УДК 523.985.3

ПРЕДВСПЫШЕЧНЫЕ РЕНТГЕНОВСКИЕ ПУЛЬСАЦИИ С ИСТОЧНИКАМИ ВНЕ АКТИВНОЙ ОБЛАСТИ ОСНОВНОЙ ВСПЫШКИ

© 2023 г. И. В. Зимовец^{1,} *, И. Н. Шарыкин^{1,} **, Т. И. Кальтман^{2,} ***, А. Г. Ступишин^{3,} ****, Б. А. Низамов^{4,} ****

¹Институт космических исследований РАН (ИКИ РАН), Москва, Россия ²Специальная астрофизическая обсерватория РАН (САО РАН), Санкт-Петербург, Россия ³Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ⁴Государственный астрономический институт им. П.К. Штернберга, Московский государственный университет им. М.В. Ломоносова (ГАИШ МГУ), Москва, Россия *e-mail: ivanzim@iki.rssi.ru **e-mail: ivan.sharvkin@phystech.edu

e-mail: arles@mail.ru ***e-mail: aleksey.stupishin@spbu.ru *e-mail: nizamov@physics.msu.ru Поступила в редакцию 24.02.2023 г. После доработки 17.04.2023 г. Принята к публикации 25.05.2023 г.

Ранее мы показали, что по характеру расположения источников предвспышечных рентгеновских пульсаций относительно основной солнечной вспышки события разделяются по крайней мере на два типа: в событиях типа I источники пульсаций и основной вспышки находятся в одной активной области (AO), а в событиях типа II – в разных. В данной работе представлен анализ события типа II, в котором по данным космической обсерватории Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) рентгеновские источники предвспышечных квазипериодических пульсаций (с периодом $P = 1.5 \pm 0.1$ мин), начавшихся в ~18:02 UT, располагались в АО 11884 в Западном полушарии, а источники основной вспышки M1.0 SOL2013-11-05T18:08 в АО 11890 в Восточном полушарии. Пульсации также наблюдались с помощью Gamma-Ray Burst Monitor (GBM) на борту космической обсерватории Fermi и X-Ray Sensor (XRS) на борту Geostationary Operational Environmental Satellite (GOES), что исключает возможность их искусственного происхождения. По данным Atmospheric Imaging Assembly (AIA) на борту Solar Dynamics Observatory (SDO) в экстремальном ультрафиолетовом диапазоне установлено, что источники пульсаций располагались в основании корональных струй (джетов), истекавших со скоростями ~100-1500 км/с. Расстояние между АО 11884 и АО 11890 составляло ~1.4 R_S. Плазме струй потребовалось бы ~17-250 мин, чтобы достичь АО 11890, что намного больше времени межу началом пульсаций (струй) и вспышкой (~6 мин), к тому же в картинной плоскости струи истекали в противоположном (западном) от активной области вспышки направлении. В короне не наблюдались петли, соединяющие АО 11884 и АО 11890. Более того, не обнаружено соединения этих областей силовыми линиями магнитного поля, экстраполированного с фотосферы в корону в потенциальном приближении. Эти аргументы свидетельствуют о том, что струи (и связанные с ними пульсации) не могли быть триггером вспышки. Таким образом, представлен яркий пример события, в котором не было физической связи между предвспышечными рентгеновскими пульсациями (и струями) и последовавшей за ними вспышкой. Это событие демонстрирует важное значение пространственно-разрешенных наблюдений при исследовании пульсаций на Солнце и звездах.

DOI: 10.31857/S0016794023600345, EDN: DLHDSR

1. ВВЕДЕНИЕ

Во временны́х профилях потоков солнечного радио и рентгеновского излучения по крайней мере перед частью вспышек обнаруживаются квазипериодические флуктуации или пульсации [Durasova et al., 1971; Kobrin et al., 1973; Жданов и Чариков, 1985; Abramov-Maximov and Bakunina, 2020, 2022]. Физические механизмы предвспышечных пульсаций еще не установлены. Важность изучения предвспышечных пульсаций связана с потенциальной возможностью их использования для прогнозирования вспышек и сейсмологической диагностики плазмы активных областей (AO).

В работе [Tan et al., 2016] на основе данных инструментов GOES/XRS без пространственного разрешения показано, что перед началом 26–46% "изолированных" вспышек в интервале до 2 ч в интегральном потоке рентгеновского излучения Солнца присутствуют пульсации с периодами ~1–50 мин. В работе [Zimovets et al., 2022] на основе данных RHESSI с пространственным разрешением показано, что такие события разделяются по крайней мере на два типа. В событиях типа I источники предвспышечных рентгеновских пульсаций и основной вспышки располагаются в одной AO, а в событиях типа II – в разных AO.

Информация о взаимном расположении источников предвспышечных пульсаций и основной вспышки важна для установления возможных причинных связей между этими явлениями. В событиях I типа источники предвспышечных пульсаций находятся в близкой окрестности (в пределах 20 угл. с) от источников основной вспышки [Abramov-Maximov and Bakunina, 2022; Zimovets et al., 2022]. Это указывает на то, что должна быть связь между этими явлениями. Однако для событий II типа, в которых источники предвспышечных пульсаций и основной вспышки находятся в разных АО, наличие причинных связей между предвспышечными пульсациями и вспышкой пока не очевидно. Не исключена возможность того, что физической связи между этими явлениями нет и их последовательное возникновение является просто случайностью.

В данной работе мы представляем анализ одного события типа II, в котором перед солнечной вспышкой SOL2013-11-05Т18:08 класса М1.0 в потоках рентгеновского излучения от всего Солнца (как от звезды) с помощью нескольких рентгеновских инструментов на различных космических аппаратах (КА) хорошо детектировались квазипериодические пульсации. Отметим, что это событие не рассматривалось в [Zimovets et al., 2022]. Цель работы – проанализировать взаимное пространственное расположение источников предвспышечных пульсаций и основной вспышки в этом событии и выяснить, была ли физическая связь между ними. В частности, установить, могли ли рассматриваемые предвспышечные пульсации являться триггером основной вспышки или нет.

2. ДАННЫЕ И МЕТОДЫ

2.1. Рентгеновское излучение

В этой работе мы использовали временные профили темпов счета или потока рентгеновского излучения Солнца, детектированного тремя различными инструментами (см. рис. 1): 1. Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) [Lin et al., 2002]. Использованы скорректированные на состояние аттенюаторов А1 темпы счета в четырех стандартных энергетических каналах 6–12, 12–25, 25–50 и 50–100 кэВ с шагом по времени 4 с;

2. Gamma-Ray Burst Monitor (GBM) на борту космической обсерватории Fermi [Meegan et al., 2009]. Использованы темпы счета наиболее ориентированного на Солнце детектора № 5 в энергетических каналах ~4.2–11.4, 11.4–26.3 и 26.3– 49.9 кэВ, близких по границам к соответствующим каналам RHESSI для сопоставления. Шаг по времени до ~18:09 UT составлял 256 мс, а после этого времени (в частности, во время вспышки SOL2013-11-05T18:08) 64 мс. Для построения вейвлет-спектров мы использовали временны́е профили с постоянным шагом 1 с, полученные путем интерполяции кубическими сплайнами;

3. X-Ray Sensor (XRS) на борту KA Geostationагу Operational Environmental Satellite (GOES) 15. Использованы профили потоков излучения в каналах 0.5-4 и 1-8 Å (3.1-24.8 и 1.55-12.4 кэВ, соответственно) с шагом по времени 2 с. Также использован профиль температуры T(t) плазмы, рассчитанной по данным двух каналов в приближении модели тормозного излучения однородной однотемпературной максвелловской плазмы [White et al., 2005].

В рассматриваемом событии последовательность из как минимум N = 4 пульсаций с характерным шагом между соседними пиками или периодом $P = 1.5 \pm 0.1$ мин в профилях рентгеновского излучения по данным RHESSI, Fermi/GBM и GOES/XRS видна невооруженным глазом. Также информация об этих пульсациях содержится в каталоге событий предвспышечных рентгеновских пульсаций [Tan et al., 2016] (частная переписка). Тем не менее, для более формального установления наличия или отсутствия квазипериодичности во временных профилях рентгеновского излучения и температуры плазмы в этом событии был выполнен стандартный вейвлетанализ с помощью пакета программ Wave IDL [Torrence and Compo, 1998]. Вейвлет-спектры (вейвлеты Морле) строились для обработанных временны́х профилей, $I_{\text{prep}}(t) = (I(t) - I_{\text{smooth}}(t))/$ I_{smooth}(t), полученных из начальных профилей I(t) вычитанием тренда ($I_{\text{smooth}} -$ сглаженных начальных профилей) и нормированных на сглаженный профиль. Обработанные профили Fermi/GBM и GOES/XRS дополнительно усреднялись за 4 с, чтобы в итоге иметь шаг по времени такой же, как у темпов счета RHESSI для единообразия. Все подготовленные профили нормированы на максимум, чтобы иметь значения в пределах от -1 до +1. Подобная процедура подготовки временных сигналов солнечных вспышек

Рис. 1. Временные профили темпов счета Fermi/GBM (*a*), RHESSI (*б*), потоков рентгеновского излучения по данным GOES/XRS (*в*) и температуры излучающей плазмы T(t) по данным GOES/XRS (*г*). Сверху на (*б*) указаны интервалы вспышечного события (горизонтальная штриховая линия, помеченная F) и различных состояний аттенюаторов RHESSI (горизонтальные пунктирные линии, помеченные A0, A1) согласно каталогу событий RHESSI. Официальное начало вспышки M1.0 SOL2013-11-05T18:08 обозначено жирной вертикальной штрихпунктирной линией. Начала и концы временны́х интервалов t1-t8, для которых строились рентгеновские изображения по данным RHESSI (см. рис. 3, 4), показаны вертикальными пунктирными и штриховыми прямыми линиями, соответственно.

часто используются при построении фурье- или вейвлет-спектров (например, [Kupriyanova et al., 2010; Zimovets and Struminsky, 2010]).

Для анализа пространственного расположения источников рентгеновского излучения (предвспышечных пульсаций и основной вспышки) на Солнце мы синтезировали несколько серий изображений в диапазоне 6-12 кэВ по данным КА RHESSI. Также были синтезированы изображения в канале 12–25 кэВ, которые не приводятся в этой работе. Источники в этих двух энергетических каналах хорошо соответствуют друг другу. Для более высоких энергий не удалось синтезировать качественных изображений по причине слабого сигнала на детекторах RHESSI. С помощью алгоритмов Back Projection и Clean [Hurford et al., 2002] по данным детекторов № 3-9 (с наилучшим угловым разрешением 6.79 угл. с) синтезировались изображения как для всего диска Солнца (128 × 128 пикселей, каждый размером 16×16 угл. с), так и для локальных активных областей (64×64 пикселя, каждый размером 4×4 угл. с или 2×2 угл. с). Длительность интервалов времени для синтеза изображений от 16 до 40 с, в зависимости от характерного времени вариаций потока фотонов в канале 6-12 кэВ и уровня потока (для предвспышечных пульсаций время интегрирования больше, чем для импульсной фазы основной вспышки).

2.2. Ультрафиолетовое излучение

Использованы серии изображений инструмента Atmospheric Imaging Assembly (AIA) на борту космического аппарата Solar Dynamics Observatory (SDO) [Lemen et al., 2012] в семи каналах вакуумного ультрафиолетового (ВУФ) излучения: 94 Å (lg(T) ~ 6.8, Fe XVIII), 131 Å (lg(T) ~ 5.6 и ~7.0, Fe VIII, XXI), 171 Å (lg(T) ~ 5.8, Fe IX), 193 Å (lg(T) ~ ~ 6.2 и 7.3, Fe XII и XXIV), 211 Å (lg(T) ~ 6.3, Fe XIV), 304 Å (lg(*T*) ~ 4.7, He II) и 335 Å (lg(*T*) ~ ~ 6.4, Fe XVI). Угловое разрешение SDO/AIA \approx 1.2 угл. с (при размере пикселя ~0.6 угл. с), шаг по времени ~12 с. Для сравнения с положением рентгеновских источников по данным RHESSI мы в основном анализировали разностные изображения в "горячем" канале 131 Å с общей базой перед началом предсвспышечных пульсаций. Разностные изображения помогают надежнее обнаруживать появление новых источников на фоне уже существующих ярких источников. Изображения во всех ВУФ каналах анализировались с целью проверки наличия высоких корональных петель, которые могли бы соединять разнесенные активные области.

Забегая вперед, отметим, что источники предвспышечных рентгеновских пульсаций ассоциировались с корональными струями (джетами) плазмы в АО 11884. Лучше всего эти струи были видны в канале SDO/AIA 171 Å и поэтому здесь мы ограничились только данными наблюдений в этом канале (более подробный анализ этих струй будет представлен в другой работе). Для оценки скоростей плазмы определялись срезы (искусственные "щели") вдоль проекции струй на солнечный диск на серии ЭУФ-изображений и для этих срезов строились диаграммы время-расстояние. Струи видны на этих диаграммах как яркие наклонные полосы. Наклон полос использовался для линейной оценки скорости плазмы. Поиск и визуализация струй выполнялись с использованием пакета программ Jet Analyzer [Kaltman et al., 2021; Stupishin et al., 2021, 2022], анализ структуры струй и определение их скоростей с помощью пакета SlitTreat (v.1.2) [Stupishin, 2022].

2.3. Экстраполяция магнитного поля

Для исследования магнитной связанности рассматриваемых AO использован пакет PFSS viewer из библиотек программного обеспечения Solar-SoftWare (https://www.lmsal.com/solarsoft/), peaлизующий экстраполяцию магнитного поля с фотосферы в корону в потенциальном приближении с радиальным источником на граничной сфере R = $= 2.5 R_{\rm S}$ [Schrijver and DeRosa, 2003]. В качестве граничных данных на нижнем слое используются специальным образом подготовленные фотосферные магнитограммы продольной лучу зрения компоненты магнитного поля инструмента Helioseismic and Magnetic Imager (HMI) [Scherrer et al., 2012] на борту КА SDO. В сутки готовится 4 магнитограммы с шагом 6 ч. Мы использовали магнитограмму в ~18:00 UT, ближайшую по времени к началу рассматриваемого события. Силовые линии магнитного поля строились из двух областей с угловыми размерами примерно 26° с центрами в АО 11890 и АО 11884/11885. Стартовые точки рассчитываемых силовых линий выбирались случайным образом на фотосфере в рассмотренных областях. Было проведено несколько расчетов разного количества силовых линий с разными стартовыми точками и результаты во всех случаях аналогичные. Мы приводим в этой статье результаты только одного расчета.

Дополнительно мы использовали оригинальные магнитограммы SDO/HMI продольной лучу зрения компоненты поля на фотосфере с шагом по времени 45 с для приближенного расчета беззнакового магнитного потока: $F(|B_{los}|) = \iint |B_{los}(x, y)| dxdy$, где интегрирование (суммирование) проводилось по всем пикселям внутри рассматриваемых участков АО. Для грубой оценки, достаточной в этой работе, не учитывался угол между нормалью к фотосфере и лучом зрения. Магнитограммы в рассматриваемых сериях (длительностью 1.5 ч, 17:00-18:30 UT 05.11.2013 г.) подворачивались к одному моменту времени для учета дифференциального вращения Солнца. Для проверки наличия/отсутствия корреляций между динамикой магнитных потоков в двух АО (11890 и 11884) строилась зависимость кросс-корреляции от лага с помощью процедуры *c_correlate.pro* в *IDL*.

3. РЕЗУЛЬТАТЫ АНАЛИЗА НАБЛЮДЕНИЙ

На рис. 1 представлены временные профили темпов счета в нескольких рентгеновских каналах Fermi/GBM (рис. 1a), RHESSI (рис. 1б), потоков в каналах 1-8 Å и 0.5-4 Å GOES/XRS (рис. 1*в*) и температуры плазмы, рассчитанной по данным GOES/XRS (рис. 1*д*). Основная вспышка класса M1.0 SOL2013-11-05Т18:08 началась в 18:08 UT, имела пик в 18:13 UT и формальное (по рентгеновским данным GOES/XRS) окончание в 18:17 UT (https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/ goes-xrs-report 2013.txt). Перед началом вспышки, начиная примерно с 18:02 UT, на всех временны́х профилях видна последовательность из четырех пиков (пульсаций) возрастающей амплитуды с примерно одинаковыми интервалами времени между соседними пиками $P_{\text{OPP}} = 1.5 \pm 0.1$ мин. Они видны в каналах до 25 кэВ RHESSI и Fermi/GBM, в профилях потоков и температуры по данным GOES/XRS. По определению [Tan et al., 2016] эту последовательность пиков можно рассматривать как предвспышечные рентгеновские квазипериодические пульсации (КПП). Наличие аналогичной серии пульсаший в данных по меньшей мере трех различных инструментов, установленных на КА на различных орбитах, является веским аргументом за то, что эти пульсации имеют естественное происхождение на Солнце и не являются приборным артефактом (например, [Inglis et al., 2011]). После четвертого пика, начиная с ~18:07:30 UT (т.е. в окрестности официаль-

2023

551

ного начала основной вспышки) в каналах ~12– 25 и 25–50 кэВ появился еще один пик, который не был явно виден на энергиях ниже ~12 кэВ и в потоках и температуре по данным GOES/XRS. Время между максимумами этого всплеска и предыдущей пульсации 1.18 мин, что хотя и близко к $P_{\rm QPP}$, но все же немного меньше. Это (а также более жесткий спектр) дало основание предположить, что этот (и последующий) всплески могли выбиваться из общей серии предвспышечных пульсаций.

На рис. 2 показаны обработанные временные профили (с вычтенным трендом, нормированные на максимум), а также их вейвлет-спектры и глобальные вейвлет-спектры (ГВС) темпов счета RHESSI в канале 6-12 кэВ и Fermi/GBM в канале 4.2-11.4 кэB, потока рентгеновского излучения Солнца в канале 0.5–4 Å и температуры плазмы по данным GOES/XRS. Для канала 1-8 Å ситуация аналогичная и мы не приводим соответствующие рисунки. Можно видеть, что перед основной вспышкой (~18:02-18:08 UT) во всех временных профилях присутствует значимая гармоника с периодом $P_{\text{OPP}} = 1.5 \pm 0.1$ мин. Также можно отметить, что прослеживается ее продолжение в импульсной фазе вспышки (до ~18:10 UT: рис. 26. 2ω , $2\check{u}$), хотя период там увеличивается до ~2 мин.

Анализируя только временные профили без информации о пространственном расположении источников излучения, можно было бы сделать ошибочный вывол. что в АО перед вспышкой развивается какой-то квазипериодический процесс, который переходит в импульсную фазу вспышки с небольшим изменением периода (такой сценарий обсуждался, в частности, в [Tan et al., 2016]). Тем не менее, это не так. На рис. 3 показано расположение рентгеновских источников в диапазоне энергий 6–12 кэВ на диске Солнца по данным наблюдений RHESSI для восьми интервалов времени t1-t8, обозначенных на рис. 1. Из рис. 3 видно, что источники первых четырех предвспышечных пульсаций (интервалы t1-t4) находились в AO 11884 (гелиографические координаты ~S16W46, магнитный класс Хэйла $\beta\gamma$) в западной полусфере. В интервале t5 на диске одновременно наблюдались два источника — один в АО 11884, другой в AO 11890 (~S15E49, магнитный класс Хэйла βγδ) в восточной полусфере, где произошла основная вспышка М1.0. Расстояние (по прямой) между АО 11890 и 11884 составляло *D* ~ 1.4 *R*_S. В интервалах t6-t8 рентгеновских источников в AO 11884 больше не было видно, наблюдались только рентгеновские источники во вспышечной АО 11890. Здесь стоит отметить, что динамический диапазон RHESSI ~10, что не исключает возможности наличия слабых рентгеновских источников в AO 11884 и после t5, но их яркость тогда должна

быть ниже яркости вспышечных источников в АО 11890 как минимум на один порядок величины.

На рис. 4 показаны серии разностных изображений в канале 131 Å SDO/AIA с наложенными (контурами) рентгеновскими источниками в диапазоне 6-12 кэВ по данным RHESSI отдельно для АО 11884 (рис. 4*a*-4*ж*) и АО 11890 (рис. 4*з*-4*o*) для восьми интервалов времени t1-t8 (см. рис. 1). Рис. 4а-4ж наглядно иллюстрирует, что источники предвспышечных рентгеновских пульсаций (в t1-t5) имели компактный размер ($L \sim 17.3$ угл. с ~ ~ 12.6 Мм), располагались примерно в одном месте в АО 11884 и были связаны с возникновением уярчений в ЭУФ-диапазоне сначала в виде компактной каспообразной структуры (рис. 4a), которая затем вытянулась в юго-западном направлении в виде плазменных струй (рис. 46-4ж). Рентгеновские источники располагались в окрестности места начального истечения этих струй. Используя описанную в разделе 2.2 методику на основе построения диаграмм время-расстояние для нескольких искусственных "щелей" вдоль направления распространения струй обнаружено, что в рассматриваемом интервале времени ~18:02-18:08 UT было несколько истечений плазмы с различными скоростями в картинной плоскости: v ~ 70-1100 км/с (см. рис. 5). К высоким значениям более 1000 км/с нужно относиться с осторожностью, т.к. они получены по малому количеству точек на диаграммах время-расстояние (почти вертикальные линии на рис. 56, 5г). С учетом гелиографической долготы АО 11884 ф ~ 46°, оценка диапазона скорости движения струй: $v_i \sim$ ~ v/sin φ ~ 100—1500 км/с.

В АО 11890 в интервалах времени t1-t4 рентгеновских источников не было видно (рис. $43-4\kappa$). Однако в интервалах t5 и t6 (до ~18:09 UT), т.е. перед началом импульсной фазы основной вспышки класса М1.0, в АО 11890 появился рентгеновский (6-12 кэВ) источник, который располагался в окрестности вершины "узкого" (с шириной <5 угл. с) петлеобразного ЭУФ-источника, появившегося на разностных изображениях "горячего" канала SDO/AIA 131 Å (рис. 4л, 4м). В интервалах времени t7-t8, соответствующих фазе спада главного рентгеновского пика импульсной фазы вспышки, петлеобразный источник стал визуально значительно более "широким" (>15 угл. с) и ярким, а рентгеновский источник (6–12 кэВ) сместился ближе к его юго-западному подножию (рис. 4h-4o). Интересно также отметить, что в интервалах времени t2-t4 на месте, где позднее (в t5-t8) примерно располагались противоположные подножия вспышечных ЭУФ-петель, появились два компактных (размером несколько пикселей) уярчения на разностных изображениях в канале 131 Å SDO/AIA (показаны стрелками на рис. $4u-4\kappa$). О подобных компактных уярчениях перед началом солнечных вспышек сообщалось,

ПРЕДВСПЫШЕЧНЫЕ РЕНТГЕНОВСКИЕ ПУЛЬСАЦИИ

Рис. 2. Визуализация вейвлет-анализа обработанных временны́х профилей рентгеновского излучения Солнца по данным Fermi/GBM в канале 4.2–11.4 кэВ (*a*–*θ*), RHESSI в канале 6–12 кэВ (*z*–*e*), GOES/XRS в канале 0.5–4 Å (\tilde{e} –3) и температуры плазмы *T*(*t*) по данным GOES/XRS (*u*– κ). Для всех данных на верхних панелях (*a*, *e*, \tilde{e} , *u*) показаны подготовленные временны́е профили с вычтенным трендом и нормированные на максимум. На нижних панелях (*б*, *д*, *ж*, \tilde{u}) показаны вейвлет-спектры, на которых сплошными кривыми показаны уровни достоверности 99.7%, а штриховой кривой – конус влияния. Вертикальная пунктирная линия обозначает официальное начало основной солнечной вспышки M1.0 SOL2013-11-05T18:08. На панелях справа (*в*, *е*, *з*, *к*) сплошной линией показаны соответствующие глобальные вейвлет-спектры (ГВС), пунктирная линия – спектр модели красного шума. Там же приведены значения (в минутах) статистически значимого спектрального пика ГВС над спектром красного шума.

например, в работе [Hudson et al., 2021], которые обсуждались в контексте нагрева плазмы в петлях перед началом импульсной фазы. Возможно, такие локальные ЭУФ-уярчения являются одним из видов предвестников или прекурсоров вспышек. К сожалению, динамического диапазона и/или чувствительности RHESSI не хватило, чтобы построить качественные изображения с рентгеновскими источниками этих предвестников. Мы только можем заключить, что в это время рентгеновские источники, если и присутствовали в АО 11890, были как минимум в ~10 раз менее яркими, чем источники рентгеновских пульсаций в АО 11884 в западной части солнечного диска.

Рисунок 6 наглядно подтверждает, что активность, связанная с рентгеновскими пульсациями до начала основной вспышки в 18:08 UT, происходила в AO 11884, а не в AO 11890. На рис. 6 показаны нормированные (на максимум в рассматриваемом интервале времени) временные профили интенсивности в нескольких каналах ЭУФ/УФ- излучения SDO/AIA, проинтегрированные как по всему диску Солнца (полное поле зрения SDO/ АІА, сплошные кривые), так и отдельно по участкам в АО 11884 и АО 11890, где располагались источники рентгеновских пульсаций (пунктир) и источники основной вспышки (точки), соответственно. Хорошо видна растянутая во времени (примерно с ~18:01 UT) повышенная активность в AO 11884 до начала вспышки в AO 11890, причем интенсивность излучений в АО 11884 в несколько раз ниже, чем в АО 11890 во время основной вспышки, что видно по интегральным кривым со всего диска (сплошные кривые). Профили в разных каналах SDO/AIA отличаются. Видны серии пиков в АО 11884 до ~18:12 UT (с длинными хвостами после этого времени в каналах 1600 и 1700 Å), но не видно квазипериодичности, аналогичной той, что наблюдалась в рентгеновских данных (рис. 1, 2). Это может быть интерпретировано, во-первых, тем, что шаг данных по времени в ЭУФ-каналах AIA/SDO ~12 с и ~24 с в УФ кана-

Рис. 3. Рентгеновские изображения Солнца до и во время вспышки класса M1.0 SOL2013-11-05T18:08, построенные с помощью алгоритма *Clean* по данным RHESSI в диапазоне энергий 6–12 кэВ для интервалов времени *t*1, *t*2, ..., *t*8, указанных на рис. 1. Оптический лимб Солнца показан сплошной белой окружностью. Белые квадраты указывают расположение AO 11884 в западной части диска и AO 11890 в восточной. Рентгеновские источники (на уровне 50% от максимальной яркости) на этом масштабе видны как белые кружки, расположенные примерно в центре белых квадратов.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 5 2023

Рис. 4. Разностные изображения в канале 131 Å SDO/AIA участков AO 11884 ($a - \infty$) и AO 11890 (3 - o), показанных белыми квадратами на рис. 3, для центров интервалов времени t1, t2, ..., t8 (см. рис. 1). Рентгеновские источники по данным RHESSI в диапазоне 6–12 кэВ показаны жирными изо-контурами округлой формы на уровнях 50% и 90% от максимальной яркости для соответствующих интервалов времени. Белыми тонкими пунктирными дугами показана проекция гелиографической сетки координат с шагом 5°. Стрелкой на ($\delta - \infty$) отмечены корональные джеты в AO 11884, а стрелками на ($u - \kappa$) показаны предвспышечные уярчения в канале 131 Å SDO/AIA в AO 11890.

лах, что в несколько раз больше шага по времени рассмотренных рентгеновских данных. Во-вторых, по всей видимости, динамика горячей плазмы, высвечивающей в рентгеновском диапазоне, отличается от динамики более холодной плазмы, светящейся в ЭУФ и УФ.

Рисунок 6 также позволяет понять, почему в интервале *t*5 одновременно наблюдались рентге-

новские источники в АО 11884 и 11890 — в это время активность в АО 11884 еще не до конца угасла, тогда как в АО 11890 уже началась усиливаться активность, связанная с энерговыделением предвестников основной вспышки.

Мы проанализировали изображения в разных ЭУФ-каналах SDO/AIA, на которых видны корональные структуры в широком диапазоне темпе-

Рис. 5. Визуализация анализа корональных струй в AO 11884 по данным канала 171 Å SDO/AIA. (*a*) и (δ) – изображения струй для двух моментов времени, обозначенных вертикальной линией на (*в*) и (*г*) соответственно. Кривая линия – срез, вдоль которого строилась диаграмма время—расстояние, показанная на *в*, *г* соответственно. Наклон отрезков, соединяющих звездочки на (*в*) и (*г*), используется для оценки скорости течения струй, которые видны как яркие наклонные структуры.

ратур от $\sim 10^4$ до 10^7 K, и не обнаружили корональных петель, которые бы соединяли разнесенные АО 11890 на востоке и АО 11884 на западе. Примеры изображений для интервала времени ~18:03:20-30 UT (около t2 на рис. 1) показаны на рис. 7a-7ë. Дополнительно, мы экстраполировали магнитное поле в корону в сферическом слое в диапазоне радиальных расстояний [1 R_s, 2.5 R_s] в потенциальном приближении (для магнитограммы ~18:03:28 UT) и рассчитали большое количество магнитных силовых линий со случайными стартовыми точками на фотосфере в АО 11890 и 11884. Пример реализации расчета 500 силовых линий, имеющих основания в АО 11890 представлен на рис. 7ж, в АО 11884 – на рис. 73. Мы не обнаружили петлеобразные силовые линии, которые соединяли бы две эти АО (т.е. имели бы в них противоположные подножия). Следовательно, мы можем заключить, что рассматриваемые АО 11890 и 11884 с высокой вероятностью не были магнитно-связанными через корону.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Кратко сформулируем основные результаты анализа рассмотренного события. Установлено, что:

1. Во временны́х профилях интенсивности рентгеновского излучения (и температуры плазмы), проинтегрированного по всему солнечному диску, перед началом основной вспышки класса М1.0 SOL2013-11-05T18:08 содержалась серия квазипериодических пульсаций возрастающей амплитуды с периодом $P_{\rm OPP} = 1.5 \pm 0.1$ мин;

2. Источники этих пульсаций располагались в AO 11884 в западной части солнечного диска, тогда как источники основной вспышки были в AO 11890 на востоке. Линейное расстояние между AO 11884 и 11890 составляло $D \sim 1.4 R_{\rm S}$ (~970 Mм);

3. Источники рентгеновских пульсаций располагались в окрестности основания корональных струй (наблюдавшихся в ЭУФ-диапазоне), истекавших со скоростями, варьирующимися в пределах $v \sim 100-1500$ км/с, в юго-западном направ-

Рис. 6. Временны́е профили интенсивности ультрафиолетового излучения в шести разных каналах SDO/AIA: 94 Å (*a*); 131 Å (*b*); 171 Å (*b*); 304 Å (*c*); 1600 Å (*d*); 1700 Å (*e*) с вычтенным фоном (перед началом события в 17:30 UT) и нормированные на максимум. Интенсивность во всем поле зрения SDO/AIA (со всего видимого диска Солнца) показана сплошной кривой; с участка AO 11884, где располагались предвепышечные пульсации – штриховой кривой; с участка AO 11890 основной вспышки – точечной кривой. Начало и конец временны́х интервалов t1-t8 (см. рис. 1) показаны вертикальными пунктирными и штриховыми прямыми линиями соответственно.

лении, противоположном направлению расположения АО 11890 основной вспышки (в картинной плоскости);

4. В короне в ЭУФ и рентгеновском диапазонах не наблюдалось петель, которые бы соединяли сильно разнесенные АО 11884 и 11890, также не обнаружено связности двух этих АО силовыми линиями коронального магнитного поля, экстраполированного в потенциальном приближении.

Согласно полученным результатам 1–2, рассмотренное событие относится к типу II событий с предвспышечными рентгеновскими пульсациями по классификации, приведенной в работе [Zimovets et al., 2022]. В той работе был поставлен вопрос о том, есть ли причинно-следственная связь между пульсациями и основной вспышкой в событиях такого типа, когда источники пульсаций располагаются вне родительской АО основной (более мощной) последующей вспышки.

Мы сформулируем вопрос более конкретно: могли ли эпизоды энерговыделения в АО 11884, связанные с рентгеновскими пульсациями, быть триггером вспышки в АО 11890? В качестве первого кандидата в возможные триггеры, переносящего энергию, рассмотрим плазменные струи, поскольку потоки плазмы предполагаются в качестве одного из возможных триггеров магнитного пересоединения в АО Солнца (например, [Srivastava et al., 2019; Ugai, 2019]). Покажем, что эта возможность очень маловероятна в изучаемом событии. Во-первых, струи истекали в противоположном от АО 11890 направлении. Тем не менее, поскольку наблюдения выполнялись в картинной плоскости, в силу наличия проекционного эффекта, нельзя исключить ситуацию, когда из-за определенной кривизны петельных силовых линий плазма струй все же могла достичь АО 11890. Во-вторых, струям потребовалось бы

Рис. 7. Изображения Солнца в семи спектральных ЭУФ-каналах SDO/AIA в интервале 18:03:18–18:03:26 UT 05.11.2013 г.: 94 Å (*a*); 131 Å (*b*); 171 Å (*b*); 193 Å (*c*); 211 Å (*d*); 304 Å (*e*); 335 Å (*ë*). Фотосферная магнитограмма продольной лучу зрения компоненты магнитного поля по данным SDO/HMI (18:03:28 UT) с наложенными 500 силовыми линиями потенциального магнитного поля, стартовые основания которых на фотосфере выбраны случайным образом в AO 11890 (*ж*) и AO 11884 (*3*).

время $dt_j > (\pi D/2)/v_j \sim 17-250$ мин, чтобы достичь АО 11890 (здесь использовалось предположение, что петли представляют собой полуокружность диаметра D и скорость постоянна). Это как минимум в 3 раза больше времени между началом наблюдений пульсаций (струй) и началом основной вспышки ($\Delta t \sim 6$ мин). Отметим, что оценка скорости v_j сделана по начальной траектории струй и не учитывает возможного замедления скорости. В-третьих, против этой гипотезы свидетельствует отсутствие наблюдаемых корональных петель и реконструированных магнитных силовых линий, соединяющих АО 11884 и 11890, вдоль которых могли бы течь струи. В совокупности, эти аргументы позволяют с высокой вероятностью исключить рассматриваемую возможность.

Вторым потенциальным кандидатом в триггеры (магнитного пересоединения и вспышки) являются магнитогидродинамические (МГД) волны (например, [McLaughlin et al., 2018]), которые могли испускаться из АО 11884 во время пульсаций и которые могли распространяться как вдоль

Рис. 8. Участки фотосферных 45-секундных магнитограмм SDO/HMI продольной лучу зрения компоненты поля для AO 11890 (*a*) и 11884 (*б*) вблизи интервалов времени *t*6 и *t*1 (см. рис. 1) соответственно, на фоне которых белым контуром приведено положение рентгеновского источника 6–12 кэВ на уровне 50% от максимальной яркости. Черные квадраты – участки вокруг рентгеновских источников, по площади которых вычислялись беззнаковые магнитные потоки, временные профили которых показаны на (*в*): штриховая кривая – для AO 11890, сплошная кривая – AO 11884 (значения умножены на 2.5 для удобства сопоставления). (*г*) – зависимость кросс-корреляции профилей магнитных потоков в AO 11890 и 11884 от лага.

поля, так и поперек него. Продольные волны исключаются, поскольку, как уже отмечено выше, не было магнитного соединения между 11884 и 11890. К тому же, их характерные скорости в короне (до нескольких сотен км/с) слишком малы [Nakariakov et al., 2019]. Но и быстрые поперечные волны тоже можно исключить, поскольку их характерные скорости в короне составляют $v_f \sim 500-1500$ км/с [Nakariakov et al., 2021] (сопоставимо со скоростями струй): $dt_f \sim D/v_f \sim 11-32$ мин. К тому же, мы не наблюдали признаков распространения "глобальных" поперечных волн (типа

EIT волн), которые бы распространялись из AO 11884 во время пульсаций и могли достичь AO 11890.

Еще один мыслимый кандидат в возможные триггеры — ускоренные частицы. Действительно, во время пульсаций ускорялись электроны по крайней мере до нескольких десятков кэВ, что было видно по появлению степенных "хвостов" в спектрах рентгеновского излучения, полученных по данным RHESSI (мы их не приводим в этой работе). Но в силу отсутствия магнитной связанности между AO 11884 и 11890, ускоренные в AO 11884 частицы не могли достичь AO 11890. И по этой причине мы исключаем эту возможность из дальнейшего рассмотрения.

Наконец, в работе [Zimovets et al., 2022] была высказана гипотеза о том, что в событиях типа II может происходить когерентное (скоррелированное) всплытие магнитных потоков из-под фотосферы в разнесенных АО, в которых располагаются источники пульсаций и основной вспышки. Для проверки этой гипотезы мы построили временные профили приближенных (без учета угла между нормалью к фотосфере и лучом зрения) беззнаковых магнитных потоков для участков AO 11884 и 11890 в окрестности (±30 угл. с) рентгеновских источников пульсаций и основной вспышки (рис. 8а, 8б) с шагом 45 с для интервала времени 17:00-18:30 UT (рис. 8в) и построили зависимость кросс-корреляции между двумя полученными временными профилями от лага (рис. 8г). Значения кросс-корреляции не превышают 0.4 во всем диапазоне лагов от -90 до +90 мин. Это указывает на то, что динамика магнитных потоков в АО 11890 была независима от динамики магнитного потока в АО 11884. На основе этого мы исключаем и эту гипотезу из рассмотрения.

5. ЗАКЛЮЧЕНИЕ

Таким образом, путем исключения различных мыслимых возможностей, мы пришли к заключению, что эпизоды энерговыделения, связанные с рентгеновскими квазипериодическими пульсациями в AO 11884 не могли являться триггером вспышки M1.0 SOL2013-11-05T18:08 в AO 11890. Это, тем не менее, не гарантирует, что и во всех остальных событиях типа II основные вспышки не связаны причинно-следственными связями с предвспышечными пульсациями. Этот вопрос требует дальнейшего систематического изучения.

Также, обнаружено, что источники рентгеновских пульсаций в АО 11884 располагались вблизи оснований корональных струй, наблюдавшихся в ЭУФ-диапазоне. Исследование связи между пульсациями и струями осталось за рамками этой работы, поскольку ее основная цель заключалась в установлении пространственного взаиморасположения источников пульсаций и основной вспышки. Дальнейшее, более детальное изучение связи между рентгеновскими пульсациями и корональными струями как в этом, так и в других событиях представляет интерес (например, [Li et al., 2022; Mishra et al., 2023]), поскольку механизмы квазипериодических пульсаций в активных областях Солнца до сих пор не установлены [Van Doorsselaere et al., 2016; McLaughlin et al., 2018; Куприянова и др., 2020; Zimovets et al., 2021].

Наконец, проанализированное событие демонстрирует важное значение пространственно-разрешенных наблюдений при исследовании квазипериодических пульсаций на Солнце (и звездах), позволяющих устанавливать существенные ограничения на физические модели.

6. БЛАГОДАРНОСТИ

Мы благодарны коллективам инструментов RHESSI, SDO/AIA, SDO/HMI, GOES/XRS и Fermi/GBM за свободный доступ к данным, без которых эта работа не могла бы быть реализована в настоящее время. Программное обеспечение для вейвлет-анализа предоставлено С. Torrence и G. Compo и доступно по URL: (http://atoc.colorado.edu/research/wavelets/) и (https:// github.com/chris-torrence/wavelets). Благодарим рецензентов за полезные замечания.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа И.В. Зимовца, И.Н. Шарыкина и Б.А. Низамова (все, кроме выделения корональных струй и оценки их скорости) выполнена за счет гранта Российского научного фонда (проект № 20-72-10158).

СПИСОК ЛИТЕРАТУРЫ

– Жданов А.А., Чариков Ю.Е. Частотный анализ предвспышечного рентгеновского излучения Солнца // Письма в Астрон. журн. Т. 11. № 3. С. 216–221. 1985.

– Куприянова Е.Г., Колотков Д.Ю., Накаряков В.М., Кауфман А.С. Квазипериодические пульсации в солнечных и звездных вспышках. Обзор // Солнечно-земная физика. Т. 6. № 1. С. 3–29. 2020.

– Abramov-Maximov V.E., Bakunina I.A. Signs of preparation of solar flares in the microwave range // Geomagn. Aeronomy. V. 62. № 7. P. 895–902. 2022.

https://doi.org/10.1134/S0016793222070040

- Abramov-Maximov V.E., Bakunina I.A. Solar-flare precursors in the microwave range // Geomagn. Aeronomy. V. 60. № 7. P. 846–852. 2020.

https://doi.org/10.1134/S0016793220070038

- Durasova M.S., Kobrin M.M., Yudin O.I. Evidence of quasi-periodic movements in the solar chromosphere and corona // Nature Physical Science. V. 229. № 3. P. 82–84. 1971.

https://doi.org/10.1038/physci229082b0 - Hudson H.S., Simoes P.J.A., Fletcher L., Hayes L.A., Han-

nah I.G. Hot X-ray onsets of solar flares // Mon. Not. R.

https://doi.org/10.12737/szf-61202001

Astron. Soc. V. 501. № 1. P. 1273–1281. 2021. https://doi.org/10.1093/mnras/staa3664

- Hurford G.J., Schmahl E.J., Schwartz R.A. et al. The RHESSI imaging concept // Solar Phys. V. 210. № 1–2. P. 61–86, 2002.

https://doi.org/10.1023/A:1022436213688

- Inglis A.R., Zimovets I.V., Dennis B.R., Kontar E.P., Nakariakov V.M., Struminsky A.B., Tolbert A.K. Instrumental oscillations in RHESSI count rates during solar flares // Astron. Astrophys. V. 530. ID A47. 2011.

https://doi.org/10.1051/0004-6361/201016322

- Kaltman T.I., Stupishin A.G., Anfinogentov S.A., Nakariakov V.M., Loukitcheva M.A., Shendrik A.V. Hot jets in the Solar corona: Creating a catalogue of events based on multiinstrumental observations // Geomagn. Aeronomy. V. 61. № 7. P. 1083–1091. 2021.

https://doi.org/10.1134/S0016793221070070

- Kobrin M.M., Korshunov A.I., Snegirev S.D., Timofeev B.V. On a sharp increase of quasi-periodic components of fluctuations of inclination of the spectrum of solar radio emission at lambda = 3 cm before active events in August 1972 // Soln. Dannye. \mathbb{N} 10. P. 79–85. 1973.

- Kupriyanova E.G., Melnikov V.F., Nakariakov V.M., Shibasaki K. Types of microwave quasi-periodic pulsations in single flaring loops // Solar Phys. V. 267. № 2. P. 329– 342. 2010.

https://doi.org/10.1007/s11207-010-9642-0

– Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) // Solar Phys. V. 275. № 1–2. P. 17–40. 2012. https://doi.org/10.1007/s11207-011-9776-8

- Li D., Shi F., Zhao H., Xiong S., Song L., Peng W., Li X., Chen W., Ning Z. Flare quasi-periodic pulsation associated with recurrent jets // Frontiers in Astronomy and Space Sciences: V. 9. ID 1032099. 2022.

https://doi.org/10.3389/fspas.2022.1032099

- Lin R.P., Dennis B.R., Hurford G.J. et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) // Solar Phys. V. 210. № 1–2. P. 3–32. 2002.

https://doi.org/10.1023/A:1022428818870

— McLaughlin J.A., Nakariakov V.M., Dominique M., Jelinek P., Takasao S. Modelling quasi-periodic pulsations in solar and stellar flares // Space Sci. Rev. V. 214. № 1. ID 45. 2018. https://doi.org/

https://doi.org/10.1007/s11214-018-0478-5

– Meegan C., Lichti G., Bhat P.N. et al. The Fermi Gammaray Burst Monitor // Astrophys. J. V. 702. № 1. P. 791–804. 2009.

https://doi.org/10.1088/0004-637X/702/1/791

- Mishra S.K., Sangal K., Kayshap P., Jelinek P., Srivastava A.K., Pajaguru S.P. Origin of quasi-periodic pulsation at the base of kink unstable jet // Astrophys. J. V. 945. № 2. ID 113. 2023.

https://doi.org/10.3847/1538-4357/acb058

- Nakariakov V.M., Kosak M.K., Kolotkov D.Y., Anfinogentov S.A., Kumar P., Moon Y.-J. Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations // Astrophys. J. Lett. V. 874. № 1. ID L1. 2019.

https://doi.org/10.3847/2041-8213/ab0c9f

– Nakariakov V.M., Anfinogentov S.A., Antolin P. et al. Kink oscillations of coronal loops // Space Sci. Rev. V. 217. № 6. ID 73. 2021.

https://doi.org/10.1007/s11214-021-00847-2

- Scherrer P.H., Schou J., Bush R.I. et al. The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO) // Solar Phys. V. 275. № 1–2. P. 207–227. 2012.

https://doi.org/10.1007/s11207-011-9834-2

- Schrijver C.J., DeRosa M.L. Photospheric and heliospheric magnetic fields // Solar Phys. V. 212. № 1. P. 165– 200. 2003.

https://doi.org/10.1023/A:1022908504100

- Srivastava A.K., Mishra S.K., Jelinek P. et al. On the observations of rapid forced teconnection in the solar corona // Astrophys. J. V. 887. № 2. ID 137. 2019. https://doi.org/10.3847/1538-4357/ab4a0c

- Stupishin A.G., Anfinogentov S.A., Kaltman T.I. Diagnostics of parameters of hot jets in the solar corona in time series of images // Geomagn. Aeronomy. V. 61. № 8. P. 1108– 11152021.

https://doi.org/10.1134/S0016793221080181

- Stupishin A., Anfinogentov S., Kaltman T. JeAn – Jet Analyzer software package // [Software] 2022. https://doi.org/10.5281/zenodo.7362689

- *Stupishin A*. SlitTreat: Slit analyzing tool // [Software] 2022.

https://doi.org/10.5281/zenodo.7362757

- Tan B., Yu Z., Huang J., Tan C., Zhang Y. Very long-period pulsations before the onset of solar flares // Astrophys. J. V. 833. \mathbb{N}_2 2. ID 206. 2016.

https://doi.org/10.3847/1538-4357/833/2/206

– Torrence C., Compo G.P. A practical guide to wavelet analysis // Bull. of Am. Met. Soc. V. 79. № 1. P. 61–78. 1998. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA> 2.0.CO;2

- Ugai M. Physical mechanism of reconnection onset in space plasmas // arXiv:ID 1902.01588. [physics.space-ph]. 2019.

https://doi.org/10.48550/arXiv.1902.01588

- Van Doorsselaere T., Kupriyanova E.G., Yuan D. Quasiperiodic pulsations in solar and stellar flares: An overview of recent results (Invited Review) // Solar Phys. V. 291. № 11. P. 3143–3164. 2016.

https://doi.org/10.1007/s11207-016-0977-z

- White S.M., Thomas R.J., Schwartz R.A. Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements // Solar Phys. V. 227. \mathbb{N}_2 2. P. 231–248. 2005.

https://doi.org/10.1007/s11207-005-2445-z

- Zimovets I.V., Struminsky A.B. Observations of doubleperiodic X-ray emission in interacting systems of solar flare loops // Solar Phys. V. 263. № 1–2. P. 163–174. 2010. https://doi.org/10.1007/s11207-010-9518-3

– Zimovets I.V., McLaughlin J.A., Srivastava A.K. et al. Quasi-periodic pulsations in solar and stellar flares: A review of underpinning physical mechanisms and their predicted observational signatures // Space Sci. Rev. V. 217. № 5. ID. 66. 2021. https://doi.org/

https://doi.org/10.1007/s11214-021-00840-9

- Zimovets I.V., Nechaeva A.B., Sharykin I.N., Nizamov B.A. Sources of long-period X-ray pulsations before the onset of solar flares // Geomagn. Aeronomy. V. 62. № 4. P. 356– 374. 2022.

https://doi.org/10.1134/S0016793222040181