ГЕОХИМИЯ И МИНЕРАЛОГИЯ МАРГАНЦА НИЖНЕЙ ЗОНЫ ЛОВОЗЕРСКОГО РЕДКОМЕТАЛЬНОГО МЕСТОРОЖДЕНИЯ (КОЛЬСКИЙ ПОЛУОСТРОВ)

© 2022 г. И. И. Шубин*, Л. Н. Когарко^{а, **}

^аИнститут геохимии и аналитической химии им. В.И. Вернадского РАН, ул. Косыгина, 19, Москва, 119991 Россия

*e-mail: shubin.ivann@mail.ru **e-mail: kogarko@geokhi.ru

Поступила в редакцию 27.04.2022 г. После доработки 05.07.2022 г.

Принята к публикации 07.07.2022 г.

Впервые изучены минералы — концентраторы марганца нижней, не выходящей на поверхность, зоны редкометального месторождения Ловозерского щелочного массива, Кольский полуостров. Детально исследованы особенности химического состава пирофанита, ильменита и магнетита. По данным микрозондового анализа, ильменит и пирофанит образуют непрерывный ряд твердого раствора, в котором содержание марганца варьирует в широких пределах: от 3.9 до 42.1 мас. % МпО. Для парагенезиса ильменит — магнетит оценены расчетным способом окислительно-восстановительные условия формирования нижней зоны Ловозерской интрузии. Полученные значения фугитивности кислорода варьируют от QFM + 0.68 до QFM + 1.17, при температурах 500—550°С и близки к буферной системе Ni—NiO. По высокому содержанию минералов марганца и химическому составу пород установлена марганцевая специализация нижней зоны Ловозерского месторождения. Выявлены собственные фазы Мп, в т. ч. пирофанит (МпТiO₃) с содержанием МпО до 42.1%. Такие высокие содержания Мп для пирофанита из пород Ловозера установлены впервые.

Ключевые слова: щелочные породы, пирофанит, ильменит, магнетит, марганец, Ловозерский массив, Кольский полуостров

DOI: 10.31857/S0016752522120068

ВВЕДЕНИЕ

Марганец в природных средах присутствует в различных степенях окисления. Так, для высокотемпературных магматических процессов характерен двухвалентный марганец, который изоморфно замещает двухвалентные катионы, преимущественно Fe, Mg, Ca. Наиболее высокие содержания Мп характерны для минералов железа. В магматических системах для марганца не характерно образование собственных минералов, за редким исключением. Для биосферы и осадочной оболочки Земли характерен марганец в трех- и четырехвалентном состоянии, именно здесь происходит накопление марганца, с образованием собственных минералов - пиролюзита и других оксидов, для которых используется собирательное название псиломелан (Юдович, Кетрис, 2014).

Минералы группы ильменита являются характерными минералами — концентраторами Мп для различных геологических обстановок. Эта группа представлена семью минеральными видами: ильменитом $FeTiO_3$, гейкилитом $MgTiO_3$, пирофанитом $MnTiO_3$, экандрюситом $(Zn,Fe,Mn)TiO_3$, и тре-

мя редкими видами: акимотоитом (Mg,Fe)SiO₃, гемлеитом (Fe,Mg,Ca,Na,Mn,Al,Cr)SiO₃ и фазой FeCrO₃ (Pérez-Cruz et al., 2015; Warr, 2021). Mapranцевый минеральный вид – пирофанит (MnTiO₃) и богатая Мп разновидность ильменита — манганоильменит (Fe, Mn) ТіО₃ широко развиты в различных типах щелочных пород. В Ловозерском массиве пирофанит (MnO -42.98 мас. %) был впервые обнаружен Е.И Семеновым в пегматите долины р. Сулуай (Семенов, 1963), а манганоильменит (МпО – 14.73 мас. %) выявлен В.И. Герасимовским (1940) в пегматите долины р. Коклухтиуай. Пирофанит был описан в различных геологических обстановках: в измененных марганцевых рудах, метеоритах, метаморфических и метасоматически измененных породах, щелочных, кислых, эффузивных и интрузивных породах. Этот минерал широко развит в пегматитах Ловозерского и Илимауссакского массивов (Семенов, 1963, 1969; Пеков, 2001).

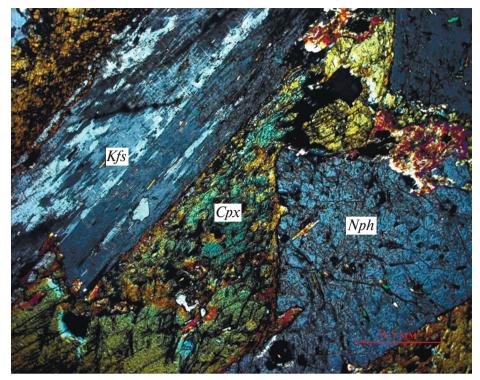
Большинство минералов — концентраторов марганца в Ловозерском месторождении довольно хорошо изучены, однако минералы группы

ильменита и титаномагнетит исследованы недостаточно. В настоящей работе исследовано 14 образцов агпаитовых нефелиновых сиенитов нижней зоны Ловозерского редкометального месторождения, в ассоциациях которых присутствуют минералы группы ильменита. Приведены первые результаты изучения пирофанита, марганцевой разновидности ильменита — манганоильменита и ассоциирующего с ними магнетита. Оценены окислительно-восстановительные условия формирования нижней зоны Ловозерской интрузии.

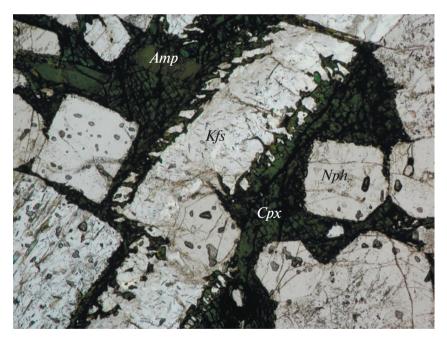
ИССЛЕДУЕМЫЙ МАТЕРИАЛ И МЕТОЛЫ ИССЛЕДОВАНИЯ

Изучено 14 образцов: 0802, 0810, 0811, 0816, 0817, 0820, 0823, 0824, 0825, 0828, 0833, 0837, 0841, 0855, отобранных в результате полевых работ из керна скважин №№ 903, 904, 905 Ловозерского месторождения. Эти образцы были выбраны для исследования, так как представляют типичные щелочные породы нижней зоны Ловозерского массива, которая не выходит на поверхность. В полированных шлифах было проанализировано более 150 зерен различной морфологии акцессорных минералов Fe—Мп—Ті состава. В настоящей статье приведены представительные анализы из большой выборки составов таких минералов.

Состав минеральных фаз изучался методом рентгеноспектрального микроанализа, аналитик Кононкова Наталья Николаевна. Измерения проводились на приборе Сатеса SX-100 с четырьмя вертикальными спектрометрами (ГЕОХИ РАН, Москва) при ускоряющем напряжении 15 кВ и токе зонда 30 пА, размер пучка варьировал от 3 до 5 мкм. В качестве стандартных образцов сравнения использовались как природные, так и синтетические образцы, предоставленные Smithsonian Institution (США), проверенные на гомогенность и аттестованные по химическому составу.


ГЕОЛОГИЯ МАССИВА

Ловозерский щелочной массив является крупнейшей в мире расслоенной ультращелочной интрузией, с которой связано два уникальных по запасам редкометальных месторождения лопаритовых и эвдиалитовых руд. Интрузия расположена в центральной части Кольского полуострова, с запада она ограничена озером Умбозеро, с востока – озером Ловозеро. Интрузия площадью 625 км² имеет прямоугольную форму с закругленными углами. Геологическим, минералогическим, геохимическим, петрографическим и геофизическим изучением этого массива занималось множество научных коллективов, которые предложили несколько генетических гипотез формирования этого объекта (Власов и др., 1959; Буссен, Сахаров, 1967, 1972; Семенов 1972; Пеков, 2001; Герасимовский и др.,


1966). В этой работе будет использована схема строения массива и последовательность формирования пород, предложенные коллективом ученых ГЕОХИ РАН (Герасимовский и др., 1966).

Согласно предложенной гипотезе, в строении интрузива выделяется несколько фаз. Первая интрузивная фаза представлена равномернозернистыми нефелиновыми сиенитами, нефелин-содалитовыми сиенитами, пойкилитовыми содалитовыми сиенитами, метаморфизованными нефелиновыми сиенитами (Герасимовский и др., 1966). Объем пород этой фазы у поверхности незначительный, однако он существенно возрастает с глубиной. Для этой зоны характерны преимущественно миаскитовые породы с $K_{arn} < 1.12 (K_{arn} = (Na_2O + K_2O)/Al_2O_3) (\bar{\Gamma}epacu$ мовский и др., 1966), сложенные главным образом полевым шпатом, нефелином, титанитом, магнетитом, эгирин-диопсидом, амфиболом, ильменитом, изредка встречаются апатит и биотит.

Породы второй интрузивной фазы (дифференцированный комплекс) занимают большую часть Ловозерского плутона (около 72%). Дифференцированный комплекс характеризуется ярко выраженной расслоенностью, некоторые зоны имеют ритмичную расслоенность, выраженную в чередовании трех пород – уртита, фойяита и луяврита. Общая мощность дифференцированного комплекса составляет 2400 м. Основные породообразующие минералы: нефелин, микроклин, содалит, апатит, эгирин и арфведсонит. По составу вторая интрузивная фаза более щелочная (K_{arn} = = 1.2 - 1.4) (рис. 1) и содержит высокощелочные минералы — эвдиалит, лампрофиллит, мурманит, лопарит. С дифференцированным комплексом связано суперкрупное месторождение лопаритовых руд. Нами проводилось исследование пород нижних горизонтов второй фазы. Породы этой фазы вскрыты естественными обнажениями и буровыми скважинами по периферии массива на глубину свыше 2000 м. Последними бурениями 1982—1990 гг. (скважины №№ 903, 904, 905) были вскрыты породы нижней зоны массива, которая не выходит на дневную поверхность, до глубины 2400 м, мощность зоны составляет 850 м от нижнего контакта с вмещающими породами гнейсового состава. По минеральному составу изученные нами породы нижней зоны относятся к дифференцированному комплексу и характеризуются слабой расслоенностью, выраженной в чередовании лейкократовых луявритов и меланократовых фойяитов с редким появлением ювитов (рис. 1, 2). По минеральному составу породы нижней зоны более миаскитовые. Основными породообразующими и акцессорными минералами пород нижней зоны являются – нефелин, калиевый полевой шпат, эгирин-авгит, амфибол, мозандрит, апатит, ильменит, магнетит, циркон, титанит. В интерстици-

Рис. 1. Оптическое изображение луяврита из нижней зоны дифференцированного комплекса с глубины 1747 м (николи скрещены, ув. 5, Kfs – калиевый полевой шпат, Cpx – клинопироксен, Nph – нефелин, обр. № 0811).

Рис. 2. Оптическое изображение фойяита из нижней зоны дифференцированного комплекса с глубины 1707 м (николи параллельны, ув. 5, Cpx — клинопироксен, Nph — нефелин, Amp — амфибол, обр. № 0810).

ях породообразующих минералов иногда встречаются лопарит и пирофанит, крайне редко — эвдиалит.

Третья интрузивная фаза — эвдиалитовый комплекс, составляет 18% от всего объема плуто-

на. Она сложена в основном эвдиалитовыми луявритами ($K_{\rm arn}=1.5$). Расслоенность выражена в чередовании лейко-, мезо- и меланократовых эвдиалитовых луявритов. Общая мощность комплекса составляет 450 м. Основными породооб-

Таблица 1. Содержание петрогенных компонентов (мас. %) в породах нижней зоны с различных глубин

	Глубина, м									
Компонент	Луяврит 1660 м	Луяврит 1747 м	Ювит 1832 м	Ювит 2060 м	Фойяит 2132 м	Фойяит 2183 м	Фойяит 2321 м			
	1	2	3	4	5	6	7			
SiO ₂	47.72	54.82	44.75	45.43	55.51	45.13	56.59			
TiO_2	1.96	0.7	2.72	1.85	0.58	4.34	1.07			
Al_2O_3	14.26	18.56	25.93	20.62	20.38	12.26	18.6			
Fe_2O_3	10.41	7.4	4.01	6.74	3.79	12.34	4.41			
MnO	0.51	0.18	0.13	0.38	0.2	0.67	0.22			
MgO	6.37	0.62	0.89	1.89	0.34	6.15	0.58			
CaO	3.1	1.51	2.19	2.7	0.98	5.68	0.86			
Na ₂ O	9.76	10.26	14.41	14.22	11.12	9.01	9.58			
K_2O	3.66	5.29	4.19	3.06	6.03	2.63	7			
P_2O_5	0.32	0.06	0.03	0.26	0.04	0.82	0.06			
Zn	0.0346	0.0082	0.0074	0.0306	0.0091	0.0452	0.0269			
Rb	0.014	0.02	0.014	0.008	0.022	0.006	0.021			
Sr	0.038	0.024	0.017	0.33	0.05	0.074	0.056			
Zr	0.085	0.136	0.039	0.143	0.411	0.092	0.096			
Nb	0.0192	0.0216	0.029	0.0329	0.0316	0.0253	0.0187			
Сумма	98.07	99.4	99.25	97.15	98.97	99.03	98.97			
$K_{ar\pi}$	1.44	1.22	1.09	1.30	1.22	1.44	1.25			

Примечания. 1-7 – обр. №, 0802, 0811, 0817, 0828, 0835, 0841, 0855.

разующими минералами третьей фазы являются нефелин, микроклин, эгирин, эвдиалит, лампрофиллит, мурманит и арфведсонит. Характерным ультращелочным ликвидусным минералом является хорошо оформленный идиоморфный эвдиалит, который в дифференцированном комплексе является поздним интерстициальным, и выполняет промежутки между главными породообразующими фазами. С эвдиалитовым комплексом связано месторождение эвдиалитовых руд. Порфировидные эвдиалитовые луявриты — наиболее поздние магматические породы этой зоны, образуют серию даек, секущих породы дифференцированного и эвдиалитового комплекса.

Четвертая интрузивная фаза относится к дайковой серии и сложена щелочными лампрофирами. Встречаются эти породы довольно редко, преимущественно в северо-западных и южных частях массива. По минеральному составу выделяют камптониты, фурчиты, мончикиты и нефелиновые базальты (Герасимовский и др., 1966).

Помимо выше описанных, интрузивных пород в Ловозерском массиве присутствуют вулканогенноосадочные породы, гидротермалиты и пегматиты. Ловозерская свита, представляющая вулканогенноосадочные породы, сложена оливиновыми базальтами, туфами, туффитами и квар-

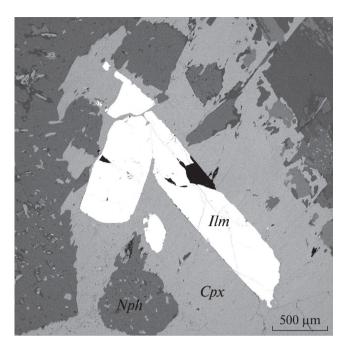
цито-песчаниками трапповой формации (Корчак, 2008). Пегматиты связаны с различными комплексами пород и образуют тела, различной формы и размеров. Протяженность пегматитовых жил достигает 200—300 м, а штокообразных тел 45 на 75 м (Пеков, 2001).

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ МАРГАНЦА В ПОРОДАХ И МИНЕРАЛАХ

Средние содержания марганца в магматических породах невысокие (десятые и сотые %), в щелочных породах среднее содержание MnO составляет 0.19—0.20 мас. % (Юдович, Кетрис, 2014). Как правило, марганец не является характерным элементом для щелочных массивов.

В результате обобщения литературных данных (Герасимовский и др., 1966; Буссен, Сахаров, 1972), и полученных нами результатов (табл. 1) было оценено среднее содержание марганца в различных породах Ловозерского массива. В породах первой фазы оно составляет 0.21 мас. % MnO, в дифференцированном комплексе 0.30 MnO мас. %, в эвдиалитовом комплексе 0.55 мас. % MnO и в порфировидных луявритах 1.04 мас. % MnO. В нижней зоне дифференцированного комплекса содержание марганца сильно варьирует: от 0.13 до 0.67 мас. % MnO (табл. 1). В вертикальном разрезе

в породах расслоенного комплекса концентрация элемента в несколько раз превышает среднее содержание в щелочных породах (Юдович, Кетрис, 2014) и увеличивается от 0.21% до 1.04 мас. % MnO в сторону кровли плутона.


В породах массива, главным образом в пегматитах, обнаружено свыше 60 минералов-концентраторов марганца (Семенов, 1963, 1972; Буссен, Сахаров, 1967, 1972; Пеков, 2001). В табл. 2 представлены основные минералы-концентраторы марганца и теоретическое содержание оксида марганца в них. В некоторых минеральных фазах этот элемент частично окисляется и находится не в двухвалентном, а в трех- и четырехвалентном состоянии. В породах интрузии минералы марганца находятся в разных минеральных ассоциациях. В нижней зоне марганец концентрируется главным образом в ильмените, выше по разрезу интрузии – в эвдиалите (Kogarko, Nielsen, 2021), лампрофиллите (Зайцев, Когарко, 2002) и, в меньшей степени, в пироксене и амфиболе.

Основным минералом, концентрирующим марганец в Ловозерском массиве, является эвдиалит, содержащий до 11 мас. % МпО. Распространенность эвдиалита значительно превышает другие минеральные виды марганца. Например, концентрация эвдиалита в третьем комплексе Ловозерского месторождения составляет 9-12 об. %, а в эвдиалититах достигает 68.7 об. %. В дифференцированном комплексе эвдиалит распространен в меньшей степени — около 3 об. % (Герасимовский и др., 1966). Минералами — концентраторами марганца магматического генезиса также являются: астрофиллит. баритолампрофиллит, лампрофиллит, нептунит, стенструпин, ловенит (табл. 2). В нижней зоне Ловозерского месторождения ильменит и пирофанит кристаллизуются близко-одновременно с магнетитом на магматической стадии. Такая минеральная ассоциация характерна для щелочных пород миаскитового ряда.

Эти минералы встречаются только в нижней зоне массива, и вверх по разрезу замещаются другими, более щелочными парагенезисами. На поздней стадии эволюции агпаитовой магматической системы наблюдается постепенный переход в гидротермальную стадию без отделения флюида в отдельную фазу (Когарко, 1977; Marks, Markl, 2017). На пегматитовом этапе происходит значительное накопление марганца и выделение многочисленных минералов-концентраторов этого элемента (табл. 2).

МИНЕРАЛЫ ГРУППЫ ИЛЬМЕНИТА

Ильменит является одним из типоморфных акцессорных минералов нижней зоны Ловозерского месторождения. Морфология ильменита различна: от мелких округлых зерен, до правиль-

Рис. 3. Изображение в отраженных электронах сростков кристаллов ильменита в породе нижней зоны, № обр. 0810 и глубины 1707 м (Ilm — ильменит, Cpx — клинопироксен, Nph — нефелин).

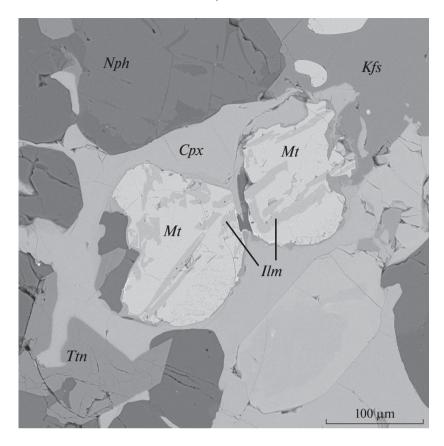
но ограненных кристаллов, уплощенной ромбоэдрической формы. Размер выделений варьирует от нескольких микрон до 2 мм (рис. 3). Для минералов ряда ильменит-пирофанит из нижней зоны Ловозерского месторождения характерны широкие вариации составов (табл. 3, 4): MnO $(3.89-42.11\ \text{Mac.}\%)$, FeO $(5.21-40.07\ \text{Mac.}\%)$, Fe₂O₃ $(0-8.39\ \text{Mac.}\%)$, TiO₂ $(46.94-54.78\ \text{Mac.}\%)$, V₂O₃ $(0-0.70\ \text{Mac.}\%)$, Nb₂O₅ $(0-1.44\ \text{Mac.}\%)$, Al₂O₃ $(0-0.40\ \text{Mac.}\%)$, MgO $(0-0.36\ \text{Mac.}\%)$. По составу можно выделить две группы ильменитов. В ильмените первой группы трехвалентное железо присутствует в значительных количествах, в минералах ряда ильменит-пирофанит второй группы трехвалентного железа практически нет.

Разновидности ильменита, в которых присутствует большое количество трехвалентного железа (Fe_2O_3 1.17–7.38%), как правило, образуют срастания с магнетитом (табл. 3, рис. 4). Ильменит можно встретить в виде ламелей в центральных частях зерен магнетита или в виде небольших вкрапленников в их краевых частях (рис. 4, 5). Fe³⁺-обогащенный ильменит содержит различное количество элементов примесей (Ca, Mg, Al, Si, Nb, V) (табл. 3). Основные миналы ильменитгематитов: FeTiO₃ (54–88%), MnTiO₃ (7–42%), Fe_2O_3 (0.48–6.83%), $CaTiO_3$ (0.03–1%), $MgTiO_3$ (0.2-1.25%), V_2O_3 (0.04-0.29%), Nb_2O_5 (0.05-0.26%). Отношение Ti/(Fe + Mn + Ti) варьирует от 0.46-0.50, что связано с появлением трехвалентного железа и ванадия в этих минералах.

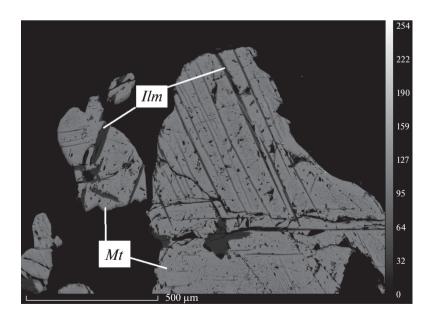
Таблица 2. Теоретическое содержание MnO (мас. %) в минералах-концентраторах марганца из Ловозерского массива

массива	1	
Название минерала	Формула	MnO
Аллуйавит	$Na_{19} (Ca,Mn)_6 (Ti,Nb)_3 Si_{26} O_{74} C \cdot 2H_2 O$	3.6
Астрофиллит	$K_2Na(Fe,Mn)_7Ti_2Si_8O_{24}(O,OH)_7$	5.89
Баритолампрофиллит	$(Na,Ca)_2(Ba,Sr,K)_2(Ti,Mn,Fe)_3(SiO_4)_4(O,OH,F)_2$	4.2
Герасимовскит	$(Mn,Ca)(Nb,Ti)_5O_{12}\cdot nH_2O$	7.85
Голландит	$Ba(Mn^{4+},Mn^{2+})_8O_{16}$	79
Захаровит	$Na_4Mn_5^{2+}Si_{10}O_{24}(OH)_6\cdot 6H_2O$	25.63
Ильменит	(Fe,Mn)TiO ₃	24
Интерсилит	Na ₆ MnTi[Si ₁₀ O ₂₄ (OH)] (OH) ₃ ·4H ₂ O	6.23
Йофортьерит	$Mn_5Si_8O_{20}(OH)_2 \cdot 8-9 H_2O$	15.12
Казаковит	Na ₆ MnTi(Si ₆ O ₁₈)	4.40
Криптомелан	$K(Mn^{4+},Mn^{2+})_8O_{16}$	5.15
Кузьменкоит	$K_2(Mn,Fe)(Ti,Nb)_4[Si_40_{12}]_2(OH)_4 \cdot 5H_2O$	1.06
Куплетскит	$(K,Na)_3(Mn,Fe)_7(Ti,Nb)_2Si_8O_{24}(O,OH)_7$	27.65
Лабунцовит	$Na_4K_4(L,Ba,K)_4(Mn,Fe,),[Si_4O_{12}]_4(O,OH)_8\cdot8-12H_2O$	2.76
Лампрофиллит	Na ₂ (Sr,Ba) ₂ (Ti,Fe,Mn) ₃ (SiO ₄) ₄ (OH,F) ₂	3.46
Литвинскит	$Na_2(Na,Mn)Zr[Si_6O_{12}(OH,O)_6]$	1.61
Литиофорит	$(AI,Li)Mn^{4+}O_2(OH)_2$	67.92
Ловенит	$(Na,Ca)_8(Mn,Fe)_4(Zr,Ti)_4(Si_2O_7)_4(O,OH,F)_8$	6.00
Манаксит	KNaMnSi ₄ O ₁₀	17.2
Манганбелянкинит	(Mn,Ca)(Ti,Nb) ₅ O ₁₂ ·nH ₂ O	14.03
Манганонептунит	KNa ₂ Li(Mn,Fe) ₂ Ti ₂ Si ₈ O ₂₄	11.4
Манганонауяказит	$Na_6(Mn, Fe^{2+})Al_2Si_8O_{24}$	3.94
Манганонордит-(Се)	Na ₃ SrCeMnSi ₆ O ₁₇	3.14
Манганотихит	$Na_6Mn_2(SO_4)(CO_3)$	15.00
Неотокит	$(Mn,Fe)SiO_3 \cdot H_2O$	14.53
Нептунит	KNa ₂ Li(Fe,Mn) ₂ Ti ₂ Si ₈ O ₂₄	3.25
Нормандит	NaCa(Mn,Fe)(Ti,Nb,Zr)Si ₂ O ₇ OF	10.34
Пиролюзит	MnO_2	95
Пирофанит	MnTiO ₃	42.98
Полифит	$N a_{17}Ca_3Mg (Ti,Mn)_4[Si_2O_7]_2(PO_4)_6O_2F_6$	5.6
Раит	Na ₃ Mn ₃ Ti _{0.25(} Si ₂ O ₅₎₄ (OH) ₂ ·10H ₂ O	12.50
Рансьеит	$(Ca, Mn^{2+})Mn_4^{4+}O_9\cdot 3H_2O$	61.70
Арфведсонит	NaNa ₂ (Mg,Fe) ₄ Fe(OH) ₂ (Si ₄ O ₁₁)	1.55
Родохрозит	MnCO ₃	39.34
Сидоренкит	Na ₃ Mn(PO ₄)(CO ₃)	22.40
Стенструпин-(Се)	$(Ce)Na_{14}(REE,Th)_6(Mn,Fe,Ti)_4(OH)_2(PO_4)_7(Si_6O_{18})_2 \cdot nH_2O$	7.5
Таканелит	$(Mn^{2+}, Ca)Mn^{4+}O_{0}$ $nH_{2}O$	
		77.41
Тисиналит	$Na_3(Mn,Ca,Fe)TiSi_6(O,OH)_{18}\cdot 2H_2O$	4.35
Тодорокит	$(Mn^{2+},Ca)Mn_3^{4+}O_7\cdot nH_2O$	75
Торостенструпин	$Na_{0-5}Ca_{1-3}(Th,REE)_{6}(Mn,Fe,Al,Ti)_{4-5}[Si_{6}O_{18}]_{2}[(Si,P)O_{4}]_{6}(OH,F,O)_{0-2}\cdot nH_{2}O$	8.7
Умбозерит	Na ₃ Sr ₄ Th(Mn,Fe)Si ₈ O ₂₄ OH	2.2
Ферберит	(Fe,Mn)WO ₄	5.27
Цирсиналит	Na ₆ (Ca,Mn,Fe)ZrSi ₆ O ₁₈	4.15
Шкатулкалит	$Na_{10}MnTi_3Nb_3(Si_2O_7)_6(OH)_2F\cdot 12H_2O$	1.70
Эвдиалит	$Na_{15}Ca_6(Fe,Mn)_3Zr_3Si(Si_{25}O_{23})(O,OH,H_2O)_3(OH,Cl)_2)$	2.33

Таблица 3. Представительный химический состав марганцевых разновидностей ильменита с глубины 1821 м, обр. № 0816


Компонент	Номер анализа									
KOMHOHEHT	1	2	3	4	5	6	7			
CaO	0.02	_	0.02	0.03	0.02	0.02	0.06			
MgO	0.08	0.07	0.08	0.07	0.06	0.06	0.11			
FeO	23.94	24.77	24.92	24.32	24.40	24.24	23.85			
MnO	22.76	22.57	22.47	22.31	22.22	22.07	21.8			
Al_2O_3	0.01	0.02	0.04	0.02	0.02	0.01	0.05			
Fe_2O_3	1.50	_	0.16	0.16	_	_	_			
V_2O_3	0.29	0.49	0.39	0.46	_	0.49	0.47			
SiO ₂	0.05	0.01	0.03	0.07	_	0.03	0.24			
TiO_2	52.3	53.4	53.18	52.3	53.34	52.29	51.67			
Nb_2O_5	0.26	0.21	0.32	0.4	0.52	0.17	0.35			
Сумма	101.21	101.54	101.61	100.14	100.58	99.38	98.60			
ı		Числ	і 10 атомов в фо	і рмуле на 2 кат	иона Гиона	I	ı			
Ca	0.00	_	0.00	0.00	0.00	0.00	0.00			
Mg	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Fe ²⁺	0.50	0.51	0.52	0.51	0.51	0.51	0.51			
Mn	0.48	0.47	0.47	0.48	0.47	0.47	0.47			
Al	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
V	0.03	0.00	0.00	0.00	_	0.00	0.00			
Fe ³⁺	0.01	0.01	0.01	0.01	_	_	_			
Si	0.00	0.00	0.00	0.00	_	0.00	0.01			
Ti	0.98	1.00	0.99	0.99	1.01	1.00	0.99			
Nb	0.00	0.00	0.00	0.00	0.01	0.00	0.00			
Миналы %										
CaTiO ₃	0.05	_	0.05	0.08	0.05	0.05	0.17			
MgTiO ₃	0.29	0.26	0.30	0.26	0.23	0.23	0.42			
FeTiO ₃	51.26	51.71	52.01	51.55	51.80	51.72	51.44			
MnTiO ₃	46.72	47.72	47.23	47.62	47.77	47.70	47.62			
Fe ₂ O ₃	1.46	_	0.13	0.15	_	_	_			
V_2O_3	0.14	0.25	0.19	0.23	_	0.25	0.24			
Nb ₂ O ₅	0.07	0.06	0.09	0.11	0.15	0.05	0.10			

Примечания. Здесь и в табл. 5 количество FeO и Fe_2O_3 рассчитано по стехиометрии, прочерк ниже предела обнаружения.


Марганцевые разновидности ильменита наиболее распространены среди минералов группы ильменита в породах нижней зоны массива. В отличие от обогащенного Fe³⁺-ильменита, такой ильменит может образовывать крупные зерна размером до нескольких миллиметров (рис. 3). Также интересно, что магнетит не ассоциирует с манганоильменитом, а только с обогащенным Fe³⁺ ильменитом. В верхней части нижней зоны ильменит образует ранние идиоморфные выделения, в это время, по-видимому, щелочная магма была насы-

щена в отношении ильменита и этот минерал является ликвидусной фазой (рис. 3). Наблюдаются горизонты, обогащенные ильменитом. В ильменитовых сиенитах первой фазы этот минерал является породообразующим: до 5 об. % (Буссен, Сахаров, 1972). Химические составы обогащенного Мп ильменита приведены в табл. 3.

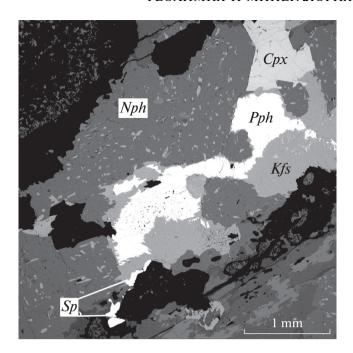
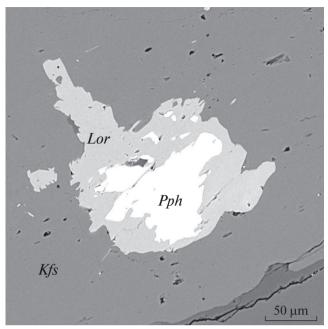

Пирофанит встречается в породах нижней зоны на нескольких горизонтах. Он присутствует в виде зерен и интерстициальных выделений различного размера — от нескольких микрон до 1—2 мм.

Рис. 4. Изображение в отраженных электронах неоднородного строения кристаллов магнетита с ильменитом, образец с горизонта 0828 с глубины 2060 м (Mt — магнетит, Ilm — ильменит, Cpx — клинопироксен, Ttn — титанит, Kfs — калиевый полевой шпат, Nph — нефелин).

Рис. 5. Изображение в отраженных электронах фрагмента кристалла магнетита со структурами распада твердого раствора магнетит-ильменит, образец с горизонта 0825, глубина 1962 м (Mt — магнетит, Ilm — ильменит).


Рис. 6. Изображение в отраженных электронах интерстициального выделения пирофанита с горизонта 0802 с глубины 1660 м (*Kfs* — калиевый полевой шпат, *Nph* — нефелин, *Pph* — пирофанит, *Sp* — сфалерит).

Крупные зерна пирофанита по составу более железистые (MnO - 25 мас. %) (рис. 6, 7, табл. 3), описаны на горизонте 0802 глубина 1660 м, в более мелких выделениях (рис. 7), марганец преобладает над железом вплоть до очень высоких содержаний (MnO - 42.11 мас. %, табл. 4).

Пирофанит такого состава обнаружен на горизонте 0820 на глубине 1915 м. В пирофаните установлена зональность химического состава: краевые зоны выделений обогащены марганцем, центральные — железом. По форме выделения пирофанит является поздней ксеноморфной фазой. Этот минерал кристаллизовался на поздних стадиях дифференциации щелочной магмы в результате значительного накопления марганца по сравнению с железом. Более поздним минералом по отношению к пирофаниту является лоренценит, которой его замещает (рис. 7).

ОЦЕНКА ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ УСЛОВИЙ ОБРАЗОВАНИЯ ИЛЬМЕНИТ-МАГНЕТИТОВОЙ АССОЦИАЦИИ

Для определения окислительно-восстановительных условий кристаллизации ильменит-магнетитовых ассоциаций был изучен состав сосуществующего магнетита. Для этого минерала характерна идиоморфная форма зерен и размеры от 100 мкм до 1—2 мм и он, по-видимому, формиро-

Рис. 7. Изображение в отраженных электронах зерна пирофанита (Pph) (MnTiO₃) с содержанием MnO 42.11%, замещаемого лоренценитом (Lor) (Na₂Ti₂(Si₂O₆)O₃) из пород нижней зоны Ловозерского месторождения с глубины 1915 м, обр. № 0820.

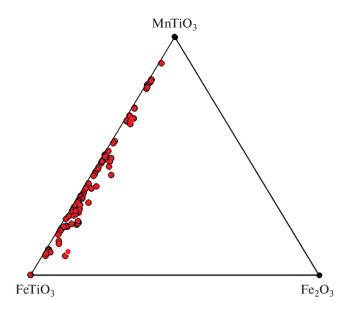
Таблица 4. Представительный химический состав магнетита с глубины 1821 м, обр. № 0816

Компо-	Номер анализа								
нент	1	2	3	4	5	6			
SiO ₂	0.05	0.07	0.20	0.03	0.03	0.04			
TiO_2	2.13	6.21	3.37	9.79	11.88	0.74			
Al_2O_3	0.10	0.06	0.11	0.09	0.08	0.08			
MgO	_	0.03 0.03		0.03 0.03		0.01			
CaO	0.08	0.05	0.08	0.02	0.04	0.04			
MnO	0.92	2.44	1.37	4.86	4.43	0.30			
Nb_2O_5	0.01	_	_	_	_	_			
V_2O_3	_	0.02	_	_	_	_			
FeO	87.75	82.61	84.47	77.38	75.34	91.37			
Сумма 91.28		91.65	90.53	92.74	91.91	92.75			
Число атомов в формуле на 3 катиона									
Si	0.002	0.003	0.008	0.001	0.001	0.001			
Ti	0.063	0.184	0.102	0.289	0.353	0.022			
Al	0.002	0.001	0.003	0.002	0.002	0.002			
Mg	_	0.002	0.001	0.002	0.001	0.001			
Ca	0.003	0.002	0.003	0.001	0.002	0.002			
MnO	0.031	0.082	0.047	0.162	0.148	0.010			
Fe ³⁺	1.87	1.63	1.78	1.42	1.29	1.95			
$\mathrm{Fe^{2^+}}$	1.03	1.10	1.06	1.13	1.20	1.01			

Таблица 5. Представительные химические анализы пирофанита с глубины 1915 м

	Номер анализа							
Компонент	14	15	16	17	18	19		
CaO	_	0.02	_	_	0.02	0.01		
MgO	0.02	0.04	0.02	0.03	0.01	0.02		
FeO	5.21	8.84	8.13	8.09	8.00	9.35		
MnO	42.11	38.72	38.19	38.18	38.13	37.62		
Al_2O_3	0.02	0.04	0.03	0.03	0.02	_		
Fe_2O_3	_	_	_	_	_	0.64		
V_2O_3	_	_	0.54	0.31	0.55	0.52		
SiO_2	0.04	0.06	0.08	0.02	0.06	0.02		
TiO_2	53.36	53.98	52.67	52.52	52.66	52.74		
Nb_2O_5	0.40	0.32	0.31	0.33	0.33	0.46		
Сумма	101.16	102.02	99.97	99.51	99.78	101.39		
Числ	і о атомо	ь в фор	і муле н	і на 2 кат	гиона			
Ca	_	0.00	_	_	0.00	0.00		
Mg	0.00	0.00	0.00	0.00	0.00	0.00		
Fe^{2+}	0.11	0.18	0.17	0.17	0.17	0.19		
Mn	0.89	0.81	0.81	0.82	0.81	0.79		
Al	0.00	0.00	0.00	0.00	0.00	0.00		
V	_	_	0.00	0.00	0.00	0.01		
Fe ³⁺	_	_	0.01	0.01	0.01	0.01		
Si	0.00	0.00	0.00	0.00	0.00	0.00		
Ti	1.00	1.00	1.00	1.00	1.00	0.99		
Nb	0.00	0.00	0.00	0.00	0.00	0.01		
Миналы %								
CaTiO ₃	_	0.01	_	_	0.05	0.00		
$MgTiO_3$	0.07	0.15	0.08	0.11	0.04	0.07		
FeTiO ₃	10.87	18.34	17.29	17.24	17.08	20.44		
$MnTiO_3$	88.95	81.37	82.27	82.40	82.45	78.43		
Fe_2O_3	_	0.00	0.00	_	_	0.65		
V_2O_3	_	0.00	0.28	0.16	0.28	0.26		
Nb_2O_5	0.11	0.09	0.09	0.10	0.10	0.13		

вался одним из первых и являлся ликвидусной фазой пород нижней зоны. Для магнетита, как и для ильменита, характерны широкие вариации химического состава (табл. 4): MnO (0.30–4.86%), FeO (30.66–42.42%), Fe $_2$ O $_3$ (35.16–66.90%), TiO $_2$ (0.74–16.39%), V $_2$ O $_3$ (0.25–0.68%), Nb $_2$ O $_5$ (0.01–0.17%). Используя парагенезис ильменита и магнетита, мы оценили окислительно-восстановительные условия этого равновесия с помощью программы ILMAT (Lepage, 2003). Полученные значения фугитивности кислорода варьируют от QFM + 0.68 до QFM + 1.17. Проведенные расчеты


показали более окислительные условия формирования нижней зоны Ловозерского месторождения — буферная смесь Ni—NiO (Carmichael, Nicolls, 1967), по сравнению с более ранними оценками окислительных условий средней и верхней зон массива — буферная система QFM (Когарко, 1977). Рассчитанные окислительные параметры для нижней зоны соответствуют интервалу температур 500—550°C.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В результате детальных петролого-минералогических исследований впервые обнаружена миаскитовая марганцовая минеральная ассоциация в нижней зоне Ловозерского месторождения, представленная ильменитом, магнетитом и пирофанитом. На некоторых горизонтах верхней части нижней зоны ильменит образует скопления идиоморфных зерен (рис. 3), что свидетельствует о том, что этот минерал был ранней ликвидусной фазой и щелочной расплав был насыщен в отношении этой минеральной фазы.

Выше по разрезу ильменит и магнетит сменяются более щелочными ассоциациями минералов, появляются лоренценит, мозандрит. Рост щелочности и агпаитности магматического расплава в результате кристаллизации снизу вверх (Kogarko, Nielsen, 2021) приводит к полному замещению минералов группы ильменита. На одном из горизонтов происходит замещение позднего пирофанита, который реагирует с щелочным остаточным расплавом и в результате реакции образуется более щелочной агпаитовый минерал лоренценит (рис. 7).

Нанесение полученных химических составов ильменита и пирофанита на тройную диаграмму $FeTiO_3$ -MnTiO₃- Fe_2O_3 (рис. 8) показывает практически полный ряд твердых растворов в системе MnTiO₃—FeTiO₃, с небольшими колебаниями содержания Fe₂O₃. При этом содержания миналов MgTiO₃ и ZnTiO₃ крайне малы по сравнению с минералами группы ильменита для других типов пород (табл. 3, 4). Наличие непрерывного твердого раствора в системе ильменит-пирофанит (3.9— 42.1% MnO) свидетельствует об очень длительной дифференциации ультрашелочной Ловозерской магмы. Для ильменита из кимберлитов характерно обогащение магнием (Гаранин и др., 1984; Mitchell, 1986), для некоторых других щелочных типов пород характерен твердый раствор Мп-TiO₃–ZnTiO₃–FeTiO₃ (Mitchell, Liferovich, 2002). Ловозерские ильменит-пирофаниты обладают характерной специфической особенностью: в их составе практически нет Zn, хотя в породах Ловозерского месторождения этот элемент присутствует в заметных количествах, среднее содержание в породах массива Zn — 2000 ppm (Герасимов-

Рис. 8. Составы минералов группы ильменита на тройной диаграмме $FeTiO_3$ — $MnTiO_3$ — Fe_2O_3 .

ский и др., 1966). Это, по-видимому, связано с высокой активностью серы в породах Ловозерского месторождения, среднее содержание в породах массива серы (S-1020 ppm) (Герасимовский и др., 1966), которая образует сульфиды со многими халькофильными металлами, в том числе с цинком. По мнению Пекова (Пеков, 2001) наиболее распространенный сульфид в Ловозерском массиве сфалерит. В нижней зоне массива зерна пирофанита и ильменита часто ассоциируют с кристаллами сфалерита (рис. 6), что подтверждает направленность этого равновесия в сторону ассоциации серы с цинком.

Рассчитанные окислительные параметры по парагенезису ильменита с магнетитом для нижней зоны соответствуют интервалу температур 500-550°C. Такие низкие температуры солидуса, характерны для ультращелочных систем (Шубин и др., 2021). В более ранних работах (Когарко, 1977) окислительно-восстановительные условия были оценены экспериментально для ассоциации минералов эгирин-энигматит, которая характерна для верхней части Ловозерского массива, и значение летучести кислорода было близко к буферу QFM. При более высокой фугитивности кислорода (Ni-NiO) энигматит становится неустойчивым и образуются ильменит и эгирин (Kogarko, 1987). Для нижней зоны характерна минеральная ассоциация ильменит-пироксен, поэтому полученные расчетные данные полностью соответствуют экспериментальным результатам. Для гавайских щелочных базальтов, содержащих ассоциацию ильменит-пироксен-амфибол, получена область стабильности при температурах 600-1000°C, этой ассоциации при фугитивности

кислорода, отвечающей буферу (Ni–NiO) (Carmichael, Nicolls, 1967).

Для выделений ильменита и пирофанита характерна определенная зональность. Ядра зерен в большей степени обогащены двух- и трехвалентным железом, кальцием, ниобием, в то время как краевые зоны содержат больше марганца, магния и титана. Возможные схемы изоморфных замещений при переходе от центральных к краевым частям следующие: $Fe^{2+} \leftrightarrow Mn^{2+}$; $Fe^{3+} + Nb^{5+} \leftrightarrow$ ↔ 2Ti⁴⁺. Накопление марганца в конечных продуктах дифференциации свидетельствует о том. что комбинированный коэффициент распределения Мп ниже 1, аналогичная ситуация наблюдалась для титана и ниобия, которые накапливаются в пироксенах в вертикальном разрезе Ловозерского массива (Kogarko et al., 2006). Исходный расплав был обогащен титаном и ниобием и после кристаллизации около 30% магматического осадка Ловозерской интрузии, лопарит становится ликвидусной фазой и образует ранние кумулятивные рудные скопления.

В близком по составу ультращелочном комплексе Илимаусак (Гренландия) среднее содержание марганца несколько ниже (0.25% MnO) по сравнению с Ловозерским (0.38% MnO), основными концентраторами марганца являются эгирин (до 0.86% MnO), арфведсонит (до 0.86% MnO) (Герасимовский, 1969) и эвдиалит (около 1% MnO) (Borst et al., 2018).

ЗАКЛЮЧЕНИЕ

- 1) Установлены широкие вариации содержания марганца в породах Ловозерского массива МпО— от 0.21 до 1.04%, при среднем содержании 0.38% МпО, в то время как кларковые содержания для щелочных массивов мира составляют 0.19—0.20% МпО (Юдович, Кетрис, 2014), что свидетельствует о марганцевой специализации пород Ловозерского месторождения.
- 2) Обнаружена миаскитовая ассоциация минералов в нижней зоне месторождения: (нефелин, калиевый полевой шпат, эгирин-авгит, амфибол, мозандрит, апатит, ильменит, магнетит, циркон, титанит, пирофанит), которая выше по разрезу сменяется более щелочными парагенезисами.
- 3) Рост щелочности, агпаитности (Kogarko, Nielsen, 2021) и содержания марганца (от 0.21 до 1.04% MnO) в вертикальном разрезе Ловозерского массива подтверждают процесс кристаллизации интрузии снизу вверх.
- 4) Оценены окислительно-восстановительные условия формирования нижней зоны Ловозерского месторождения, которые близки к буферной системе Ni-NiO (от OFM+0.68 до OFM+1.17).
- 5) Установлены широкие изоморфные замещения в системе ильменит-пирофанит с образовани-

ем непрерывного твердого раствора $MnTiO_3$ — $FeTiO_3$: вариации составляют 3.9-42.1% MnO, что свидетельствует о длительной кристаллизации Ловозерской ультращелочной магмы. Такое высокое содержание марганца (MnO 42.1%) в пирофаните для ранних щелочных интрузивных пород установлено впервые.

Работа поддержана Министерством науки и высшего образования Российской Федерации (грант № 13.1902.21.008, соглашение 075-15-2020-802).

СПИСОК ЛИТЕРАТУРЫ

Буссен И.В., Сахаров А.С. (1967) *Геология Ловозерских тундр.* Л.: Наука, 125 с.

Буссен И.В., Сахаров А.С. (1972) Петрология Ловозерского щелочного массива. Л.: Наука, 296 с.

Власов К.А., Кузьменко М.В., Еськова Е.М. (1959) Ловозерский щелочной массив. М.: Наука, 623 с.

Гаранин В.К., Кудрявцева Г.П., Сошкина Л.Т. (1984) *Ильменит из кимберлитов*. М.: Изд-во МГУ, 240 с.

Герасимовский В.И. (1969) *Геохимия Илимаусакского щелочного массива (Юго-Западная Гренландия)*. М.: Наука, 174 с.

Герасимовский В.И., Волков В.П., Когарко Л.Н., Поляков А.И., Сапрыкина Т.В., Балашов Ю.А. (1966) *Геохимия Ловозерского щелочного массива*. М.: Наука, 395 с. Герасимовский В.И. (1940) Мангано-ильменит из Ловозерского щелочного массива. *Тр. Ин-та геол. наук АН СССР, сер. мин. — геохим.* **31**(6), 17-21.

Зайцев В.А., Когарко Л.Н. (2002) Составы минералов группы лампрофиллита из щелочных массивов мира. *Геохимия*. (4), 355-364.

Zaitsev V.A., Kogarko L.N. (2002) Compositions of minerals of the lamprophyllite group from alkaline massifs worldwide. *Geochem. Int.* **40**(4), 313-322.

Когарко Л.Н. (1977) *Проблемы генезиса агпаитовых магм.* М.: Наука, 294 с.

Корчак Ю.А. (2008) Минералогия пород Ловозерской свиты и продуктов их контактово-метасоматического преобразования в щелочных массивах. Автореферат дис. ... канд. геол.мин. наук. Санкт-Петербург: Санкт-Петербургский государственный университет, 19 с.

Пеков И.В. (2001) Ловозерский массив: история исследования, пегматиты, минералы. Творческое объединение "Земля" Ассоциации Экост, 464 с.

Семенов Е.И. (1972) Минералогия Ловозерского массива. М.: Наука, 307 с.

Семенов Е.И. (1969) Минералогия щелочного массива Илимаусак (Южная Гренландия). М.: Наука, 165 с.

Семенов Е.И. (1963) Марганецсодержащие минералыпирофанит, франклинит и вольфрамит в пегматитах Ловозерского массива. *Тр. ИМГРЭ*. (17), 176-179.

Шубин И.И., Филина М.И., Когарко Л.Н. (2021) Эволюция пироксенов Ловозерского редкометального месторождения (нижняя зона). *Геохимия*. **66**(1), 73-80.

Shubin I.I., Filina M.I., Kogarko L.N. (2021) Evolution of Pyroxenes of the Lovozero Rare Metal Deposit (Lower Zone). *Geochem. Intl.* **59**(1), 92-98.

Юдович Я.Э., Кетрис М.П. (2014) Геохимия марганца. Сыктывкар: ИГ Коми НЦ Уро РАН, 540 с.

Borst A.M., Friis H., Nielsen T.F.D., Waight T.D. (2018) Bulk and Mush Melt Evolution in Agpaitic Intrusions: Insights from Compositional Zoning in Eudialyte. Ilı'maussaq Complex, South Greenland. *J. Petrology*. 1-23.

Carmichael I.S.E., Nicholls J. (1967) Iron-titanium oxides and oxygen fugacities in volcanic rocks. *J. Geophysical Research*. (72), 4665-4687.

Kogarko L.N., Nielsen T.F.D. (2021) Compositional Variation of Eudialyte-Group Minerals from the Lovozero and Ilímaussaq Complexes and on the Origin of Peralkaline Systems. *Minerals*. **11**(6), 548.

Kogarko L.N. (1987) Alkaline rocks of the eastern part of the Baltic Shield (Kola Peninsula) // In: Fitton J.G., & Upton, B.G.J. (eds.) *Alkaline Igneous Rocks, Geol. Society special Publication.* (30), 531-544.

Kogarko L.N., Williams C.T., Woolley A.R. (2006). Compositional evolution and cryptic variation in pyroxenes of the peralkaline Lovozero intrusion, Kola Peninsula, Russia. *Mineral. Mag.* **70**(4), 347-359.

Lepage L.D. (2003) ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. *Computers & Geosciences*. (29), 673-678.

Marks M.A.W., Markl G. (2017) A global review on agpaitic rocks. *Earth Sci. Rev.* (173), 229-258.

Mitchell R.H., Liferovich R.P. (2004) Ecandrevsite-zician pyrophanite from lujavrite. Pilansberg alkaline complex. South Africa. *The Canadian Mineralogist.* (4), 1169-1178.

Mitchell R.H. (1986) *Kimberlites: Mineralogy, Geochemistry and Petrology*. Plenum Press. New York. N.Y.

Pérez-Cruz M.A., Elizalde-González M. P., Escudero R., Bernès S., Silva-González R., Reyes-Ortega Y. (2015) At last! The single-crystal X-ray structure of a naturally occurring sample of the ilmenite-type oxide FeCrO₃. *Acta Crystallogr. B*71, 555-561.

Warr L.N. (2021) IMA—CNMNC approved mineral symbols. *Mineralogical Magazine*, **85**(3), 291-320.