СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПЛЕЙСТОЦЕНОВЫХ ОТЛОЖЕНИЙ АТЛАНТИЧЕСКОГО ОКЕАНА

© 2022 г. М. А. Левитан^{а, *}, Т. А. Антонова^а, Т. Н. Гельви^а, Л. Г. Доморацкая^а, А. В. Кольцова^а, К. В. Сыромятников^а

^аИнститут геохимии и аналитической химии им. В.И. Вернадского РАН, ул. Косыгина 19, Москва, 119991 Россия *e-mail: m-levitan@mail.ru

Поступила в редакцию 14.02.2021 г. После доработки 14.02.2021 г. Принята к публикации 18.04.2021 г.

Выполнен сравнительный анализ количественных параметров плейстоценовых отложений пелагической области Атлантического океана и подводных частей его континентальных окраин в семи ключевых районах. В неоплейстоцене по сравнению с эоплейстоценом потоки литогенного материала выросли и в пелагической области, и на континентальных окраинах. Остаточные абсолютные массы ${\rm CaCO_3}$ и биогенного опала уменьшились в обеих фациальных мегаобластях. Для фациальной структуры пелагической области биогенная седиментация имела большее значение, чем в среднем на континентальных окраинах.

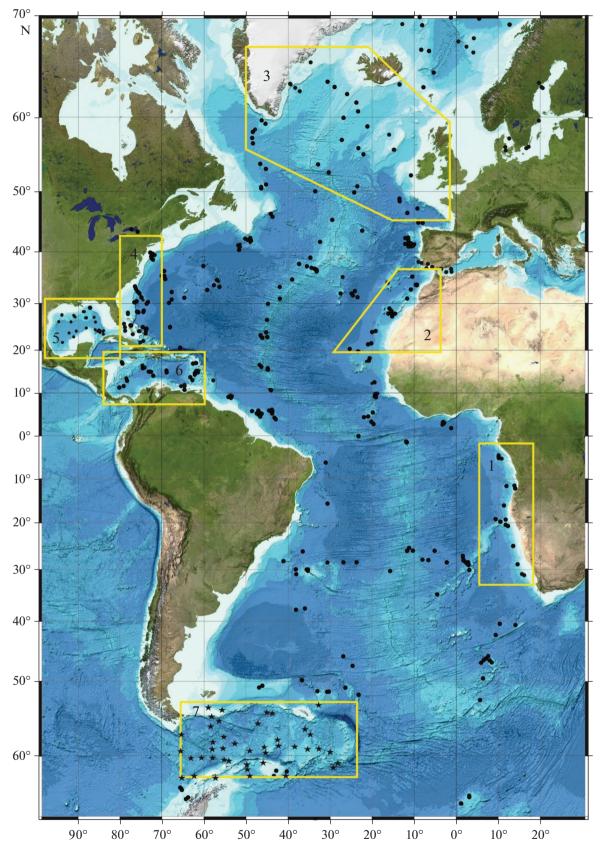
Ключевые слова: Атлантический океан, неоплейстоцен, эоплейстоцен, плейстоцен, донные осадки, пелагиаль, континентальные окраины

DOI: 10.31857/S0016752522050077

Соотношение потоков вещества и фациального разнообразия океана на глубоководном ложе и его континентальных окраинах всегда привлекало внимание морских геохимиков и литологов (Мурдмаа, 1987). Региональные геологи, нефтяники и тектонисты традиционно интересуются проблемами геологического строения и эволюцией континентальных окраин (Burk, Drake, 1974; Конюхов, 1987 и др.). Таким образом, публикации на эту тему весьма актуальны.

Настоящая статья заканчивает серию работ о сравнительном анализе количественных параметров седиментации плейстоценовых отложений Мирового океана в пелагиали и на подводных частях континентальных окраин (Левитан, 2020; Левитан и др., 2021).

Описание плейстоценовых осадков Атлантического океана в его пелагической области было опубликовано в работе (Левитан, Гельви, 2016). Затем авторский коллектив исследовал отложения плейстоцена в 7 районах подводных континентальных окраин этого океанического бассейна (рис. 1), для каждого из которых были рассмотрены проблемы современной седиментации, составлены литолого-фациальные карты нео- и эоплейстоценовых отложений (с изопахитами). Все карты были обсчитаны с помощью объемного метода А.Б. Ронова (1949) и в итоге составлены таблицы таких количественных параметров как площади, объе-


мы, массы сухого осадочного вещества и массы вещества в единицу времени (скорости накопления). Полученный объем данных слишком велик для того, чтобы быть отраженным в рамках настоящей статьи. Пока опубликован материал лишь по морю Скоша (Левитан и др., 2020).

Ниже основное внимание будет уделено только сравнительному анализу полученных количественных параметров и тем выводам, которые следуют из этого анализа.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Фациальная структура

Атлантический океан состоит из двух фациальных мегаобластей: пелагической области и подводных континентальных окраин. Пелагическая фациальная мегаобласть состоит из гемипелагической и миопелагической литолого-фациальных зон, в каждой из которых присутствуют еще и азональные подводные поднятия (хребты, возвышенности, плато) различного генезиса (Левитан, Гельви, 2016). Как и в современную эпоху (Лисицын, 1978), распределение плейстоценовых осадков подчинялось сочетанию основных видов зональности: циркумконтинентальной, широтной (климатической), вертикальной и тектонической.

Рис. 1. Расположение скважин глубоководного бурения (залитые кружки) в Атлантическом океане. Звездочкам соответствуют длинные колонки осадков в море Скоша. Числами обозначены районы исследования подводных континентальных окраин: 1 — Юго-Западной Африки; 2 — Северо-Западной Африки; 3 — Западной Европы, Исландии и южной Гренландии; 4 — США; 5 — Мексиканского залива; 6 — Карибского моря; 7 — моря Скоша.

Стратигра- фические подразде- ления	Пара- метры	Пелаги- ческая область	Юго- Западная Африка	Северо- Западная Африка	Северная Анлантика	США	Мекси- канский залив	Карибское море	Море Скоша	Все континен- тальные окраины
Неоплей-	S	70579	227	653	1697	691	1179	2472	1834	8753
стоцен	H	24	66	32	51	98	204	45	7	64
	V	1703	15	21	87	68	240	112	13	556
Эоплей-	S	71 417	227	653	1928	679	1194	2575	1831	9087
стоцен	H	32	66	58	31	65	95	21	2	36
	V	2271	15	38	61	44	114	53	3	328
Плейсто-	S	70998	653	653	1813	685	1187	2524	1833	8920
цен	H	56	132	90	82	163	299	66	9	99
	V	3974	30	59	148	112	354	165	16	884

Таблица 1. Площади (S, тыс. км²), средние мощности (H, м) и объем (V, тыс. км³) осадков плейстоцена в Атлантическом океане

В состав фациальной мегаобласти подводных континентальных окраин Атлантического океана входят окраины двух основных типов: пассивные и активные островодужные. Среди изученных ключевых районов к пассивным окраинам принадлежат подводные окраины Африки, Западной Европы, Исландии и Южной Гренландии, США и Мексиканского залива. Островодужные окраины находятся в Карибском море и в море Скоша.

На фациальную структуру плейстоценовых осадков континентальных окраин помимо геодинамических факторов большое влияние оказывают климатические особенности, а также, разумеется, рельеф дна, структура циркуляции, первичная продукция и т.д. Особенно заметна роль климата. Так, на севере и юге океана значительную роль в составе плейстоценового осадочного чехла играют марино-гляциальные отложения: на юге — кремнистые (существенно диатомовые) осадки, а карбонатные отложения практически отсутствуют. Карбонатные планктоногенные илы и бентогенные постройки, напротив, широко развиты в средних и низких широтах.

Далее основная часть статьи будет посвящена сравнительному анализу количественных параметров седиментации в обеих фациальных мегаобластях, с одной стороны, и выявлению в них трендов плейстоценовой седиментации, с другой.

Площади, мощности и объемы плейстоценовых осадков

В табл. 1 показаны сводные результаты как по пелагической области Атлантического океана, так и по его континентальным окраинам. Содержание табл. 1 свидетельствует о том, что далеко не все области континентальных окраин океана охвачены нашими исследованиями. Например, к таким областям относится практически вся окра-

ина Южной Америки, т.к. здесь пробурено слишком мало скважин глубоководного бурения на глубинах до 3000 м. Не учтена площадь континентальных окраин в Лабрадорском море и на широте Ньюфаундленда, а также на пассивной окраине Антарктиды. С учетом приведенных в табл. 1 данных по континентальным окраинам, для которых были рассчитаны площади, занятые неоплейстоценовыми осадками, получаем общую площадь развития неоплейстоценовых осадков на континентальных окраинах Атлантического океана 8753 тыс. км². Площадь изученных нами участков подводных окраин в Атлантике составляет 71.7% от общей площади всех видов континентальных окраин.

Отношение рассчитанных площадей пелагических и окраинно-континентальных осадков в неоплейстоцене составило 8.06. Такое же соотношение для эоплейстоцена равно 7.86, и для плейстоцена в целом — 7.96. Не следует забывать, что в суммарную площадь пелагических осадков включены данные и по Норвежско-Гренландскому бассейну. Это обстоятельство является одной из причин столь высоких отношений, приведенных выше.

Суммарные объемы неоплейстоценовых отложений на континентальных окраинах (табл. 1) равны 556 тыс. км³, эоплейстоценовых — 328 тыс. км³, а плейстоценовых в сумме — 884 тыс. км². Отношения зафиксированных в табл. 1 объемов в пелагической области и на континентальных окраинах, соответственно, равны 3.06, 6.92 и 4.50. В пелагической области отношение объема неоплейстоценовых отложений к объему эоплейстоценовых осадков равно 0.75 раза, а на континентальных окраинах величина такого отношения равна 1.70.

Стратигра- фические подразде- ления	Пара- метры	Пелаги- ческая область	Конт. окраина Юго- Западной Африки	окраина Северо-		Конт. окраина США	Мекси- канский залив	Карибское море	Море Скоша	Все континен- тальные окраины
Неоплей-	M	1291.0	11.4	18.1	86.1	60.2	256.0	98.9	8.2	538.9
стоцен	I	1634.2	14.4	22.9	109.0	76.2	324.1	125.2	10.4	682.2
Эоплей-	M	1504.8	9.4	35.7	55.6	45.1	125.7	51.4	1.7	324.6
стоцен	I	1504.8	9.4	35.7	55.6	45.1	125.7	51.4	1.7	324.6
Плейсто-	M	2795.8	20.8	53.8	141.7	105.3	381.7	150.3	9.9	863.5
цен	I	1561.9	11.6	53.8	79.2	105.3	213.2	84.0	5.5	488.4

Таблица 2. Массы сухого осадочного вещества $(M, 10^{18} \, \mathrm{r})$ и скорости накопления $(I, 10^{18} \, \mathrm{r}/\mathrm{млн}$ лет) осадков плейстоцена в **А**тлантическом океане

Показанные в табл. 1 средние мощности (частные от деления объемов на площади) свидетельствуют о том, что рассматриваемая величина в пелагической области равна для неоплейстоцена 24 м, а для эоплейстоцена — 32 м. Следовательно, суммарная мощность для плейстоцена равна 56 м. В районах исследованных континентальных окраин средние мощности равны, соответственно, 64, 36 и 99 м, а их колебания составляют, соответственно, от 7 до 204 м, от 2 до 114 м, от 9 до 299 м. Минимальные значения присущи морю Скоша, а максимальные — Мексиканскому заливу.

Массы сухого осадочного вещества и массы вещества в единицу времени

Приведенные в табл. 1 данные об объемах натуральных осадков невозможно пересчитать в массы сухих осадков, т.к. физические свойства отложений различного состава заметно отличаются друг от друга. Поэтому для получения представленных в табл. 2 результатов использованы ранее полученные данные по массам конкретных литологических разновидностей для изученных районов Атлантики.

Итак, основные данные табл. 2 выглядят следующим образом: массы сухих осадков для пелагической области Атлантического океана для неоплейстоцена, эоплейстоцена и всего плейстоцена, соответственно, равны 1291, 1505 и 2796 × 10¹⁸ г. Суммарные величины для всех изученных континентальных окраин, соответственно, равны 539, 325 и 864×10^{18} г. Таким образом, без учета вышеуказанных областей континентальных окраин. для которых нет данных по объемам и массам осадочного материала, получается, что в пелагиали Атлантического океана и в неоплейстоцене, и в эоплейстоцене, и в плейстоцене в целом накапливалось заметно больше сухого осадочного вещества, чем суммарно на изученных континентальных окраинах. Соответствующие отношения масс равны 2.40, 4.6 и 3.2. Следовательно, даже если мы примем, что площадь всех континентальных окраин примерно на одну треть больше изученной, и предположим ту же структуру распределения масс, то все равно в синхроничных горизонтах на глубоководном ложе содержится больше сухого осадочного вещества, чем на окраинах. При этом особенно высок градиент масс для эоплейстоцена.

Если изучить соотношения масс осадков между нео- и эоплейстоценом, то выяснится, что в пелагической области Атлантического океана в эоплейстоцене было аккумулировано в 1.17 раз больше сухого осадочного материала, чем в неоплейстоцене. Превышение массы осадков в эоплейстоцене по сравнению с неоплейстоценом зафиксировано также для подводной континентальной окраины Северо-Западной Африки. Во всех остальных изученных районах подводных континентальных окраин (а также суммарно для исследованных районов) в неоплейстоцене накопилось больше осадков, чем в эоплейстоцене.

Для каждого рассматриваемого региона величины масс сухих осадков в единицу времени (скорости накопления) имеют еще большее значение, чем просто массы. Их соотношения между пелагической областью и суммарно континентальными окраинами однозначно свидетельствуют: 1) о решающем превосходстве пелагической области для всех синхроничных горизонтов; 2) о больших скоростях в неоплейстоцене, чем в эоплейстоцене, для всего Атлантического океана. Однако для отдельных регионов континентальных окраин отношение І неоплейстоцена/І эоплейстоцена заметно отличается. По этому отношению выделяются две группы окраин: в первой рассматриваемое отношение больше единицы, во второй меньше. К первой группе относятся подводные континентальные окраины Юго-Западной Африки; Европы; Исландии и Южной Гренландии; США; Мексиканского залива; Карибского моря

Стратигра- фические подразде- ления	Осадки	Пелаги- ческая область	Юго-	Конт. окраина Северо- Западной Африки	Конт. окраина Европы, Исландии и Южной Гренландии	Конт. окраина США	Мекси- канский залив	Кариб- ское море	Море Скоша	
Неоплей-	Литог.	739.7	5.4	0	65.1	28.7	224.5	55.7	7.6	389.0
стоцен	Карб.	464.1	4.9	16.9	17.3	31.5	31.5	43.2	0.2	145.5
	Кремн.	71.0	1.1	1.2	0	0	0	0	0.4	2.7
Эоплейсто-	Литог.	391.6	4.2	0	38.1	21.6	90.9	20.4	1.6	176.8
цен	Карб.	900.6	2.1	25.5	15.3	23.5	34.8	30.9	0.03	132.1
	Кремн.	81.0	3.1	6.5	0	0	0	0	0.04	9.6
Плейстоцен	Литог.	1131.3	9.6	0	103.2	50.3	315.4	76.1	9.2	565.8
	Карб.	1364.7	7.0	42.4	32.6	55.0	66.3	74.1	0.2	277.6
	Кремн.	152.0	4.2	7.7	0	0	0	0	0.4	12.3

Таблица 3. Массы сухого осадочного вещества (M, 10^{18} г) основных групп осадков плейстоцена в Атлантическом океане

и моря Скоша. Ко второй относится лишь окраина Северо-Западной Африки.

Имеющиеся в нашем распоряжении данные позволяют рассчитать абсолютные массы осадочного материала (раздельно для пелагической области и изученных подводных континентальных окраин). Результаты расчета выглядят следующим образом (для неоплейстоцена, эоплейстоцена и всего плейстоцена, соответственно): для пелагической области — 2.315, 2.120 и 2.107 г/см² тыс. лет; для континентальных окраин — 7.793, 3.572 и 5.408 г/см² тыс. лет. Таким образом, на подводных окраинах средняя величина плейстоценового потока аккумулирующегося осадочного материала превышает среднее его значение для пелагической области примерно в 2.5 раза.

Литологический состав плейстоценовых отложений подводных континентальных окраин в Атлантическом океане отличается от литологического состава в пелагической области. Поэтому для интерпретации вышеприведенных данных необходима информация о литологии изученных отложений. В следующем параграфе представлены соответствующие материалы по основным группам осадков: литогенной, карбонатной и кремнистой.

Массы сухого осадочного вещества основных групп осадков и осадкообразующих компонентов

В литогенную группу осадков включены доминирующие терригенные отложения, вулкано-терригенные осадки, миопелагические глины и редкие вулканические пеплы. К карбонатным осадкам отнесены не только собственно карбонатные планктоногенные илы и карбонатно-обломочные отложения, но также глинисто-карбонатные илы и карбонатные турбидиты. В группу кремни-

стых осадков попали диатомовые илы и диатомовые глины.

Результаты расчетов масс сухого осадочного вещества основных групп осадков приведены в табл. 3. Ее изучение показывает, что литологический состав в пелагической области и суммарно на континентальных окраинах отличался.

Если обобщить полученные результаты, то получится, что в пелагической области в неоплейстоцене, эоплейстоцене и плейстоцене в целом соотношение литогенных, карбонатных и кремнистых осадков составляло 58: 36: 6, 29: 66: 5 и 43:52:5, соответственно. Для всей изученной области подводных континентальных окраин рассматриваемое соотношение составляло 72:27:1, 56:41:3 и 66:32:2, соответственно. Таким образом, в целом в области подводных континентальных окраин преобладают литогенные осадки, на втором месте находятся карбонаты и на третьем (с большим отрывом) – кремнистые отложения. В пелагиали на границе эо- и неоплейстоцена произошло радикальное изменение: преобладание карбонатных осадков сменилось преобладанием литогенных отложений, при этом относительная роль кремнистых осадков осталась прежней (очень небольшой). В среднем для плейстоцена относительная роль карбонатов выше в пелагиали, а литогенных осадков — на континентальных окраинах. Относительная роль кремнистых осадков, вероятно, не изменялась.

Вышеприведенные соотношения основных групп донных осадков свидетельствуют о том, что в пелагической области в неоплейстоцене по сравнению с эоплейстоценом уменьшилось значение карбонатов и возросло значение литогенных осадков. В области континентальных окраин заметно увеличилось относительное содержание

IIIIA METAGOMETIA A ISTATI A TECNOTO ONCATA								
Стратиграфические подразделения	Компоненты	Пелагическая область	Все континентальные окраины	М конт. окр. М пелаг. обл.				
Неоплейстоцен	Литогенное вещество	894.2	446.6	0.5				
	CaCO ₃	267.6	93.8	0.4				
	Биогенный опал	97.9	1.1	0.01				
Эоплейстоцен	Литогенное вещество	710.7	276.7	0.4				
	CaCO ₃	977.6	99.8	0.1				
	Биогенный опал	112.1	3.5	0.03				
Плейстоцен	Литогенное вещество	1604.9	723.3	0.5				
	CaCO ₃	1245.2	193.6	0.2				
	Биогенный опал	210.0	4.6	0.02				

Таблица 4. Массы $(M, 10^{18} \, r)$ основных осадкообразующих компонентов плейстоценовых отложений в фациальных мегаобластях Атлантического океана

литогенных отложений и уменьшилось — карбонатных.

В то же время внимательное изучение табл. 3 свидетельствует о серьезных различиях между районами континентальных окраин. Например, литогенные отложения явно доминируют в осадках Северной Атлантики, Мексиканского залива и моря Скоша. Роль карбонатных отложений относительно высока на окраинах Северо-Западной Африки и юго-востока США, а также в Карибском море. Более или менее заметна роль кремнистых осадков только на окраине Юго-Западной Африки и в море Скоша.

Важно иметь в виду, что в приведенных таблицах 1—3 средние значения для континентальных окраин зависят, прежде всего, от районов с максимальными величинами того или иного параметра. Например, для табл. 3 это массы литогенного вещества в Мексиканском заливе.

Учет перечисленных выше неисследованных нами районов континентальных окраин может слегка изменить приведенные соотношения основных групп осадков. Тем не менее, представляется, что основные литологические соотношения нами обозначены правильно.

С точки зрения генетического состава осадков и приближения к познанию их химического состава более корректным является оперирование не массами основных групп осадков, а массами основных осадкообразующих компонентов: литогенного вещества, $CaCO_3$ и биогенного опала. Для расчетов принято среднее содержание $CaCO_3$ в карбонатных осадках 85% (соответственно, содержание литогенного вещества 15%), опала в кремнистых илах — 60% (т.е. содержание литогенного вещества равно 40%). В слабокарбонатных осадках находится в среднем 50% $CaCO_3$ и 50% литогенного вещества, а в слабокремнистых

осадках — 40% опала и 60% литогенного вещества. Полученные результаты показаны в табл. 4.

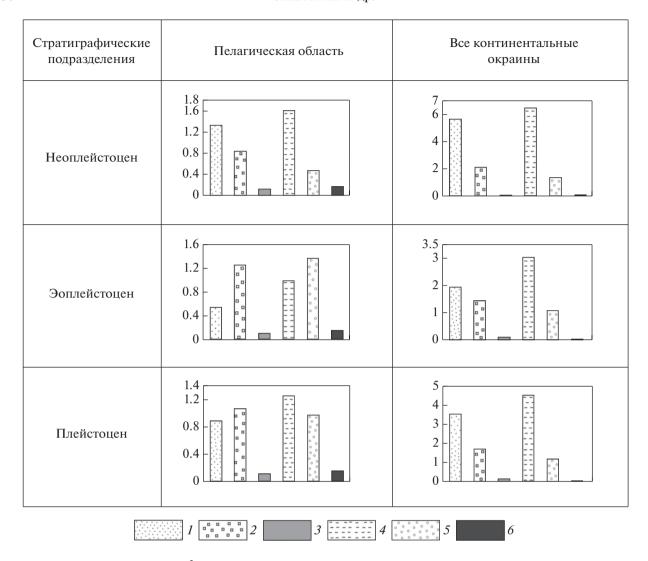
Из анализа таблицы следует, что в неоплейстоцене, эоплейстоцене и в плейстоцене в целом массы всех компонентов на континентальных окраинах были ниже, чем в пелагиали (напоминаем: только в пределах изученных районов!). При этом в течение плейстоцена и в пелагиали, и на континентальных окраинах произошло увеличение масс литогенного вещества, а массы биогенных компонентов, напротив, уменьшились.

Абсолютные массы (MAR) групп осадков и осадкообразующих компонентов

Результаты расчета абсолютных масс основных групп осадков (раздельно для пелагической области и подводных континентальных окраин) для неоплейстоцена, эоплейстоцена и всего плейстоцена показаны в табл. 5. Результаты ее изучения свидетельствуют о том, что в обеих фациальных мегаобластях в неоплейстоцене сохранялась сходная структура седиментации с явным преобладанием потоков накапливавшихся на дне литогенных осадков, заметно меньшими потоками карбонатных осадков и незначительными кремнистых. При этом MAR литогенных отложений на континентальных окраинах были больше, чем в пелагической области, в 4.3 раза, а биогенных компонентов – больше в 2.5 раз для карбонатных осадков и меньше в 0.3 раза для кремнистых осадков. В эоплейстоцене структура седиментации заметно отличалась: если для континентальных окраин она практически была такой же, то в пелагиали абсолютные массы карбонатных осадков были больше, чем в неоплейстоцене, и превышали абсолютные массы литогенных осадков (рис. 2). При этом отношения абсолютных масс осадков на окраинах к абсолютным массам в пелагиали в

Таблица 5. Абсолютные массы (MAR, r/cm^2 тыс. лет) групп осадков и основных осадкообразующих компонентов плейстоценовых отложений в фациальных мегаобластях Атлантического океана

Стратиграфические подразделения	Осадки, компоненты	Пелагическая область	Все континентальные окраины	МАК конт. окр. МАК пелаг. обл.	
Неоплейстоцен	Литогенные осадки	1.327	5.650	4.3	
	Карбонатные осадки	0.832	2.104	2.5	
	Кремнистые осадки	0.127	0.039	0.3	
	Литогенное вещество	1.604	6.459	4.0	
	CaCO ₃	0.480	1.356	2.8	
	Биогенный опал	0.176	0.016	0.1	
Эоплейстоцен	Литогенные осадки	0.548	1.970	3.6	
	Карбонатные осадки	1.261	1.454	1.2	
	Кремнистые осадки	0.113	0.106	0.9	
	Литогенное вещество	0.995	3.045	3.1	
	CaCO ₃	1.369	1.098	0.8	
	Биогенный опал	0.157	0.039	0.2	
Плейстоцен	Литогенные осадки	0.890	3.568	4.0	
	Карбонатные осадки	1.074	1.739	1.6	
	Кремнистые осадки	0.120	0.077	0.6	
	Литогенное вещество	1.263	4.530	3.6	
	CaCO ₃	0.980	1.213	1.2	
	Биогенный опал	0.165	0.029	0.2	


принципе были примерно такими же, как в неоплейстоцене.

Существует еще одно важное следствие анализа табл. 5. Если мы разделим MAR неоплейстоценовых групп осадков на MAR эоплейстоценовых осадков, то в пелагической области для литогенных, карбонатных и кремнистых отложений получим, соответственно, значения 2.42, 0.66 и 1.12. Для континентальных окраин этот ряд будет выглядеть следующим образом: 2.87, 1.45 и 0.37. Таким образом, в неоплейстоцене по сравнению с эоплейстоценом потоки аккумулировавшегося на дне литогенного материала выросли в обеих фациальных мегаобластях, причем практически в одинаковой степени (чуть больше на окраинах). В пелагиали абсолютные массы карбонатных осадков стали меньше в неоплейстоцене, чем в эоплейстоцене, а кремнистых — чуть больше. На континентальных окраинах, напротив, абсолютные массы карбонатных осадков выросли в неоплейстоцене по сравнению с эоплейстоценом, а потоки кремнистых осадков уменьшились.

Однако наиболее корректными с точки зрения сравнительного анализа являются данные по абсолютным массам основных осадкообразующих компонентов (табл. 5). В итоге анализа этих данных подтвердились ранее сделанные по абсолют-

ным массам осадков выводы как по пелагической области, так и по континентальным окраинам. При этом MAR литогенного вещества на континентальных окраинах были больше, чем в пелагической области, в 3—4 раза. Интенсивность седиментации CaCO₃ в неоплейстоцене также выросла на окраинах по сравнению с пелагиалью, а в эоплейстоцене — уменьшилась. Абсолютные массы биогенного опала на протяжении всего плейстоцена были выше в пелагиали, чем на подводных частях континентальных окраин (рис. 2).

Существует еще одно важное следствие анализа табл. 5. Если мы разделим MAR неоплейстоценовых основных осадкообразующих компонентов на MAR эоплейстоценовых, то в пелагической области для литогенного вещества, СаСО3 и биогенного опала получим, соответственно, значения 1.61, 0.35 и 1.12. Для фациальной мегаобласти континентальных окраин этот ряд будет выглядеть следующим образом: 2.12, 1.24 и 0.41. Таким образом, в неоплейстоцене по сравнению с эоплейстоценом потоки литогенного вещества выросли в обеих фациальных мегаобластях, причем в большей степени на континентальных окраинах, чем в пелагиали. Потоки СаСО3 увеличились на континентальных окраинах и уменьшились в пелагической области. Потоки биоген-

Рис. 2. Абсолютные массы (г/см 2 тыс. лет) групп осадков и основных осадкообразующих компонентов плейстоценовых отложений. Условные обозначения: 1 – литогенные осадки; 2 – карбонатные осадки; 3 – кремнистые осадки; 4 – литогенное вещество; 5 – CaCO $_3$; 6 – биогенный опал.

ного опала на континентальных окраинах стали меньше.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В статье рассмотрены данные о покрытых плейстоценовыми осадками областях дна Атлантического океана, составляющих порядка 86.4% от общей его площади (Атлас..., 1980). Для обеих фациальных мегаобластей в неоплейстоцене характерна близкая фациальная структура с доминированием литогенных образований, существенно меньшей ролью карбонатных осадков и очень незначительной долей кремнистых отложений. В эоплейстоцене примерно такая же структура существовала на континентальных окраинах, но в пелагиали массы карбонатных осадков превышали массы литогенных отложений.

Литогенное вещество в основном оседает на континентальных окраинах недалеко от районов его поставки. По нашим данным, наиболее мощные его депоцентры в неоплейстоцене были развиты в дельтовой области системы Миссисипи—Миссури и в фэне р. Миссисипи. Судя по литературным источникам, примерно такие же мощности накапливались в фэне р. Амазонки; значительные количества литогенного материала аккумулировались в фэне р. Нигер (Лисицын, 1988).

Большую роль в накоплении литогенного материала в Атлантике сыграло континентальное оледенение северного и южного полушарий. При этом в неоплейстоцене масштабы аккумуляции марино-гляциальных осадков существенно возросли по сравнению с эоплейстоценом (Левитан, Гельви, 2016).

Заметная поставка вулканического и вулканотерригенного материала зафиксирована рядом с областями активного плейстоценового вулканизма: Исландией и Малыми Антильскими островами. Судя по литературным данным, такие же процессы описаны по соседству с Канарскими островами и другими областями активного вулканизма во внутриплитных регионах (Левитан, Гельви, 2016).

Массы миопелагических глин в эоплейстоцене были существенно выше, чем в неоплейстоцене, за счет меньшего разбавления терригенным и карбонатным материалом (Левитан, Гельви, 2016).

Нельзя не отметить существенно большую роль терригенных и вулканогенных турбидитов в неоплейстоцене, чем в эоплейстоцене. Это явление обусловлено заметно возросшим потоком литогенного материала с окружающих континентов и островов. Причины таких изменений сложны и разнообразны. В отличие от Тихого и Индийского океанов, где явно ведущую роль играли горообразовательные неотектонические движения, в Атлантике их роль существенно ниже (однако заметна в таких, например, районах как фэн Амазонки и север подводного хребта Рейкьянес). Представляется, что очень важное значение в этом процессе имели гляциоэвстатические колебания уровня Мирового океана (на фоне общего тренда к понижению этого уровня в течение плейстоцена). Особенно четко это прослеживается в разрезах плейстоцена в Мексиканском заливе, в Северной Атлантике и на подводной окраине США.

Явно большее возрастание потоков литогенного вещества в неоплейстоцене на континентальных окраинах по сравнению с пелагической областью свидетельствует о том, что существенно более заметное количество этого осадочного материала накапливалось на континентальных окраинах, а не в пелагиали.

Поступающие в океан растворенные вещества (включая питательные вещества типа фосфатов, нитратов, растворенной органики и т.д.), как правило, разносятся течениями и в значительной степени обезличиваются. В Атлантическом океане, в отличие от Тихого океана (Левитан, 2020), основные массы биогенного вещества в плейстоцене были сосредоточены в пелагической области.

По сравнению с Тихим и Индийским океанами, где и в пелагиали, и на континентальных окраинах в плейстоцене происходило возрастание масс и скоростей накопления карбонатных осадков, в Атлантическом океане зафиксирована определенная аномалия. На континентальных окраинах указанный тренд также отмечен, а в пелагической области абсолютно четко доказаны гораздо большие массы и скорости накопления карбонатов в эоплейстоцене, чем в неоплейстоце-

не. Этот феномен объясняется резко возросшим растворением карбонатов на больших глубинах, начиная с уровня 1.1 млн лет (Sexton, Barker, 2012). Наши расчеты позволяют предположить, что за последние 1.1 млн лет в Атлантике растворилось карбонатных осадков, возможно, до 480.2×10^{18} г. Таким образом, в неоплейстоцене, вероятно, растворилось в пелагиали примерно столько же карбонатов, сколько и осталось в осадках. Ранее указывалось (Sexton, Barker, 2012), что причиной этого интересного феномена явилось беспрецедентное возрастание потока антарктических придонных и глубинных вод, агрессивных к карбонатам, происшедшее во время Среднеплейстоценового перехода. Нельзя не отметить, что это явление коррелируется с синхронным увеличением объемов дрифтов в Северной Атлантике, вызванным возрастанием потоков контурных течений. В целом на подводных континентальных окраинах Атлантики, расположенных на глубинах до 3000 м, и в более глубоководном Карибском море, куда антарктические воды не поступают, сохранился "общеокеанический" тренд возрастания масс и абсолютных масс накопления карбонатов в течение плейстоцена.

Плейстоценовые отложения Атлантики являются заметно более карбонатными, чем тихоокеанские и индоокеанские отложения. Однако причины этого явления для континентальных окраин и для пелагиали различные. В целом можно говорить о существенно отличающемся геологическом строении окружающих эти океаны континентов (Хаин, 2001). Гидрохимикам хорошо известен более "карбонатный" состав вод Атлантики по сравнению, например, с более "кремнистым" Тихим океаном. На континентальных окраинах важную роль в рассматриваемом явлении играет меньшая роль разбавляющих терригенных осадков, чем в других океанах. Для пелагиали основное значение имеет существенно большая площадь развития различных подводных хребтов и возвышенностей по сравнению с глубоководными впадинами, чем в Тихом и Индийском океанах (Harris et al., 2014).

В плане кремненакопления очевидны следующие закономерности: 1) сосредоточение основной массы биогенного опала и скоростей его аккумуляции на юге пелагической области океана (в диатомовых илах и глинах), а не на континентальных окраинах; 2) примерное равенство абсолютных масс биогенного опала в пелагических осадках эо- и неоплейстоцена (с незначительным преобладанием в неоплейстоцене); 3) приуроченность кремненакопления на континентальных окраинах к апвеллингам вдоль Западной Африки (прежде всего — в пределах Бенгельского апвеллинга); 4) явное преобладание кремненакопления в зонах апвеллингов в эоплейстоцене по сравнению с неоплейстоценом. Последнее явле-

ние обусловлено именно спецификой истории апвеллингов, связанной с подъемом промежуточных субполярных вод северного и южного полушарий, а не с историей эоловой активности на сопредельных с апвеллингами пустынях.

ЗАКЛЮЧЕНИЕ

В результате проведенных работ получены данные о литологическом составе нео- и эоплейстоценовых осадков на площади, составляющей несколько менее 90% от общей площади дна Атлантического океана.

Нами выделены две фациальные мегаобласти: пелагическая и подводных континентальных окраин. Сравнительный анализ материалов по обеим областям проведен по ряду количественных параметров. Средняя мощность плейстоценовых отложений в пелагиали равна 56 м, а на окраинах — 99 м (табл. 1). В плейстоцене масса сухого осадочного вещества основных групп осадков в пелагиали превышала массу на континентальных окраинах в 3.2 раза (табл. 2), а при сопоставлении масс основных осадкообразующих компонентов эта величина равна 2.2 для литогенного вещества, 6.4 для СаСО₃ и 45.7 для биогенного опала (табл. 4). В то же время соотношение абсолютных масс основных осадкообразующих компонентов для пелагиали и континентальных окраин в плейстоцене сильно варьировало, составляя для литогенного вещества 0.3, для $CaCO_3 - 0.8$, а для биогенного опала — 5.7 (табл. 5).

Сравнение данных для неоплейстоцена и эоплейстоцена выявило, что в течение плейстоцена массы сухого вещества в фациальной мегаобласти континентальных окраин выросли в 1.6 раза, а в пелагиали уменьшились в 0.9 раза. Соответствующие отношения масс сухого вещества основных осадкообразующих компонентов составили для литогенного вещества пелагиали 1.3, для CaCO_3 — 0.3, для опала — 0.9. На континентальных окраинах этот ряд выглядит следующим образом: 1.6, 0.9, 0.3.

В статье исследованы литологические изменения в Атлантическом океане в течение части четвертичного периода: с 1.8 по 0.01 млн лет. Крупные отрезки времени — неоплейстоцен и эоплейстоцен — позволили исследовать тренды этих изменений. В палеоклиматологии в это время известен общий тренд глобального похолодания, который был синхронизирован с трендом падения уровня Мирового океана, нарастанием глобального объема ледников и возрастанием первичной продукции. На этом фоне происходили не рассматривавшиеся в статье разнопериодные изменения климата: ледниково-межледниковые,

орбитальные, суборбитальные и другие. Естественно, что эти изменения отражались и в составе донных осадков Атлантического океана. Они накладывались на отмеченные выше тренды в седиментации в течение плейстоцена.

Работа выполнена за счет финансирования по Госзаданию № 0137-2019-0007.

СПИСОК ЛИТЕРАТУРЫ

Атлас океанов. Термины, понятия, справочные таблицы (1980) М.: ГУНК МО СССР.

Конюхов А.И. (1987) Осадочные формации в зонах перехода от континентов к океану. М.: Недра. 222 с.

Левитан М.А. (2020) Сравнительный анализ плейстоценовых отложений пелагической области и подводных континентальных окраин Тихого океана. *Геохимия* **65**(1), 46-58.

Levitan M.A. (2020) Comparative analysis of Pleistocene sediments of pelagic area and submarine continental margins of the Pacific Ocean. *Geochem. Int.* **58** (1), 49-60.

Левитан М.А., Антонова Т.А., Гельви Т.Н., Домарацкая Л.Г., Кольцова А.В. (2021) Сравнительный анализ плейстоценовых отложений Индийского океана. *Геохимия* **66**(4), 341-350.

Levitan M.A., Antonova T.A., Gelvi T.N., Domaratskaya L.G., Koltsova A.V. (2021) Comparative analysis of the Indian Ocean Pleistocene sediments. *Geochem. Int.* **59**(4), 350-358.

Левитан М.А., Гельви Т.Н. (2016) Количественные параметры пелагической плейстоценовой седиментации в Атлантическом океане. *Геохимия* (12), 1091-1103.

Levitan M.A., Gelvi T.N. (2016) Comparative analysis of Pleistocene pelagic sedimentation in the Atlantic Ocean. *Geochem. Int.* **54**(12), 1049-1060.

Левитан М.А., Гельви Т.Н., Домарацкая Л.Г. (2020) Фациальная структура и количественные параметры седиментации плейстоценовых отложений на глубоководном ложе юга Тихого океана и в море Скоша. *Литология и полезные ископаемые* (5), 387-399.

Лисицын А.П. (1978) Процессы океанской седиментации. Литология и геохимия. М.: Наука, 391 с.

Лисицын А.П. (1988) Лавинная седиментация и перерывы в осадконакоплении в морях и океанах. М.: Наука, 306 с.

Мурдмаа И.О. (1987) Фации океанов. М.: Наука, 304 с.

Ронов А.Б. (1949) История осадконакопления и колебательных движений Европейской части СССР (по данным объемного метода). М.: Геофиз. ин-т АН СССР (3), 136 с.

Хаин В.Е. (2001) Тектоника континентов и океанов. М.: Научный мир, 604 с.

Burk C.A., Drake C.L. (Eds.) (1974) *The geology of continental margins*. Berlin-Heidelberg: Springer-Verlag. 1009 p. Harris P.T., Macmillan-Lawler M., Rupp J., Baker E.K. (2014) Geomorphology of the oceans. *Marine Geology* **352**, 4-24.

Sexton P.F., Barker S. (2012) Onset of "Pacific-style" deepsea sedimentary carbonate cycles at the mid-Pleistocene transition. *Earth Planet. Sci. Lett.* **321-322**, 81-94.