И.С., Кислов Е.В. (2004) Оливин-шпинелевая окситермобарометрия ультрамафитов Йоко-Довыренского расслоенного массива. ДАН. **395**(1), 108-112.

Рябчиков И.Д. (2003) Высокие содержания никеля в мантийных магмах как свидетельство миграции вещества из земного ядра. *ДАН*. **389**(5), 677-680.

Рябчиков И.Д., Когарко Л.Н., Соловова И.П. (2009) Физико-химические условия магмаобразования в основании сибирского плюма по данным исследования расплавных микровключений в меймечитах и щелочных пикритах Маймеча-Котуйской провинции. *Петрология.* **17**(3), 311-323.

Сазонова Л.В., Носова А.А., Каргин А.В. и др. (2015) Оливин кимберлитов трубок Пионерская и им. В. Гриба (Архангельская алмазоносная провинция): типы, состав, происхождение. *Петрология*. **23**(3), 251-284.

Светов С.А., Степанова А.В., Чаженгина С.Ю., Светова Е.Н., Рыбникова З. П., Михайлова А.И., Парамонов А.С., Утицына В.Л., Эхова М.В., Колодей В.С. (2015) Прецизионный (ICP-MS, LA-ICP-MS) анализ состава горных пород и минералов: методика и оценка точности результатов на примере раннедокембрийских мафитовых комплексов. *Труды Карельского научного центра РАН.* **7**, 54-73.

Соболев В.С. (1974) Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 264 с.

Сорокин Е.М., Яковлев О.И., Слюта Е.Н., М.В. Герасимов Е.Н., Зайцев М.А., Щербаков В.Д., Рязанцев К.М., Крашенинников С.П. (2020) Экспериментальное моделирование микрометеоритного удара на Луне. *Геохимия*. **65**(2), 107-122.

Sorokin E.G., Yakovlev O.I., Slyuta E.N., Gerasimov M.V., Zaitsev M.A., Shcherbakov V.D., Ryazantsev K.M., Krasheninnikov S.P. (2020) Experimental Modeling of a Micrometeorite Impact on the Moon. *Geochem. Int.* **58**(2), 113-127.

Штейнберг Д.С., Лагутина М.В. (1984) Углерод в ультрабазитах и базитах. М.: Наука, 110 с.

Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н., Шумлянский Л.В. (2008) Геохронология раннего докембрия Украинского щита. Протерозой. Киев: Наукова думка, 240 с.

Яковлев О.И., Бадюков Д.Д., Файнберг В.С., Баулин Н.Н., Пилюгин Н.Н., Тихомиров С.Г. (1991) Ударное взаимодействие железного метеорита с силикатной мишенью. *Геохимия*. (6), 796-805.

Яковлев О.И., Герасимов М.В., Диков Ю.П. (2011) Оценка температурных условий образования HASP- и GASP-стекол лунного реголита. *Геохимия*. (3), 227-238.

Yakovlev O.I., Gerasimov M.V., Dikov Y.P. (2011) Estimation of temperature conditions for the formation of HASP AND GASP glasses from the lunar regolith. *Geochem. Int.* **49**(3), 213-223.

Яковлев О.И., Люль А.Ю. (1992) Геохимия микроэлементов в ударном процессе. *Геохимия*. (3), 323-337.

Anhaeusser C.R. (2001) The anatomy of an extrusive-intrusive Archaean mafic-ultramafic sequence: the Nelshoogte schist belt and Stolzburg layered ultramafic complex, Barberton greenstone belt, South Africa. *S. Afr. J. Geol.* **104**(2), 167-204. Arai S. (1994). Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. 1994. *Chemical Geology*. **113(3–4)**, 191-204.

Asimow P.D., Ghiorso M.S. (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. *Amer. Mineral.* **83**(9–10), 1127–1131.

Ballhaus C., Berry R.F., Green D.H. (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. *Contrib. Mineral. Petrol.***107**, 27-40.

Batanova V.G., Suhr G., Sobolev A.V. (1998) Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: Ion probe study of clinopyroxenes. *Geochim. Cosmochim. Acta*. **62**(5), 853-866.

Beard A.D., Downes H., Mason P.R.D., Vetrin V.R. (2007) Depletion and enrichment processes in the lithosphere beneath Kola Peninsula (Russia): evidence from spinel lherzolite and werlite xenoliths. *Lithos.* **91**(1–4), 1-24.

Berman R.G. (1991) Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. *Canad. Mineral.* **32**, 833-855.

Boyd F.R., Nixon P.H. (1975) Origins of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa. *Physics and Chemistry of the Earth*. **9**, 431-454

Boyd F.R., Nixon P.H. (1978) Ultramafic nodules from the Kimberly pipes, South Africa. *Geochim. Cosmochim. Acta.* **42**, 1367-1382.

Boyd F.R. (1989) Compositional differences between oceanic and cratonic lithosphere. *Earth Planet Sci Lett.* **96**, 15-26.

Bussweiler Y., Brey G.P., Pearson D.G et al. (2017) The aluminum-in-olivine thermometer for mantle peridotites – Experimental versus empirical calibration and potential applications. *Lithos.* **272–273**, 301-314.

Desharnais G., Peck D.C., Theyer P. et al. (2000) Geology and mineral occurrences of the Fox River sill in the Great Falls area, Fox River Belt (part of NTS 53M/16). *Report of Activities 2000, Manitoba Industry, Trade and Mines, Manitoba Geological Survey*, 42-48.

Dressler B.O., Reimold W.U. (2001) Terrestrial impact melt rocks and glasses. *Earth-Sci. Rev.* **56**, 205-284.

Downes H., MacDonald R., Upton B.G.J. et al. (2004) Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. *J. Petrol.* **45**(8), 1631-1662.

Fabbrizio A., Schmidt Max W., Petrelli M. (2021) Effect of fO_2 on Eu partitioning between clinopyroxene, orthopyroxene and basaltic melt: Development of a Eu³⁺/Eu²⁺ oxybarometer. *Chemical Geology.* **559**, 119967.

Foley S.F., Prelevic D., Rehfeldt T., Jacob D.E. (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. *Earth Planet. Sci. Lett.* **363**, 181-191.

Frei R., Polat A., Meibom A. (2004) The Hadean upper mantle conundrum: evidence for source depletion and enrichment from Sm-Nd, Re-Os, and Pb isotopic compositions in 3.71 Ga boninite-like metabasalts from the Isua Supracrustal Belt, Greenland. *Geochim. Cosmochim. Acta.* **68**(7), 645-1660.

Friend C.R.L., Bennett V.C., Nutman A.P. (2002) Abyssal peridotites >3.800 Ma from southern West Greenland:field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex. *Contrib Mineral Petrol.* **143**, 71-92.

Ghiorso M.S., Hirschmann M.M., Reiners P.W., Kress V.C. (2002) The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. *Geochem. Geophys. Geosyst.* **3**(5), 1030.

Griffin W.L., Belousova E.A., O'Neill C et al. (2014) The world turns over: Hadean–Archean crust–mantle evolution. *Lithos.* **189**, 2-15.

Harte B., Winterburn P.A., Gurney J.J. (1987) Metasomatic and enrichment phenomena in garnet peridotite facies mantle xenoliths from the Matsoku kimberlite pipe, Lesotho. In: M. Menzies (Editor), *Mantle metsasomatism. Academic Press Inc.*, London, 145-220.

Herzberg C., Vidito C., Starkey N.A. (2016) Nickel-cobalt contents of olivine record origins of mantle peridotite and related rocks. *Amer. Mineral.* **101**(9), 1952-1966.

Holland T., Blundy J. (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. *Contrib. Mineral. Petrol.* **116**, 433-447.

Humayun M., Qin L.P., Norman M.D. (2004) Geochemical Evidence for ExcessIron in the Mantle Beneath Hawaii. *Science*. **306**, 91-94.

Jochum K.P., Dingwell D.B., Rocholl A et al. (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. *Geostandards and geoanalytical research.* **24**(1), 87-133.

Jochum K.P., Stoll B., Herwig K., Willbold M. (2007) Validation of LA-ICP-MS trace element analysis of geological glasses using a new solid-state 193 nm laser and matrixmatched calibration. *J. Anal. At. Spectrom.* **22**, 112-121.

Kamber B.S., Collerson K.D., Moorbath S., Whitehouse M.J. (2003) Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. *Contrib. Mineral. Pet-rol.* **145**(1), 25-46.

Kamenetsky V.S., Crawford A.S., Meffre S. (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. *J. Petrol.* **42**(4), 655-671.

Kettrup B., Deutsch A., Masaitis V.L. (2003) Homogeneous impact melts produced by a heterogeneous target? Sr-Nd isotopic evidence from the Popigai crater, Russia. *Geochim. Cosmochim. Acta.* **67**(4), 733-750.

Kitakaze A., Sugaki A., Itih H., Komatsu R. (2011) A revision of phase relations in the system Fe–Ni–S from 650 (degrees) to 450 (degrees). *The Canad. Mineralogist.* **49**(6), 1687-1710.

Kohler T.P., Brey G. (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. *Geochim. Cosmochim. Acta.* **54**(9), 2375-2388.

Kopylova M. G., Russell J.K. (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. *Earth Planet. Sci. Lett.* **181**, 71-87.

Kopylova M.G., Russell J.K., Cookenboo H. (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada. *J. Petrol.* **40**(1), 79-104.

Kushiro I., Mysen. B. (2002). A possible effect of melt structure on the Mg-Fe²⁺ partitioning between olivine and melt. *Geochimica et Cosmochimica Acta*. **66**, 2267-2272. https://doi.org/10.1016/S0016-7037(01)00835-3

Li C., Ripley E.M. (2010) The relative effects of composition and temperature on olivine-liquid Ni partitioning: Statistical deconvolution and implications for petrologic modeling. *Chemical Geology.* **275**(1–2), 99-104.

Lobach-Zhuchenko S.B., Egorova Ju.S., Scublov S.G., Sukach V.V. (2021) Iron- and nickel enriched olivine from phlogopite harzburgite of the Bug granulite complex (Ukrainian Shield) *Mineral. J. (Ukraine).* 43, No. 1. 16-24.

Lobach-Zhuchenko S.B., Kaulina T.V., Baltybaev S.K., Balagansky V.V et al. (2017) The long (3.7–2.1 Ga) and multistage evolution of the Bug Granulite–Gneiss Complex, Ukrainian Shield, based on the SIMS U-Pb ages and geochemistry of zircons from a single sample. In *Archaean Cratons – New Insights on Old Rocks* (Eds. Halla J., Whitehouse M.J., Ahmad T., Bagai Z.) *Geological Society, London, Special Publications.* **449**(1), 175-206.

Loucks R.R. (1996) A precise olivine-augite Mg-Fe-exchange geothermometer. *Contrib. Mineral. Petrol.* **125**(2–3), 140-150.

Mekhonoshin A.S., Kolotilina T.B., Doroshkov A.A., Pikiner E.E. (2020) Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal Region, Russia). *Minerals.* **10**(7), 608.

Mercier J. (1980) Single-pyroxene thermobarometry. *Tec-tonophysics*.**70**, 1-37.

Molina J.F., Moreno J.A., Castro A., Rodriguez C., Fershtater G.B. (2015) Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. *Lithos.* **232**, 286-305.

Niu Y., Wilson M., Humphrteys E.R., O'Hara M.J. (2011) The Origin of Intra-plate Ocean Island Basalts (OIB): the Lid Effect and its Geodynamic Implications. *J. Petrol.* **52**(7–8), 1443-1468.

O'Neill H.St.C., Wall V.J. (1987) The Olivine-Orthopyroxene-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth's Upper Mantle. *J. Petrol.* **28**, 1169-1191.

Palme H., O'Neill H.S. (2003) Cosmochemical estimates of mantle composition. In *Treatise of geochemistry 2. Mantle and Core* (Eds. Holland H.D., Turekian K.K.) Elsevier Science. 1-38.

Pearson D., Wittig N. (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. *J. Geol. Soc.* **165**, 895-914.

Pearson D.G., Canil D., Shiery S.B. (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In *Treatise of geochemistry 2. Mantle and Core* (Eds. Holland H.D., Turekian K.K.) Elsevier Science. 172-278.

Polat A., Appel P.W.U., Fryer B. et al. (2009) Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, sw Greenland: evidence for a magmatic arc origin. *Precambrian Res.* **175**, 87-11.

Portnyagin M., Almeev R., Matveev S., Holtz F. (2008) Experimental evidence for rapid water exchange between melt

inclusions in olivine and host magma. *Earth Planet. Sci. Lett* **272**(3–4), 541-552.

Prelevic D., Foley S.F. (2007) Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. *Earth Planet. Sci. Lett.* **256**(1–2), 120-135.

Prelevic D., Jacob D.E., Foley S.F. (2013) Recycling plus: A new recipe for the formation of Alpine–Himalayan orogenic mantle lithosphere. *Earth Planet. Sci. Lett.* 362, 187-197.

Putirka K. (2008) Thermometers and Barometers for Volcanic Systems. In: Putirka, K., Tepley, F. (Eds.), Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and Geochemistry, Mineralogical Soc. Am. **69**, 61-120.

Rietmeijer F.J.M. (1983) Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenes: a re-evaluation. *Mineral. Magazine.* **47**, 143-151.

Rocholl A.B.E., Simon K., Jochum K.P et al. (1997) Chemical characterisation of NIST silicate glass certified reference material SRM 610 by ICP-MS, TIMS, LIMS, SSMS, INAA, AAS and PIXE. *Geostandards and geoanalytical research.* **21**(1), 101-114.

Roeder P.L., Emslie R.F. (1970) Olivine-liquid equilibrium. Contr. Mineral. Petrol. 29, 275-289.

Rudnick R.L., McDonough W.F., Orpin A. (1999) Northern Tanzanian peridotite xenoliths: a comparison with Kaapvaal peridotites and inferences on metasomatic interactions. *Proceedings of the Fifth International Kimberlite Conference*, 336.

Sengupta P., Dasgupta S., Bhattacharya P.K., Mukherjee M. (1990) An orthopyroxene-biotite geothermometer and its application in crustal granulites and mantle-derived rocks. *J. Metamorphic Geology.* **8**(2), 191-197.

Simon NSC, Carlson RW, Davies GR, Nowell GM and Pearson DG (2003) Os-Sr-Nd-Hf isotope evidence for the ancient depletion and subsequent multi-stage enrichment history Kaapvaal cratonic lithosphere. 8th International Kimberlite Conference Long Abstract 0117. Shumlyanskyy L., Wilde S. A., Nemchin A.A., Claesson S., Billstrom K., Bagirnski B.(2021) Eoarchean rock association in the Dniester-Bouh Domain of the Ukrainian Shield: A suite of LILE-depleted enderbites and mafic granulites. *Precambrian Res.* **352**, 106001.

Sobolev A.V., Hofmann A.W., Kuzmin D.V., Yaxley G.M., Arndt N.T et al. (2007) The Amount of Recycled Crust in Sources of Mantle-Derived Melts. *Science*. **316**, 412-417.

Stanley R. Hart, Davis Karleen E. (1978) Nickel partitioning between olivine and silicate melt, *Earth and Planetary Science Letters*. **40**(2), 203-219.

Sugawara T. (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. *J. Geophys. Res.* **105**(B4), 8457-8472.

Sun S.-S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. *Geological Society, London, Special Publications.* **42**, 313-345.

Takahashi E. (1978) Partitioning of Ni²⁺, Co²⁺, Fe²⁺, Mn²⁺ and Mg²⁺ between olivine and silicate melts: compositional dependence of partition coefficient. *Geochim. Cosmochim. Acta*. **42**(12), 1829-1844.

Taylor W.R., Kamperman M., Hamilton R. (1998) New thermobarometer and oxygen fugacity sensor calibrations for ilmenite- and chromian spinel-bearing peridotitic assemblages. *Proc. VII Int. Kimb. Conf., Red. Roof. Design, Cape Town, South Africa.* 891-892.

Vervoort J.D., Patchett P.J. (1996) Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. *Geochim. Cosmochim. Acta* **60**(19), 3713-3733.

Wan Z.H., Coogan L.A., Canil D. (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. *Amer. Mineral.* **93**(7), 1142-1147.

Witt-Eickschen G., O'Neill H.S.C. (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. *Chemical Geology.* **221**(1–2), 65-101.