ИЗОТОПНЫЙ СОСТАВ АЗОТА И УГЛЕРОДА В ГАЗАХ УГЛЕКИСЛЫХ ВОД СЕВЕРНОГО КАВКАЗА

© 2020 г. В. Ю. Лаврушин^{*a*, *}, А. Айдаркожина^{*a*}, Б. Г. Покровский^{*a*}, Э. М. Прасолов^{*b*, **}, Е. Г. Потапов^{*c*, ***}, А. В. Ермаков^{*a*}

^аГеологический институт РАН, Пыжевский пер. 7, стр. 1, Москва, 119017 Россия

^bЦентр изотопных исследований Всероссийский научно-исследовательский геологический институт

им. А.П. Карпинского, Средний пр., 74, Санкт-Петербург, 199106 Россия

^сПятигорский государственный научно-исследовательский институт курортологии,

пр. Кирова, 30, г. Пятигорск, Ставропольский край, 357501 Россия

*e-mail: v_lavrushin@ginras.ru **e-mail: edward_prasolov@vsegei.ru ***e-mail: gidholod@mail.ru Поступила в редакцию 19.03.2020 г. После доработки 02.05.2020 г.

Принята к публикации 02.05.2020 г.

Впервые проведено исследование изотопного состава азота в газах минеральных вод Северного Кавказа. Также для этих газов были получены новые данные об изотопном составе углерода в CO₂ и CH₄. Большая часть проб характеризует углекислые источники Эльбрусской и Казбекской вулканических областей Большого Кавказа. Показано, что δ^{15} N меняется в диапазоне от -3.9 дo + 5.6% и синхронно возрастает с увеличением концентрации N₂ и метана в составе газов. Это указывает на генетическую связь неатмогенного азота с процессами осадочного метаногенеза. Значения δ^{13} C(CO₂) в углекислых газах Приэльбрусья меняются от -11.8 до - 3.0%. Отмечена тенденция роста средних значений δ^{13} C(CO₂) к северу от вулкана Эльбрус. Это может быть как следствием увеличения в составе газов роли метаморфогенной CO₂, образующейся при термическом разложении осадочных карбонатов, так и быть результатом низкотемпературного взаимодействия углекислых источников, ассоциирующихся с вулкано Эльбрус, часто встречается метан в концентрациях до 12.4%. Он характеризуется высокими значения δ^{13} C в CH₄ вокруг в. Эльбрус, а также присутствие в таких газах азота с положительными значения δ^{15} N позволяет сделать вывод о коровом генезисе такого метана. Роль магматической активности в данном случае сводится к формированию температурной магматогенной аномалии, в области влияний которой активизируются процессы изотопного обмена по углероду в системе "CO₂–CH₄".

Ключевые слова: Северный Кавказ, метан, углекислота, азот, газы минеральных вод, изотопный состав азота и углерода

DOI: 10.31857/S0016752520110084

введение

Давно замечено (Овчинников, 1948; Масуренков, 1961), что в пределах Большого Кавказа области распространения углекислых вод и область молодой плиоцен-четвертичной магматической активности пространственно совпадают между собой. К последней на северном склоне Большого Кавказа относятся вулканы Эльбрус и Казбек, а также лакколиты района Кавказских Минеральных Вод (далее КМВ), интрузии Тырныауза, Чегемская кальдера и др. (Милановский, Короновский, 1973; Короновский, Демина, 2007). Эта связь также подчеркивается результатами определения изотопного состава гелия в газах минеральных вод. Во всех углекислых газопроявлениях Большого Кавказа фиксируется примесь мантийного гелия (${}^{3}\text{He}/{}^{4}\text{He}_{MORB} = 1200 \times 10^{-8}$) (Мамырин, Толстихин, 1981). Значения ${}^{3}\text{He}/{}^{4}\text{He}$ в них меняется от ~40 до 870 (×10⁻⁸)), достигая максимальных величин в районе вулканов Эльбрус и Казбек (Матвеева и др., 1978; Polyak et al., 2000; Polyak et al., 2009; Поляк и др., 2011; Лаврушин, 2012). Проведенные ранее исследования изотопного состава углерода в CO₂ углекислых источников Северного Кавказа установили ее магматогенно-метаморфогенную природу (Кравцов и др., 1974; Зорькин и др., 1981; Потапов и др., 1998; Поляков, Соколовский, 2005; Лаврушин и др., 2005; Лаврушин, 2012).

Вместе с тем, уже давно известно (Щербак, 1965; Лаврушин, 2012), что в газах некоторых углекислых источников. локализованных на северном склоне Главного хребта Большого Кавказа в непосредственной близости от вулкана Эльбрус, встречаются высокие концентрации CH₄ (до 12.7%¹) (табл. 1). Выходы этих источников находятся в поле развития пород палеозойского возраста, представленных в основном гранитами, гнейсами и кристаллическими сланцами. Таким образом, здесь отсутствует видимая взаимосвязь богатых метаном углекислых газов с комплексами осалочных пород, содержащих органические остатки. Изотопные характеристики СН₄ в газах Приэльбрусья ранее были исследованы фрагментарно (Костенко, Лаврушин, 2005). В источнике Шхельда был обнаружен изотопно-тяжелый метан (δ^{13} C до -17.2%), концентрация которого в составе газовой фазы составляла 1.1%. Такой метан может быть связан с проявлениями вулканической активности. Однако для уточнения этого вывода необходимо было провести дополнительные исследования, охватывающие большее число источников, локализованных на северном склоне Большого Кавказа.

Наряду с метаном в углекислых газах всегда присутствует азот. Традиционно считается (Барабанов, Дислер, 1968), что этот газ в термоминеральных водах имеет преимущественно атмогенный генезис. Однако в газах Северного Кавказа изотопные характеристики последнего, которые позволили бы судить о генезисе азота, до сих пор не были исследованы.

Таким образом, целью данной работы было выяснение роли коровых и мантийных источников вещества в составе метана и азота минеральных вод Приэльбрусья и КМВ.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В 2016 и 2018 г. было проведено опробование 65 газопроявлений Северного Кавказа (рис. 1 и табл. 1). Из них 29 характеризовали углекислые минеральные источники Приэльбрусья (Эльбрусская вулканическая область), 26 – скважины КМВ и 10 – минеральные источники Северной Осетии (Казбекская вулканическая область). Из этих источников методом вытеснения были отобраны пробы свободно выделяющихся газов. Отбор производился в стеклянные пузырьки объемом 50 мл, которые закрывались резиновой пробкой. При этом между пробкой и газовой фазой оставлялся небольшой водяной затвор.

Общий состав газа определялся в ГИН РАН (г. Москва) на газовых хроматографах "КРИ-СТАЛЛ 2000 м" и "КРИСТАЛЛ 5000". В первом в качестве газа-носителя использовался аргон, а во втором — аргон и гелий. Поэтому определения на втором хроматографе позволяли получить представление о концентрациях Ar (см. табл. 1). Определения выполнялись методом абсолютной калибровки по газовым смесям с известным составом газа. Погрешность определения по каждому компоненту была не хуже 2%.

Определения изотопного состава углерода в CO_2 и CH_4 выполнены в ГИН РАН на комплексе аппаратуры корпорации Thermoelectron, включающем в себя масс-спектрометр Delta V Advantage и газовый хроматограф Trace GC Ultra. Все значения δ^{13} С приводятся относительно стандарта V-PDB с погрешностью не хуже 0.2‰.

Определения изотопного состава азота (δ^{15} N) в N₂ газах были выполнены в Центре изотопных исследований ВСЕГЕИ (г. Санкт-Петербург) на масс-спектрометрическом комплексе, состоящем из газового хроматографа Agilent 6890 (ГХ), масс-спектрометра DELTA Plus XL (ThermoFinnigan, Германия, Бремен) и газового коммуникатора GC Combustion Interface II (ThermoFinnigan, Германия, Бремен). Все значения приводятся относительно стандартного атмосферного воздуха (δ^{15} N = 0‰ vs air-N₂). Ошибка измерения δ^{15} N составляла ~0.3‰.

Кроме того, в работе использованы ранее опубликованные данные по геохимии газов Северного Кавказа (Костенко, Лаврушин, 2005; Лаврушин, 2012).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Большинство исследованных проб газа характеризуют углекислые водопроявления. Доля СО₂ в них часто достигает 90-99%. Помимо углекислоты, в газах присутствуют азот (от 0.1 до 32%) и метан (от 6 \times 10⁻⁵ до 10–43%). Высокие концентрации последнего (до 12.4%) встречаются не только в равнинных районах Предкавказья (район КМВ), где формирование вод происходит в толщах осадочных пород, но и в газах Приэльбрусья (рис. 2). Здесь широко распространены кристаллические породы палеозойского возраста, относимые севернее (на Скифской плите) к фундаменту: граниты, дислоцированные свиты кристаллических сланцев, мраморов, песчаников и т.п. Геологические и гидрогеологические особенности этого района более подробно рассмотрены в (Лаврушин и др., 2020).

Из исследуемой серии проб только 5 характеризуют газы азотного или азотно-метанового состава, в которых углекислота имеет подчиненное значение ($CO_2 < 13.5\%$). Эти газы выводятся скважинами. В районе КМВ это три неглубоких скважины глубиной 200—600 м. Они вскрывают воды зоны активного водообмена, что определяет азотный состав их газовой фазы. Другие две скважи-

¹ Здесь и далее по тексту все концентрации газов приводятся в объемных %.

Таблица 1. Химические и изотопные характеристики газовой фазы минеральных вод Северного Кавказа

ГЕОХИМИЯ

том 65

№ 11

2020

Σ_{0}^{*}	Название	Широта	Долгота	абс. отм. м.	Глуб., скв. м.	<i>t</i> воды, °С	He, %	Ar, %	CH ₄ , %	CO ₂ , %	0 ₂ **, %	N ₂ , %	δ ¹⁵ N, %0	δ ¹³ C, ‰ CH ₄ CO ₂	Ссылка ***
					Райс	ы КМВ						-			
Ι	г. Кисловодск, скв. 107	43.914472	42.724611	813	148	14.1	0.016	I	0.0034	40.1	11.9	47.95	I	7.0	1
Ι	г. Кисловодск, скв. 107Д	43.916083	42.724639	808	210	13.8	0.0196	0.634	0.059	39.25	12.4	48.07	I	7.0	1
Ι	г. Кисловодск, скв. 6(2нв)	43.957944	42.781917	800	655	16.5	0.21	Ι	0.034	80.12	0.23	19.19	Ι	8.9	1
9-16	г. Кисловодск, скв. 2-пэ-бис	43.939661	42.659601	796	150	12	0.01	0.065	0.005	97.20	0.07	2.50	1.5	6.8	1
101	г. Железноводск, скв 69-бис	44.136469	43.033324	630	309.1	50	0.02	I	0.03	71.50	3.10	15.10	0.3	6.0	1
I	с. Колаборовка, скв.58	44.175667	42.870913	450	894.0	40	0.8	I	28.78	45.94	0.04	23.38	3.7	-59.6 -8.2	1
I	с. Новоблагодарное, 46Е (Ессентуки 17)	44.113611	42.893056	583	686	37	0.0337	I	4.80	92.95	0.15	2.03	0.3	-59.9 -10.1	1
Ι	с. Новоблагодарное 49Э	44.136389	42.908056	568	865	47	0.079	Ι	19.76	74.32	0.045	4.90	0.1	-61.2 -9.2	1
	(Ессентуки 4)														
103	г. Железноводск, скв. 16 Славя- новский ист.	- 44.136798	43.033988	630	117.6	48	0.03	I	0.03	92.40	0.20	5.10	0.9		1
I	г.Ессентуки, скв. 75-Н	44.046194	42.764611	672	600	24.9	1.3	I	23.17	0.16	0.24	69.78	I	-41.0 -16.7	1
104	г. Ессентуки, скв. 418-бис	44.044192	42.866790	570	162.5	10	0.21	I	14.9	72.90	н.о.	9.00	2.7	-60.7 - 10.3	1
	(ECCEHIYKN 4)														
106	г. Ессентуки, скв 1-э	44.045381	42.868083	575	462.0	23	I	I	I				0.8		1
108	г. Ессентуки, скв. 39	44.059760	42.870214	625	266.0	14	0.02	I	14.8	74.90	0.01	7.50	3.2	-61.7 -9.8	1
110	г. Ессентуки, скв. 55	44.088002	42.889072	670	1221.6	43	0.4	I	0.40	0.16	0.32	98.05	1.2	5.5	1
112	г. Ессентуки, скв. 1кмв-бис.	44.088027	42.889387	670	1468	46	н.о.	Ι	0.002	97.90	0.03	0.30	-2.0	4.3	1
1-16	с. Быкогорка, скв. 71	44.189401	42.943270	441	666	53	0.055	0.081	9.90	83.10	0.03	3.43	1.3	-60.4 - 8.6	1
2-16	с. Ессентукская, скв. 70	44.014138	42.863915	667	222	16	0.0034	1.295	0.015	0.35	0.04	98.00	0.4		1
3-16	Змейкинское м-ние, скв. 72	44.164639	43.066324	453	1482	69.5	н.о.	0.028	0.03	94.70	0.30	1.10	-0.3	4.6	1
	(Новотерская)														
Ι	п. Иноземцево, скв.1-Р	44.108972	43.084028	429	1500	19.4	0.022	Ι	0.039	95.5	0.09	4.15	Ι	8.1	1
Ι	г. Лермонтов, скв. 67	44.110639	42.998028	775	1973	18.2	0.022	I	0.38	97	0.11	2.45	Ι	-29.5 -7.3	1
Ι	г. Лермонтов, скв. 77	44.104722	43.000833	826	2016	16.2	0.05	0.088	0.50	96.21	0.01	3.08	I	-31.8 - 6.4	1
4-16	Нагутское мест-ние, скв. 26-н	44.316838	42.683307	419	1502	60	0.097	0.188	9.80	77.20	0.03	12.20	3.3	-41.5 -11.8	1
5-16	Нагутское мест-ние, скв. 47	44.372209	42.747843	375	550	40	0.06	0.095	4.20	87.80	0.09	4.10	2.3	-48.4 - 13.5	1
6-16	Нагутское мест-ние, скв. 43	44.374105	42.784389	370	1205	59	0.39	0.391	43.77	19.90	н.о.	32.63	2.9	-42.6 - 16.3	1
7-16	Нагутское мест-ние, скв. 56-э	44.374105	42.784389	360	1116	58	0.08	I	4.80	86.20	1.20	7.30	1.7	-40.8 - 12.4	1
8-16	Нагутское мест-ние, скв. 49	44.374105	42.784389	370	1502	52	0.36	0.206	19.8	66.60	0.03	12.3	3.9	-40.8 - 13.5	1

ИЗОТОПНЫЙ СОСТАВ АЗОТА И УГЛЕРОДА В ГАЗАХ УГЛЕКИСЛЫХ ВОД

Продолжение
Ϊ.
Таблица

Ссылка ***	1		1	1	,	-	-	1	2	-	2	1	1	1	2	1	. <u> </u>			1	1	1	1		1	1	-	-
<i>, %0</i> CO ₂	-10.8	_	-10.8	-10.2		-9.4	-9.4	-10.5	-6.8	-7.1	-6.2	-13.6	-9.0	-11.6	-9.4	-10.6	-54	-6.8		-7.0	-8.3	-7.9	Ι		-7.4	-7.4	-6.1	-15.4
δ ¹³ C CH ₄	-42.6	_	-19.7	Ι		Ι	-31.0	I	-17.2	-24.4	-22.0	I	I	-63.1	-56.5	-24.1	I	I		I	Ι	Ι	Ι		Ι	Ι		-55.6
δ ¹⁵ N, %0	-3.9		1.6	Ι		0.2	I	-0.2	I	-0.1	I	I	I	5.6	I	4.5	-0.5	I		-0.5	-1.3	-0.5	-0.6		-0.9	0.9	0.1	2.3
$N_2, \%$	14.05	_	4.84	1.40	0	3.08	6.32	0.55	26.54	2.19	2.72	11.75	4.06	26.40	21.18	8.30	0 46	2.24		0.53	1.38	0.13	0.38		3.60	29.93	2.20	12.69
0 ₂ **, %	0.04		0.31	0.05		0.051	0.05	0.025	0.75	0.15	0.24	0.69	1.04	1.90	0.05	0.011	0 033	0.55		0.17	0.36	0.028	0.15		0.70	6.21	0.36	0.056
CO ₂ , %	13.50	_	94.60	98.50		96.41	92.80	99.13	70.64	96.00	94.44	87.18	94.47	70.00	76.41	91.10	99 49	96.27		<u> 90.66</u>	98.00	99.10	98.67		93.00	63.80	97.29	77.27
CH ₄ , %	64.98		0.22	0.004		0.0035	0.57	0.0028	1.11	1.55	1.25	0.051	0.0007	1.60	2.33	0.53	0 0013	0.004		0.0056	0.00042	0.00011	0.00006		0.008	0.0038	0.015	9.66
Ar, %	0.182	-	0.119	I		I	I	0.035	I	0.132	I	I	I	0.233	I	0.108	I	I		0.012	I	I	I		I	I	I	0.181
He, %	0.093	_	н.о.	н.о.		н.о.	н.о.	Н.О.	0.006	н.о.	0.0007	н.о.	н.о.	0.03	0.067	0.011	ОН	н.о.		н.о.	н.о.	Н.О.	н.о.		н.о.	0.023	0.029	0.062
<i>t</i> воды, °С	85	льбрусье	9.6	11.6		Ι	8.5	10.3	6.1	7.9	6.4	14	16.4	16.6	I	17.6	17	22		20.8	6	8.5	6.7		9.1	7	I	9.1
Глуб., скв. м.	2600	ЕнцП	0	0	(0	0	0	0	0	0	0	0	I	I	0	C	0		0	0	0	0		0	0	0	0
абс. отм. м.	617	_	2068	1967		1967	2071	1942	1870	1810	1810	1541	1562	1308	1308	1324	1319	2353		2368	2281	2070	2660		2713	2544	1047	1549
Долгота	43.571389	_	42.523062	42.561264		42.561264	42.676566	42.635563	42.650167	42.641223	42.641223	42.738925	42.756624	42.912061	42.912061	42.895515	42 680431	42.536048		42.535316	42.553721	42.554749	42.499759		42.470822	42.512749	42.020811	41.624525
Широта	43.450533	_	43.252459	43.245859		43.245859	43.223380	43.263699	43.234667	43.241498	43.241498	43.304430	43.315131	43.376667	43.376667	43.370074	43 694598	43.433721		43.433140	43.438535	43.466680	43.437722		43.433310	43.434118	43.767214	43.288977
Название	Сан. Грушевая роща, скв. 3 ((г. Нальчик)	_	нарзан Терскол	Поляна Нарзанов (Бада-	евка), скважина	Поляна Нарзанов (Бада-	ист. Джан-Туган	Ирик-нарзан	ист. Шхельда	ист. Адыл-су, нижний	ист. Адыл-су, нижний	верхний нарзан в селе Верхний - Баксан	нижний нарзан в селе Верхний . Баксан	скв. на окаине г. Тырныауз	скв. на окаине г. Тырныауз	старая скв. на южной окраине	парианая (р. м. от города) Лопина намзанов	Мисост-нарзан (Джилысу на	Малке, нижняя ванна)	Джилысу на Малке (нарзан на и месте верхней ванны)	нарзан в долине р. Малка	нарзан в долине р. Малка	нарзан в левом борту р. Кизыл-	КОЛ	скв. В левом боргу р. Кизылкол	Белый нарзан (на р. Кизылкол)	Мариинский нарзан	нарзан Домбай (скважина)
Nº*	19-16		10-16	11-16		11-16a	12-16	13-16	22-99	14-16	19-99	15-16	16-16	17-16	12-01	20-16	21-16	22-16	_	23-16	24-16	25-16	26-16	_	27-16	28-16	29-16	30-16

ГЕОХИМИЯ том 65 № 11

2020

ЛАВРУШИН и др.

ИЗОТОПНЫЙ СОСТАВ АЗОТА И УГЛЕРОДА В ГАЗАХ УГЛЕКИСЛЫХ ВОД

ГЕОХИМИЯ том 65 № 11 2020

Таблица 1. Окончание

Рис. 1. Схема расположения пунктов опробования минеральных вод Северного Кавказа, рельеф дан по цифровой модели GTOPO30 (Gesch et al., 1999).

ны — глубокие и характеризуют термальные воды Белореченского (г. Нальчик) и Кармадонского (респ. Северная Осетия) месторождений минеральных вод (табл. 1). Они локализованы вблизи северной границы области распространения углекислых вод Северного Кавказа.

Во всех пробах газа в примесных количествах присутствуют аргон, гелий, а иногда и кислород. Присутствие последнего характерно для газов неглубоких скважин, а в некоторых случаях и для газов естественных углекислых источников.

Значения N_2/Ar -коэффициента варьируют от 14 до 190. Самые низкие значения этого коэффициента, которые оказываются даже ниже его значения для воднорастворенных воздушных газов (~40), характерны для естественных выходов углекислых вод, богатых углекислотой CO₂ (>90%). Более высокие значения N_2/Ar -коэффициента (от ~40 до 190) типичны для скважинных газов. Значение коэффициента показывает устойчивый рост с увеличением доли азота в составе газовой фазы. Такая тенденция может указывать на присутствие в газах неатмосферного ("избыточного") азота. Однако, вариации значений N_2/Ar в диапазоне от ~40 до ~80 иногда могут быть также следствием загрязнения проб атмосферным воздухом ($N_2/Ar_{(атм)} = 83.6$). Максимальные значения N_2/Ar -коэффициента 190 и 113, существенно превышающие его значения в воздухе и однозначно указывающие на примесь неатмосферного азота, отмечены в газах Нижнего Кармадона и в скважине Тырныауза (см. табл. 1, обр. E10/18 и 17-16, соответственно).

Концентрации CH₄, N₂, Ar и Не положительно коррелируют между собой (рис. 3), что довольно необычно, поскольку эти газы имеют различный генезис. Это, на первый взгляд, указывает на общее разбавление смеси этих газов углекислотой (Лаврушин, 2012).

Значения δ^{13} С в СО₂ источников, располагающихся вблизи вулкана Эльбрус, меняются в диапазоне от –11.8 до –3.0‰ (табл. 1 и (Лаврушин, 2012)). При переходе к предгорным районам (район КМВ) диапазон значений δ^{13} С расширяется до –16.7...–2.3‰ (рис. 4а). Появление низких значений δ^{13} С в газах КМВ указывает на подмешивание углекислоты биогенного генезиса. В целом, если не принимать во внимание такие пробы, намечается отчетливая тенденция к росту средних значений δ^{13} С (СО₂) с юга на север – при переходе от горного сооружения Большого Кавказа (При-

Рис. 2. Распределение концентраций метана (об. %) в углекислых газах различных районов Приэльбрусья (с юга на север). а – зона Главного хребта (окрестности в. Эльбрус); б – зона Передового хребта; в – плато Бечасын; г – район КМВ; д – общая совокупность данных.

эльбрусья) к предгорным районам (району КМВ) (рис. 4а–4в).

Определения изотопного состава углерода в CH₄ показали, что значения δ^{13} C в исследуемых газах меняются от -61.7 до - 17.2%. Наиболее высокие значения δ^{13} C в CH₄ (δ^{13} C = -32.0...-17.2%) характерны для газов Приэльбрусья (табл. 1). Наше

опробование также подтвердило значения δ^{13} С в СН₄, полученные еще на приборе МИ-1201В по результатам опробования 1999 и 2000 гг. (табл. 1).

Метан с близкими изотопными характеристиками ($\delta^{13}C = -31.8...-29.5\%$) иногда отмечается и в единичных образцах скважинных газов КМВ. Последние отличаются низкой концентрацией

ГЕОХИМИЯ том 65 № 11 2020

Рис. 3. Соотношение концентраций метана и гелия в газах минеральных вод Эльбрусской (*1*) и Казбекской (*2*) вулканических областей Большого Кавказа (по данным табл. 1 и (Лаврушин, 2012)). Пунктиром показана линия предполагаемого тренда.

СН₄ (0.4–0.5%). Самые низкие значения δ^{13} С (СН₄) (-61.7...-59.6%) характеризуют богатые метаном газы (СН₄ до 29%) верхнемелового водоносного комплекса КМВ. Из него в районе г. Ессентуки с глубин от ~600 до ~900 м добывают минеральные воды Ессентуки 4 и 17.

Газы Нагутского месторождения, располагающегося на северной окраине области распространения углекислых вод в районе КМВ, добываются из скважин глубиной от 550 до 1500 м. Они характеризуются концентрацией CH₄ от 4 до 44% и значениями δ^{13} C в CH₄ от –48.4 до –40.8‰ (табл. 1).

В целом, для скважин КМВ намечается давно известная тенденция увеличения значений δ^{13} С (CH₄) с глубиной скважины (Галимов, 1973; Прасолов, 1990; Galimov, 2006).

Значения δ^{15} N в N₂ меняются в диапазоне от -3.9 до +5.6‰. Самой низкой величиной δ^{15} N характеризуется азот из скв. 3 сан. "Грушевая роща" (г. Нальчик), вскрывающей отложения майкопского возраста. Значения δ^{15} N = 0 ± 1.3‰ – типичны для газов естественных минеральных источников Приэльбрусья. Положительными значениями δ^{15} N (>+2‰) характеризуются скважинные газы КМВ и Приэльбрусья (скв. в г. Тырныауз) (табл. 1).

Отмечается положительные функциональные связи значений δ^{15} N с концентрациями азота и метана (рис. 5a, 5б), а также обратная — с δ^{13} C(CO₂) (рис. 6).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Больше всего вулканогенных дериватов, маркируемых высокими значениями ³He/⁴He, может содержаться в газах минеральных источников, локализующихся вокруг вулканов Эльбрус и Казбек (Polyak et al., 2000; Polyak et al., 2006; Лаврушин, 2012). Их присутствие также подчеркивается и изотопными характеристиками углерода в СО₂ (рис. 4в), которые в большинстве случаев близки к значениям, приписываемым мантийной углекислоте ($\delta^{13}C = \text{от} - 8 \text{ до} - 3\%$) (Галимов, 1968; Javoy et al., 1986; Sano, Marty, 1995). В предгорьях Большого Кавказа – в районе КМВ, на фоне снижения значений ³He/⁴He до 40-100 (×10⁻⁸) разброс δ^{13} С в СО₂ заметно возрастает (рис. 4а и 4б). Это отражает повышение роли коровых источников в формировании СО2. Здесь заметна примесь как изотопно-легкой CO_2 ($\delta^{13}\text{C} \ll -9\%$) — продукта окисления органического вещества, так и "метаморфогенной" СО2. Примесь последней смещает средние значения δ^{13} С в область более высоких значений. Эта углекислота может образовываться при

ГЕОХИМИЯ том 65 № 11 2020

термическом разложении карбонатов осадочного происхождения (δ^{13} C (CaCO₃) = 0 ± 2‰). Возможно также, определенный вклад в увеличение значений δ^{13} C (CO₂) в газах КМВ могут вносить низкотемпературные процессы взаимодействия углекислых вод с массивами водовмещающих карбонатных пород мезозойского возраста.

Определения изотопного состава азота показали, что во многих пробах газа присутствует азот неатмогенного происхождения. Значения $\delta^{15}N$ часто заметно отличаются от $\delta^{15}N$ в воздухе $(\delta^{15}N_{atm} = 0 \pm 0.3\%)$. В исследуемых газах такой азот часто характеризуется положительными значениями $\delta^{15}N$ (до +5.6‰). Причем рост значений δ^{15} N. как правило, сопровождается ростом обшей концентрации N₂ (рис. 5а). Таким образом, появление в газах избыточного (неатмосферного) азота с высокими значениями δ¹⁵N в основном и обеспечивает рост общей концентрации N₂. Такой азот имеет коровое происхождение (Cartigny, Marty, 2013). Генетическая связь такого азота с продуктами преобразования органического вещества (с процессами метаногенерации и окисления органики) подчеркивается зависимостями значений δ¹⁵N от концентраций метана и значений δ^{13} С в СО₂ (рис. 5б и 6). На этих рисунках видно, что рост значений δ^{15} N совпадает с увеличением концентрации метана и доли в составе СО₂ изотопно-легкой – биогенной углекислоты. Для газов КМВ также прослеживается тенденция к увеличению концентраций Не в газах с ростом значений δ¹⁵N (табл. 1).

В свете этих данных, иначе можно интерпретировать и довольно необычные прямые зависимости концентраций He, CH_4 и N_2 (см. рис. 3), наблюдаемые в исследуемых газах. Они, очевидно, могут отражать парагенетические взаимосвязи этих газов. Концентрации He, CH_4 и N_2 будут тем выше, чем дольше вода находилась в пласте, и чем лучше гидрогеологическая система была изолирована от влияния инфильтрационных вод. Такие условия будут способствовать одновременному накоплению в пластовых водах коровых газов: радиогенного гелия, метана и неатмосферного азота, которые будут разбавлять основной компонент газовой фазы — углекислоту.

Надо заметить, что положительные значения δ^{15} N, отмечаемые в пластовых газах мезозойских отложений в районе KMB и в газах Нижне-Кармадонского месторождения, судя по нашим данным, не типичны для нефтегазоносных комплексов мезо-кайнозойского возраста других районов Предкавказья, да и всего Кавказского региона в целом. Например, для газов мезозойских отложений Терско-Кумского прогиба Восточного Предкавказья характерно присутствие азота с отрица-

ГЕОХИМИЯ том 65 № 11 2020

Рис. 4. Изотопный состав углерода углекислоты в газах KMB (а), северной (б) и южной части (в) Приэльбрусья (построено по данным табл. 1 и (Лаврушин, 2012)). Линией показана тенденция изменения средних значений δ^{13} C CO₂ с севера (а) на юг (в).

тельными значениями $\delta^{15}N$ (до –4.8‰). Азот с подобными изотопными характеристиками также типичен для грязевулканических газов Западного Предкавказья, формирующихся в отложениях кайнозойского возраста (Лаврушин и др., 2019). Это совпадает с результатами определений $\delta^{15}N$ в газах основных нефтегазоносных областей (Прасолов, 1990), для которых за исключением газов Волго-Уральской провинции, характерны отрицательные значения $\delta^{15}N$.

Мы предполагаем, что азот с положительными значениями $\delta^{15}N$ может появляться в зоне актив-

Рис. 5. Взаимоотношение значений δ^{15} N в N₂ с концентрациями азота (N_{2испр} – за вычетом атмосферного воздуха) (а) и метана (б) в газах углекислых вод Приэльбрусья и KMB. Линиями показаны тенденции взаимоотношений рассматриваемых параметров.

ной циркуляции инфильтрационных вод в переходных окислительно-восстановительных обстановках. Азот с положительными значениями $\delta^{15}N$ характерен для газов азотных терм (Прасолов, 1990). Поэтому, мы предполагаем, что изотопные исследования этого газа в краевых частях осадочных бассейнов, примыкающих к горным сооружениям, могут дать дополнительную информацию о характере гидрогеологического режима. Впрочем, мы также не исключаем вероятности генетической связи такого азота с угленосными отложениями средней юры, которые присутствуют в геологическом разрезе исследуемых районов Северного Кавказа. Последние могут являться как источником неатмогенного азота, так и метана в газовой фазе минеральных вод.

Примесь мантийного азота ($\delta^{15}N = -5 \pm 2\%$ (Javoy et al., 1986; Cartigny, Marty, 2013)) в исследуемых газах нигде однозначно не идентифицируется. Его присутствие можно только предполагать в газах отдельных углекислых источников, располагающихся в непосредственной близости от вулкана Эльбрус (рис. 6). Здесь пониженные значения $\delta^{15}N$ (-1.5...-0.9‰) отмечаются в наиболее богатых углекислотой газах (CO₂ > 90%), для которых также характерны и самые высокие значения ³He/⁴He – до 300–630 (×10⁻⁸) и "мантийные" значения δ^{13} C.

В газах аналогичного состава Казбекского района (Северная Осетия) отмечаются еще более низкие значения $\delta^{15}N$ – до –3.5‰. Правда здесь в отличие от Приэльбрусья, где выходы большин-

ГЕОХИМИЯ том 65 № 11 2020

ства источников приурочены к области распространения пород палеозойского возраста, большинство источников Северной Осетии выходят в области широкого развития флишоидных комплексов ранней-средней юры.

При этом во всех случаях, где в углекислых газах присутствует изотопно-легкий азот, не удается установить каких-либо корреляций значений $\delta^{15}N$ с концентрациями азота или значениями N₂/Ar-коэффициента. Более того, в таких газах часто отмечается дефицит азота (относительно воздушного аргона Ar²). Для них типичны аномальнонизкие значения N₂/Ar-коэффициента (до 14).

Мы предполагаем, что низкие значения N_2/Ar -коэффициента в утлекислых газах Северного Кавказа могут быть следствием неравновесных условий дегазации вод. Очевидно, что они маскируют поступление избыточного азота в газовую фазу (если такое имеет место быть). Возможно, так же, что они могут оказывать некоторое влияние и на значения $\delta^{15}N$, которое нам трудно оценить при данном уровне изотопных исследований.

Исследование изотопного состава азота также дает дополнительную информацию о генезисе высоких концентраций метана в углекислых источниках Главного хребта Большого Кавказа. Часть их располагается в непосредственной близости от вулкана Эльбрус, а также вблизи Эльджуртинского гранитного массива плиоценового возраста (скважины в районе г. Тырныауз). Метан в таких источниках часто характеризуется аномально высокими значениями δ¹³С от −35.0...−17.2‰ (см. табл. 1). На первый взгляд такое расположение источников дает основание связать генезис изотопно-тяжелого метана с его абиогенным синтезом в гидротермальных системах, ассоциирующихся с магматическими камерами молодых вулканов. Также нельзя исключить и связь такого метана с каналами глубинной дегазации флюидных систем, выделяющихся из погружающегося в мантию субдукционного слэба. Эти каналы могут ассоциироваться с молодыми вулканическими центрами.

Однако предпосылки для появления в газах Приэльбрусья гидротермального метана отсутствуют. Температура минеральных источников в районе в. Эльбрус не превышает 21°С, водород в составе газов почти никогда не обнаруживается ($H_2 \ll 0.001\%$). Да и газам с таким метаном почти всегда сопутствует коровый азот $\delta^{15}N$ — от 0 до +4.5‰ (табл. 1). Это позволяет связать генезис изотопно-тяжелого метана с коровыми газами — с продуктами разложения органического вещества.

Рис. 6. Соотношение значений $\delta^{15}N(N_2)$ и $\delta^{13}C(CO_2)$ в газах углекислых вод Приэльбрусья и КМВ. Условные обозначения: 1 – атмосферный воздух; 2 – естественные источники Приэльбрусья; 3 – скважины КМВ; 4 – скважины Приэльбрусья; линией показан статистически-значимый тренд для скважинных газов КМВ.

Однако это не исключает и его "субдукционный" генезис.

Вопросу поступления газоводных флюидов из зон субдукции через вулканические системы на поверхность Земли в последнее время посвящено довольно много работ (например, Mitchell et al., 2010; Agusto et al., 2013). Надо признать, что имеющиеся у нас данные по изотопным составам He, C в CO₂ и CH₄, а также N в N₂ в газах Приэльбрусья не противоречат гипотезе о глубинном происхождении метана.

Однако этой гипотезе противоречит характер распределения метана в газах углекислых источников Главного хребта Большого Кавказа и характер распределения значений δ^{13} С в CH₄ (рис. 7). Здесь область высоких концентраций СН₄ (до 15%) распространяется вдоль простирания Главного хребта, и они отмечаются не только рядом с в. Эльбрус, но и на значительном удалении от него (скважина в с. Домбай: обр. 30-16 и 26-01 в табл. 1). В районе с. Домбай проявления четвертичного вулканизма неизвестны, а газы характеризуются "коровыми" значениями ³He/⁴He (рис. 7) (Polyak et al., 2000). При этом в распределении значений δ^{13} С в СН₄ видно (рис. 7), что они быстро снижаются с удалением от вулканических центров Эльбруса и Тырныауза. Метан в таких газах характеризуется существенно более низкими значениями δ^{13} С от -63 до -53‰. Таким образом, оказывается, что в пределах Главного хребта положение выходов углекислых источников, в газах

² Проведенные ранее исследования изотопного состава Ar в газах Приэльбрусья показали (Лаврушин, 2012), что он имеет воздушное происхождение и характеризуется значениями ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ близкими к атмосферному аргону (${}^{40}\text{Ar}/{}^{36}\text{Ar}_{a} = 295.5$).

Рис. 7. Значения δ^{13} С в СН₄ углекислых газов Эльбрусской вулканической области. Условные обозначения: *1* – изолиниями и оттенками серого показано распределение значений ³He/⁴He (×10⁻⁸) (по Polyak et al., 2000, 2008; Лаврушин, 2012); *2* – пункты опробования газов на ³He/⁴He; *3* – значения δ^{13} С(СН₄) в ‰ по (табл. 1); *4* – область высоких концентраций метана (0.5–15%) в углекислых газах северного склона Главного хребта Большого Кавказа по (табл. 1 и Лаврушин, 2012).

которых встречаются повышенные концентрации метана, далеко не всегда пространственно совпадает с положением молодых вулканических центров. При этом высокие значения δ^{13} С в CH₄ наблюдаются только в наименее удаленных от вулканических центров источниках.

Эти наблюдения приводят нас к выводу, что концентрационные аномалии CH_4 в газах Главного хребта Большого Кавказа генетически не связаны с молодыми вулканическими центрами (с процессами гидротермальной или глубинной флюидной активности). Вероятно, для газов палеозойских пород Главного хребта вообще характерно повышенное содержание метана. Причем, судя по значениям δ^{13} С в CH₄, наблюдаемым на удалении от Эльбруса, этот метан образуется на относительно небольших глубинах. Например, севернее — в газах предгорных районов (в KMB) метан со значениям δ^{13} С от —60 до —40‰ встречается в диапазоне глубин от ~1 до ~1.5 км (см. табл. 1).

Таким образом, мы приходим к выводу, что плиоцен-четвертичная магматическая активность, по-видимому, не вносит существенного вклада в вещественный баланс метана, присутствующего в углекислых газах Главного хребта. Однако при этом она все же оказывает определяющее влияние на изотопные характеристики CH₄. Это происходит в газах, формирующихся в области влияния Эльбрусской вулканогенной термической аномалии. В области ее влияния активизируются процессы изотопного обмена в системе "CO₂–CH₄". Их следствием и является появление в Приэльбрусье метана с аномально высокими значениями δ^{13} C (до –17.2‰).

Разница между δ^{13} С в углекислоте и метане в газах ближайших к Эльбрусу углекислых источников варьирует от 8.9‰ (нарзан Терскол) до 23.2‰ (нарзан Эльбрус-ледниковый). Если исходить из допущения, что CH₄ и CO₂ находятся в состоянии изотопного равновесия и на значения δ^{13} С в СН₄ не повлияли какие-либо другие геохимические процессы, то такие значения $\Delta \delta^{13}$ C булут соответствовать температурам от ~300 до ~750°С (Bottinga, 1969; Horita, 2001). При этом самые высокие температуры (>400°С) получаются для источников, локализованных компактной группой к востоку от в. Эльбрус в долине р. Баксан (ист. Терскол, Адыл-су, Шхельда) и ее правого притока р. Адыл-су. Эти значения существенно превышают температуру, полученную для ист. Эльбрус-ледниковый (330°С). Последний, располагаясь на юго-западном склоне вулкана, является ближайшим к его вершине углекислым водопроявлением. Впрочем, необходимо также учитывать, что постройка в. Эльбрус находится на западной периферии обширной изотопно-гелиевой аномалии (${}^{3}\text{He}/{}^{4}\text{He} > 300 \times 10^{-8}$) (рис. 7), очевидно, маркирующей границы глубинной магматической камеры этого вулкана (Лаврушин, 2012). Поэтому самые "высокотемпературные" газы, хотя и располагаются не на самом близком расстоянии от поверхностных вулканических проявлений, но приурочены именно к центральной части этой аномалии.

В заключение хотелось бы отметить, что проблема генезиса коровых газов (N₂ и CH₄) в газах Приэльбрусья все же не имеет определенного решения, поскольку источник этих газов однозначно не определен. Осадочные комплексы мезозойского возраста здесь отсутствуют, а потенциально нефтегазоносные свиты в породах палеозойского возраста Главного и Передового хребтов Большого Кавказа нам не известны. При этом наряду с палеозойскими гранитами, сланцами, яшмами, мраморированными известняками и т.п. - породами, которые прошли высокие стадии ката- и метагенеза, в отложениях этого возраста встречаются и комплексы осадочных пород – сланцы, песчаники, конгломераты (Углекислые..., 1963). Однако их газогенерационный потенциал до сих пор никак не изучен.

Вместе с тем рассматриваемые выше взаимоотношения изотопных характеристик азота с другими геохимическими характеристиками газов (рис. 5а, 5б и 6) не выявляют принципиальных различий между газами углекислых вод мезозойских комплексов КМВ и палеозойских – Приэльбрусья. Это дает основание предполагать, что источником метана и азота в газах палеозойских комплексов Приэльбрусья могут все же являться мезозойские (юрско-меловые) отложения. Однако в настоящее время в пределах Главного хребта их покровы разрушены эрозией. Угленосные отложения среднеюрского возраста появляются в геологическом разрезе только в ~20-25 км к северу от описанных в данной работе выходов газов, богатых метаном. Если считать их источником метана в газах Главного хребта, то в соответствие с умозрительной концептуальной моделью можно предполагать, что они являются источником растворенных органических соединений и газов (CH₄ и N₂), которые привносятся в трещинно-жильные водоносные комплексы палеозоя потоком инфильтрационных вод. При этом Эльбрусская вулканогенная аномалия теоретически может обеспечивать существование гидротермальной циркуляционной системы, в которую вовлекаются данные воды.

Другим вероятным источником могут быть те же породы мезозойского возраста, но перекрытые комплексами палеозоя по пологим надвигам. Наличие подобного механизма обеспечивается покровно-надвиговой структурой горного сооружения Большого Кавказа (Philip et. al, 1989).

Очевидно, что окончательное решение вопроса о происхождении метана в газах Главного хребта требует проведения дополнительных геологических и изотопно-геохимических исследований. В частности, было бы важно определить изотопные характеристики метана, присутствующего в газах Приэльбрусья в более низких концентрациях (<0.2%). Это, по-видимому, позволило бы более детально исследовать характер распределения значений δ^{13} C(CH₄) вокруг вулкана Эльбрус. Кроме того, важное значение для определения генезиса изотопно-тяжелого метана могли бы иметь определения δ^2 H в CH₄.

выводы

1. В углекислых газах, выходящих вблизи конуса вулкана Эльбрус, доминирует магматогенная углекислота с преобладающими значениями δ^{13} С в диапазоне от –9 до –5‰. К северу от Эльбруса в районе КМВ изотопные характеристики углерода CO₂ меняются. В ее составе местами заметно влияние как биогенной (δ^{13} С \ll –9‰), так и метаморфогенной CO₂ (δ^{13} С ~ 0‰). Источником последней являются карбонаты морского генезиса.

2. Впервые выполненные определения изотопного состава азота в газах минеральных вод Северного Кавказа показали, что значения $\delta^{15}N$ меняется в диапазоне от -3.9 до +5.6‰. Положительные значения δ^{15} N характерны для большинства скважинных газов района КМВ, газов Нижне-Кармадонского месторождения и отдельных источников Приэльбрусья. Особенностью химического состава этих газов является заметная (от 0.5 до 44%) примесь метана. В газах этой группы проб рост значений δ¹⁵N сопровождается ростом общей концентрации азота в составе газов. Это указывает на важную роль избыточного (неатмогенного) азота в общем балансе N₂. Такой азот имеет коровое происхождение и его генезис связан с процессами разложения органического вещества осадочных пород.

3. Для углекислых источников Эльбрусского и Казбекского районов Северного Кавказа, в составе газовой фазы которых доминирует CO₂ (>90%) характерны значения δ^{15} N от -3.5 до ~0‰. В них можно предполагать присутствие азота мантийного генезиса. Однако эти газы характеризуются низкими значениями N₂/Ar коэффициента (до 14), которые указывают на неравновесные условия дегазации воздушных газов. Эти процессы не позволяют оценить роль неатмосферных источников азота в таких газах. Возможно также, что они могли оказать некоторое влияние и на изотопные характеристики азота.

4. Показано, что "термогенный" метан (δ^{13} С до – 17.2‰), встречающийся в газах углекислых источников Приэльбрусья, как и азотная составляющая этих газов, скорее всего, генетически не связаны с процессами глубинной дегазации флюидных систем. Мы считаем, что такие характеристики метана обусловлены влиянием Эльбрусской вулканогенной термической аномалии на температурные условия разложения органического вещества и/или процессы изотопного обмена в системе "CH₄–CO₂".

Благодарности: исследования проведены при финансовой поддержке гранта РНФ (проект № 18-17-00245).

СПИСОК ЛИТЕРАТУРЫ

Барабанов Л.Н., Дислер В.Н. (1968) Азотные термы СССР. М.: "Геоминвод", 323 с.

Галимов Э.М. (1968) Геохимия стабильных изотопов углерода. М.: Недра, 224 с.

Галимов Э.М. (1973) Изотопы углерода в нефтегазовой геологии. М.: Недра, 384 с.

Короновский Н.В., Демина Л.И. (2007) Позднекайнозойский магматизм Большого Кавказа. Большой Кавказ в альпийскую эпоху (Под ред. Леонова Ю.Г.) М.: ГЕОС, 251-284 с.

Костенко О.Е., Лаврушин В.Ю. (2005) Первые определения δ^{13} С в метане углекислых источников Приэльбрусья. *ДАН*. **404**(1), 100-104.

Лаврушин В.Ю., Поляк Б.Г., Покровский Б.Г., Дубинина Е.О., Авдеенко А.С., Костенко О.Е. (2005) Новейший вулканизм и углекислые воды Северного Кавказа. Современные методы геолого-геофизического мониторинга природных процессов на территории Кабардино-Балкарии. М.: ИФЗ РАН, 128-155 с.

Лаврушин В.Ю. (2012) Подземные флюиды Большого Кавказа и его обрамления (Отв. ред. Поляк Б.Г.), Тр. ГИН РАН вып. 599, М.: ГЕОС, 348 с.

Лаврушин В.Ю., Айдаркожина А., Кузнецов А.Б., Кох С.Н. (2019) Геохимические индикаторы генезиса и условий формирования флюидных систем грязевых вулканов Западно-Кубанского прогиба. Литология осадочных комплексов Евразии и шельфовых областей: материалы IX Всероссийского литологического совещания (с международным участием) (Казань, 30 сентября— 3 октября 2019 г.), Казань: Издательство Казанского университета, 237-238 с.

Лаврушин В.Ю., Лисенков А.Б., Айдаркожина А.С. (2020) Генезис Ессентукского месторождения углекислых вод (Северный Кавказ). *Геохимия*. **65** (1), 77–91.

Lavrushin V.Yu., Lisenkov A.B. and Aidarkozhina A.S. (2020) Genesis of the Yessentuki Deposit of Carbonated Waters, North Caucasus. *Geochem. Int.* **58** (1), 77-91.

Мамырин Б.А., Толстихин И.Н. (1981) Изотопы гелия в природе. М.: Энергоиздат. 221 с.

Матвеева Э.С., Толстихин И.Н., Якуцени В.П. (1978) Изотопно-гелиевый критерий происхождения газов и выявления зон неотектогенеза (на примере Кавказа). *Геохимия*. (3), 307-317. Масуренков Ю.П. (1961) Тектоника, магматизм и углекислые минеральные воды Приэльбрусья. Известия АН СССР, сер. Геологическая. 5, 45-57.

Милановский Е.Е., Короновский Н.В. (1973) Орогенный вулканизм и тектоника Альпийского пояса Евразии. М.: Недра, 279.

Овчинников А.М. (1948) Основные принципы зональности минеральных вод Кавказа. *Тр. МГРИ*, **ХХІІІ.** (Под ред. Белоусова В.В. и Захарова Е.Е.), М., Л.: Изд-во Мингео СССР, 139-150 с.

Поляк Б.Г., Лаврушин В.Ю., Ингуаджиато С., Киквадзе О.Е. (2011) Изотопы гелия в газах минеральных вод Западного Кавказа. *Литология и полезные ископаемые.* (6), 555-567.

Прасолов Э.М. (1990) Изотопная геохимия и происхождение природных газов. Л.: "Недра", 283 с.

Щербак В.П. (1965) Некоторые геохимические черты газоносности Эльбрусской области. *Геохимия*. (7), 889-894. Углекислые минеральные воды Северного Кавказа. (1963)

(Под ред. Пантелеева И.Я.), М.: Изд-во АН СССР, 190 с.

Agusto M., Tassi F., Caselli A.T., Vaselli O., Rouwet D., Capaccioni B., Caliro S., Chiodini G., Darrah T. (2013) Gas geochemistry of the magmatic-hydrothermal fluid reservoir in the Copahue–Caviahue Volcanic Complex (Argentina). J. Volcan. Geotherm. Res. 257, 44-56.

Bottinga Y. (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite- CO_2 -graphite-methane-hydrogen and water vapor. *Geochim. et Cosmochim. Acta.* **33**, 49-64.

Cartigny P., Marty B. (2013) Nitrogen Isotopes and Mantle Geodynamics: The Emergence of Life and the Atmosphere–Crust–Mantle Connection. *Elements.* **9**, 359-366.

Galimov E.M. (2006) Isotope organic geochemistry. *Or*ganic Geochem. 37, 1200-1262.

Gesch D.B., Verdin K.L., Greenlee S.K. (1999) New land surface digital elevation model covers the Earth. *EOS, Trans. Amer. Geophys. Un.* **80**(6), 69-70.

Horita J. (2001) Carbon isotope exchange in the system CO_2 -CH₄ at elevated temperatures. *Geochim. Cosmochim. Acta.* **65**, 1907-1919.

Javoy M., Pineau F., Delorme H. (1986) Carbon and nitrogen isotopes in the mantle. *Chem. Geol.* **57**(1), 41-62.

Mitchell E.C., Fischer T.P., Hilton D.R., Hauri E.H., Shaw A.M., de Moor J.M., Sharp Z.D., Kazahaya K. (2010) Nitrogen sources and recycling at subduction zones: Insights from the Izu-Bonin-Mariana arc. *Geochem. Geophys. Geosyst.* **11**, Q02X11,

https://doi.org/10.1029/2009GC002783

Philip H., Cisternas A., Gvishiani A., Gorshkov A. (1989) The Caucasus: an actual example of the ininitial stages of continental collision. *Tectonophys.* **161**, 1-21.

Polyak B.G., Lavrushin V.Yu. and Kamensky I.L. (2009) Mantle helium traces in the Elbrus–Kazbek sector of the Greater Caucasus and adjacent areas. *Chem. Geol.* **266**, 57-66.

Polyak B.G., Tolstikhin I.N., Yakovlev L.E., Marty B., Cheshko A.L. (2000) Helium isotopes, tectonics and heat flow in the Northern Caucasus. *Geochim. Cosmochim. Acta*. **64**(11), 1925-1944.

Sano Y., Marty B. (1995) Origin of carbon in fumarolic gas form island arcs. *Chem. Geol.* **119**, 265-274.