УДК 524.1-352,523.985,523.985.4

ГЕОЭФФЕКТИВНОСТЬ СПОРАДИЧЕСКИХ ЯВЛЕНИЙ В 24-м СОЛНЕЧНОМ ЦИКЛЕ

© 2023 г. А. В. Белов¹, Е. А. Белова^{1, *}, Н. С. Шлык¹, М. А. Абунина^{1, **}, А. А. Абунин¹

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), Москва, Троицк, Россия

> *e-mail: lbelova@izmiran.ru **e-mail: abunina@izmiran.ru Поступила в редакцию 10.03.2023 г. После доработки 27.03.2023 г. Принята к публикации 28.03.2023 г.

Обсуждены особенности 24-го цикла солнечной активности, проявившиеся в вариациях космических лучей, характеристиках солнечных вспышек, протонных событий, корональных выбросов массы, а также уровне геомагнитной активности. Показано, что по числу солнечных пятен и других проявлений солнечной активности 24-й цикл оказался самым скромным за последние 100 лет наблюдений. Описано значительное снижение геоэффективности различных солнечных событий, проявившееся в меньшем количестве и величинах зарегистрированных на Земле Форбуш-эффектов, возрастаний потоков протонов и электронов разных энергий и геомагнитных бурь.

DOI: 10.31857/S0016794023600291, EDN: OUBOKI

1. ВВЕДЕНИЕ

Проводив 23-й цикл солнечной активности (СА), мы немало удивлялись его умеренности, но 24-й цикл по всем параметрам превзошел предшественника. Он реализовался как цикл низкой величины, пятнообразовательная и вспышечная активность которого были существенно ниже всех предыдущих солнечных циклов (СЦ) космической эры, и протекал в условиях, когда фоновые значения общего магнитного поля Солнца уменьшились более чем в два раза, что привело к полной перестройке физических условий на Солнце, и, как следствие, в гелиосфере [Ишков, 2022]. Чем еще удивил закончившийся цикл, чем именно он отличался от других и как он может изменить наши взгляды?

Ряд авторов обращает внимание на значительное изменение коронального магнитного поля Солнца: например, в работе Chifu et al. [2022] показано, что во время 24 СЦ основной вклад в общий поток магнитного поля вносит поток, поступающий от структур, отличных от солнечных пятен на широтах от -30° до $+30^{\circ}$, и, кроме того, большее число пятен было зарегистрировано в северном полушарии, но больший магнитный поток — в южном. Подобные выводы о североюжной асимметрии распределения солнечных пятен, отличающихся от предыдущих циклов СА, получены также и в работе Chandra et al. [2022]. Безродных и др. [2019] показали, что максимальное (113) и суммарное (545) число солнечных пятен в 24-м цикле уменьшилось соответственно на 45 и 50% относительно средних величин для последних семи циклов.

Ослабленная СА отражается в ослаблении таких параметров гелиосферы, как величина межпланетного магнитного поля (ММП), температура, плотность, скорость солнечного ветра (СВ) и, следовательно, общее давление, на величины от 20 до 40% [Yermolaev et al., 2022]. Ослабление гелиосферы в 24-м цикле привело и к изменению свойств распространения корональных выбросов массы (КВМ) и, следовательно, повлияло на космическую погоду, в частности, заметно сократилось количество интенсивных геомагнитных бурь с *Dst*min \leq −100 нТл [Zhang et al., 2021]. Manu et al. [2022] показали, что средняя интенсивность геомагнитной активности (ГА) в 24-м цикле по сравнению с 23-м, уменьшается больше всего в низких широтах, а на средних и в высоких широтах снижение интенсивности менее выражено.

Измененное состояние гелиосферы отразилось и на распространении галактических космических лучей (КЛ). Потоки галактических КЛ с энергией <1 ГэВ/нуклон в 2008—2009 гг. были самыми высокими по сравнению с минимумами пяти предыдущих СЦ [Безродных и др., 2019], а долговременная модуляция КЛ гелиосферным магнитным полем оказалась самой слабой за все время работы нейтронных мониторов [Янке и др.,

2021]. В работе Калинина и др. [2017] установлено, что определяющим фактором повышенной интенсивности галактических КЛ в минимуме 24 СЦ является аномальное понижение напряженности гелиосферного магнитного поля в этот период, при дополнительном влиянии скорости СВ и угла наклона гелиосферного токового слоя. В работе Мелкумян и др. [2018] обращается внимание на то, что в 24-м цикле Форбуш-эффектов (ФЭ – изменений плотности и анизотропии потока галактических КЛ) меньше, и они, в целом, слабее, чем в предыдущих циклах. Григорьев и др. [2022] показали, что в 24-м цикле СА наблюдался более мягкий энергетический спектр ФЭ, и пришли к выводу о том, что такое смягчение спектра может свидетельствовать о доминирующей роли диффузионного механизма формирования ФЭ и повышенной турбулентности ММП.

В работе Безродных и др. [2019] было отмечено значительное снижение в 24 СЦ потоков электронов внешнего радиационного пояса Земли. Например, в 2009 г. на геостационарной орбите зарегистрированы минимальные (с 1986 г.) величины потоков электронов с энергией >2 МэВ (по данным спутников GOES).

Высокоэнергичные (≥500 МэВ) солнечные протонные события (СПС) также регистрировались значительно реже в рассматриваемом периоде. Поскольку эффективность ускорения частиц зависит от напряженности магнитного поля, следовательно, уменьшение последнего приводит к меньшему эффективному ускорению, и частицы не достигают высоких энергий [Zhang et al., 2021]. Число СПС с энергией >10 МэВ уменьшилось незначительно, тогда как число наземных возрастаний при сравнении циклов 23 и 24 снизилось в 8 раз [Базилевская и др., 2021]. СПС разных энергий в 24-м цикле СА медленнее развивались и имели меньшую продолжительность в сравнении с предыдущим циклом [Pandey et al., 2022].

Общее количество КВМ увеличилось в 24 СЦ относительно цикла 23, хотя быстрых и широких КВМ стало меньше, и для определенных значений начальной скорости КВМ оказались значительно шире (см. [Zhang et al., 2021]). Также группа авторов Patel et al. [2022] указывают на резкое снижение (на 56%) скоростей КВМ в 24 СЦ по сравнению с предыдущим циклом, и, кроме того, описывают почти полное отсутствие быстрых событий с транзитным временем в 20–40 ч. В работе Shi et al. [2022] было показано, что количество КВМ, не связанных с солнечными вспышками (волоконные эрупции), почти не изменилось в 23-24 циклах СА, а вот "вспышечных" событий стало меньше. Известно, что частота возникновения КВМ коррелирует с числом солнечных пятен на длительных промежутках времени, но наклон линии регрессии значительно отличается в 24-м цикле [Zhang et al., 2021]. Lamy et al. [2019] указывают на то, что частота генерации КВМ в северном полушарии оказалась значительно больше, чем предсказывает временная вариация числа солнечных пятен.

Солнечные корональные дыры (КД) и связанные с ними высокоскоростные потоки СВ также способны оказывать воздействие на околоземное космическое пространство. Andreeva et al. [2021] описывают наблюдаемую на протяжении 24-го цикла асимметрию площадей полярных КД в северной и южной полусферах, а также отмечают, что площади неполярных КД меняются квазисинхронно с пятенной активностью Солнца. Најга et al. [2022] показали, что в 24 СЦ Земля подвергалась воздействию коротирующих областей взаимодействия (созданных высокоскоростными потоками плазмы из КД) в 2.6 раза чаще, чем воздействию турбулентных областей перед телом KBM. A в работе Yermolaev et al. [2022] показано, что в 24-м цикле доля геомагнитных бурь, инициированных воздействием коротирующих областей взаимодействия, увеличилась с 17 до 30% в сравнении с предыдущими циклами.

Несмотря на существование вышеупомянутых исследований, еще далеко не все особенности 24 СЦ объяснены и изучены, поскольку процессы, происходящие в гелиосфере, очень многогранны и взаимозависимы. Цель данной работы – оценить геоэффективность солнечных событий 24-го цикла, используя доступные наземные и спутниковые данные о солнечных вспышках, протонных возрастаниях, КВМ, потоках релятивистских электронов, вариациях КЛ и изменении уровня ГА.

2. ДАННЫЕ И МЕТОДЫ

В работе использованы данные по суточному флюенсу (суммарный поток в сутки) релятивистских магнитосферных электронов с энергиями >2 МэВ со спутников GOES (ftp://ftp.swpc.noaa.gov/ pub/lists/particle/). Информация о параметрах СВ взята из базы данных OMNI (ftp://spdf.gsfc.nasa. gov/pub/data/omni/high res omni), информация о геомагнитной активности (Кр- и Ар-индексы) из ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/wdc [Matzka et al., 2021]. Данные по ФЭ (вариации плотности и анизотропии КЛ для частиц с жесткостью 10 ГВ, рассчитанные методом глобальной съемки [Белов и др., 2018]) включены в базу данных Форбуш-эффектов и межпланетных возмущений (FEID – Forbush Effects and Interplanetary Disturbances, http://spaceweather.izmiran.ru/eng/dbs. html), созданную в ИЗМИРАН. В нашей работе рассматриваются часовые значения всех основных параметров СВ, ММП и КЛ, а для индексов геомагнитной активности используются трехчасовые интервалы. Данные по солнечным вспышкам и СПС собираются в базе данных рентгенов-

Циклы СА	Дата начала	Дата окончания
17 цикл	1933.09.01	1944.01.31
18 цикл	1944.02.01	1954.04.30
19 цикл	1954.05.01	1964.10.31
20 цикл	1964.11.01	1976.06.30
21 цикл	1976.07.01	1986.09.30
22 цикл	1986.10.01	1996.04.30
23 цикл	1996.05.01	2008.12.31
24 цикл	2009.01.01	2019.12.31

Таблица 1. Границы солнечных циклов

ских вспышек и протонных возрастаний [Belov et al., 2005, 2007; Белов, 2017]. Возрастания солнечных КЛ выбраны на основе измерений потоков протонов с энергией >10 и >100 МэВ спутниками IMP-8 и GOES (ftp://ftp.ngdc.noaa.gov/STP/ SOLAR_DATA/SOLAR_FLARES/XRAY_FLARES). Эта база данных ежедневно обновляется (http:// www.swpc.noaa.gov/ftpdir/lists/xray, ftp://ftp.swpc. noaa.gov/pub/indices/events/) и в настоящее время содержит более 82000 рентгеновских вспышек и более 1400 протонных событий с сентября 1975 г. Границы СЦ определены в соответствии с данными SIDC (https://www.sidc.be/silso/datafiles) и приведены в табл. 1.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Межпланетное магнитное поле и солнечный ветер

В таблице 2 приведены основные характеристики межпланетной среды с 20-го по 24-й циклы, поскольку непрерывные наблюдения скорости СВ и ММП начались с 1964 г. Видно, что спокойный характер 24-го цикла проявляется в средних величинах ММП *B*mean = 5.27 ± 0.01 нТл и скорости СВ *V*mean = 412.79 ± 0.30 км/с. Среднее значение ММП в 24-м цикле – минимальное по сравнению с другими циклами, так, например, оно на 27% меньше, чем в 21-м. А значение средней скорости СВ хоть и является наименьшим, но различие с другими циклами не столь значительное: от 4.2 до 9.5%.

3.2. Солнечные вспышки и протонные события

С 1976 г. рентгеновские вспышки практически бесперебойно регистрируются спутниками серии GOES. За это же время выделены околоземные возрастания потока протонов (или СПС), включая и самые слабые. В итоге имеются однородные данные за четыре полных солнечных цикла. Результаты приведены в табл. 3.

Можно видеть, что вспышек амплитудой ≥С1 в 24-м цикле было в 1.4—1.8 раза меньше, чем в предыдущих циклах СА, а вспышек ≥М1 — в 2— 3 раза. Следует отметить, что в 21—23 СЦ максимальная мощность вспышки ограничивалась порогом детектора, а в 24-м зарегистрирована реальная величина максимума, который меньше порога детектора и меньше максимальных значений в предыдущих циклах.

Если говорить о протонных событиях, то их, как и вспышек, стало меньше в 2.5-3.2 раза. Но все средние и большие вспышки, можно сказать, более рационально "расходовались", т.е. чаще приводили к регистрации СПС. Так, если в 21-22 СЦ, в среднем, одно СПС (>10 МэВ, ≥10 pfu) приходилось на ~2 вспышки с мощностью ≥X1, то в 23-24 СЦ количества таких событий сильно сблизились (в 23-м цикле зарегистрировано 108 вспышек ≥X1 и 120 СПС, а в 24-м цикле – 49 вспышек ≥X1 и 41 СПС). Естественно ожидать, что 24-й цикл будет сильнее отличаться от 21-22 циклов, чем от переходного 23-го цикла.

В 24-м цикле СА зарегистрировано всего 5 наземных возрастаний солнечных КЛ (GLE) – приблизительно в 3 раза меньше, чем в четырех последних циклах (рис. 1). Отметим, что под термином GLE мы понимаем следующее: возрастание КЛ было зарегистрировано либо на нескольких нейтронных мониторах на уровне моря, либо как минимум на одном нейтронном мониторе (на уровне моря) и спутниковом детекторе. Поэтому в нашу базу данных были включены и совсем маленькие возрастания, не учитываемые многими другими авторами.

3.3. Геомагнитные бури и Форбуш-эффекты

В Форбуш-эффектах, т.е. в вариациях КЛ (как правило, галактических), обусловленных КВМ и высокоскоростными потоками из КД [Forbush, 1938; Cane, 2000; Lockwood, 1971; Belov, 2009], хо-

Таблица 2. Основные характеристики ММП и СВ

Параметр/Цикл СА	20	21	22	23	24
<i>B</i> max	44.8	54.8	40.7	62.0	40.1
<i>B</i> mean	6.18 ± 0.01	7.19 ± 0.01	6.86 ± 0.02	6.20 ± 0.01	5.27 ± 0.01
Vmax	951	1021	1090	1876	907
Vmean	455.68 ± 0.43	430.18 ± 0.39	445.92 ± 0.54	443.27 ± 0.32	412.79 ± 0.30

Рис. 1. Моменты всех наземных возрастаний солнечных космических лучей (GLE) на фоне изменений чисел солнечных пятен.

рошо проявляются спорадические и рекуррентные солнечные явления. Поэтому их удобно использовать для сравнения солнечной активности в различных циклах. Точнее, в шести последних циклах, поскольку ФЭ выделены и собраны в базу данных FEID с 1957 г. Количества различных ФЭ в 19–24-м циклах СА вместе с количеством геомагнитных бурь разной величины сведены в табл. 4.

Параметр/Цикл СА	21	22	23	24
Количество вспышек ≥С1	16410	14600	12498	8659
Количество вспышек ≥М1	2340	2172	1396	800
Количество вспышек ≥Х1	166	153	108	49
Количество вспышек ≥Х5	19	23	17	4
Средняя мощность вспышки, 10^{-6} Вт/м ²	8.4 ± 0.29	9.4 ± 0.39	7.9 ± 0.44	5.8 ± 0.25
Максимальная мощность вспышки, 10 ⁻³ Вт/м ²	1.5	2.0	2.8	0.93
Количество СПС >10 МэВ, >0.1 pfu	468	431	371	143
Количество СПС >10 МэВ, >10 pfu	80	75	120	41
Среднее значение потока СПС > 10 МэВ, pfu	34.50 ± 7.94	121.09 ± 34.99	303.94 ± 105.45	113.19 ± 44.99
Максимальный поток СПС >10 МэВ, pfu	2250	10000	31700	5000
Количество СПС >100 МэВ, >0.02 pfu	215	213	180	79
Количество СПС >100 МэВ, >1 pfu	38	35	45	13
Среднее значение потока СПС >100 МэВ, pfu	2.48 ± 0.65	12.91 ± 4.29	16.90 ± 5.95	2.61 ± 1.25
Максимальный поток СПС >100 МэВ, pfu	75	559	650	70
Количество GLE	12	15	16	5
Среднее значение потока GLE >100 МэВ, pfu	33.76 ± 7.04	144.31 ± 45.39	149.52 ± 51.21	21.22 ± 12.14
Максимальный поток GLE >100 МэВ, pfu	75	559	650	68

Таблица 3. Характеристики солнечных вспышек и протонных возрастаний в четырех последних циклах СА

Примечание. Строка "Количество СПС >10 МэВ, >0.1 pfu" (и подобные) означает, что приведено количество возрастаний потока протонов с энергиями >10 МэВ, в которых максимальный поток (по средним 5-минутным значениям) частиц превышал значение 0.1 pfu.

Рис. 2. Соотношение геомагнитных бурь и Форбуш-эффектов.

На рис. 2 приведено соотношение количества и величины геомагнитных бурь и ФЭ с 19-го по 24-й циклы. Видно, как явно выделяется 24-й цикл — менее выражены и геомагнитные бури, и Форбуш-эффекты по сравнению с предыдуцими пятью циклами. Впервые появляются длительные (до 7 мес.) спокойные временные отрезки в начале и в конце цикла, когда магнитные бури и большие ФЭ не регистрировались совсем.

В 24 СЦ впервые наблюдается непривычно малое количество геомагнитных бурь: всего 283, и 123 из них — это бури с Kpmax = 5—. Заметим, что по количеству больших и очень больших бурь

24-й цикл оказался меньше своих предшественников в 3–4 раза, а исключительно больших геомагнитных бурь с Kpmax = 9 в нем и вовсе не случилось. По-прежнему, в этом отношении сильно выделяется 19-й цикл. Зато по количеству спокойных дней (Kpmax = 0) 24 СЦ ставит рекорд, здесь 11 "нулевых" дней, и главную лепту в эту цифру внес тишайший 2009 г., когда было 6 абсолютно спокойных дней.

На рис. 2 выделены периоды отсутствия геомагнитных бурь (отмечены эллипсами с номерами 1, 2 и 3). Период 1 продлился 8 мес.: с 12 октября 2008 г. по 23 июня 2009 г., если не считать один

19	20	21	22	23	24
621	499	588	538	487	283
317	294	308	283	272	177
168	119	173	152	119	82
72	49	73	72	60	17
57	34	33	30	33	7
7	3	2	1	3	0
1	0	0	0	6	11
435	631	593	586	635	505
71	102	94	123	110	46
35	23	35	38	50	13
10	2	2	7	7	1
15.67	12.84	14.03	15.59	11.87	7.97
-33.42	-25.03	-33.24	-36.58	-28.57	-19.34
	$ \begin{array}{r} 19 \\ 621 \\ 317 \\ 168 \\ 72 \\ 57 \\ 7 \\ 1 \\ 435 \\ 71 \\ 35 \\ 10 \\ 15.67 \\ -33.42 \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Таблица 4. Количество геомагнитных бурь и Форбуш-эффектов в шести последних солнечных циклах

Примечание. Данные по 19 СЦ несколько занижены, поскольку ФЭ и уровень ГА анализируются не с начала цикла (01.05.1954), а только с 1957 г.

Рис. 3. Сезонная зависимость среднемесячного *Ар*-индекса геомагнитной активности в 1932–2008 гг. (светло-серая кривая) и в последнем цикле (черная кривая). Вертикальными линиями показаны ошибки средних значений исследуемого параметра.

день 13 марта с одним трехчасовым интервалом малой магнитной бури (Kpmax = 5-). Период 2 продолжался 7 мес.: с 31 августа 2009 г. по 4 апреля 2010 г. А период 3 ставит рекорд в 10 месяцев, продолжаясь с 27 октября 2019 г. по 27 августа 2020 г., если не считать 20 апреля 2020 г., когда был зарегистрирован один интервал с Kpmax = 5-. В истории и ранее случались периоды без бурь, но не такие длинные.

Известна также сезонная зависимость ГА (см., например, [Cliver et al., 2002; Marques de Souza Franco et al., 2021 и ссылки в них]), связанная с наклоном оси Земли по отношению к силовым линиям ММП. Обычно весной и осенью ГА выше, чем зимой и летом. Поскольку имеются данные по ГА с 1932 г., можно сравнить средние месячные значения *Ар*-индекса геомагнитной активности 24-го цикла с семью его предшественниками (рис. 3). Хорошо видно, что 17–23-й циклы оказались более геоэффективными, чем 24-й цикл СА. Настолько, что даже максимальные мартовские и сентябрьские значения *Ар* в 24-м цикле оказались ниже минимальных усредненных значений за предыдущие семь циклов СА.

В 24-м цикле СА также значительно снизилось количество больших ФЭ: например, ФЭ величиной >5% оказалось всего 13, явно меньше, чем в 20–23-м циклах СА (см. табл. 4 и рис. 2). Самый большой ФЭ наблюдался 8 марта 2012 г., его амплитуда составила 11.2% (для сравнения: в 23-м цикле был зарегистрирован самый большой в истории наблюдений ФЭ (28%), а единственный сравнимый с ним по величине ФЭ (25%) был в далеком 1972 г.).

3.4. Корональные выбросы массы

Поскольку мы говорим о больших Форбушэффектах, которые обусловлены именно выбросами солнечного вещества, то изменения их количества должны быть связаны с количеством или какими-то другими свойствами КВМ. В табл. 5 приведены некоторые характеристики КВМ за последние два цикла СА.

Видно, что общее количество КВМ в 24-м цикле СА увеличилось, однако их средние и максимальные начальные скорости, стали меньше по сравнению с 23 СЦ. При этом также возросло количество зарегистрированных частичных гало, а полных гало стало несколько меньше. Подобные выводы были также получены в работах Zhang et al. [2021], Patel et al. [2022].

По-видимому, снижение скоростей КВМ привело к тому, что в 24-м цикле они стали менее эффективно модулировать КЛ, поскольку величина зарегистрированных ФЭ также заметно снизилась, как отмечалось ранее.

3.5. Анизотропия космических лучей

Мы рассмотрели проявления 24-го цикла в протонных вспышках, геомагнитных бурях и Форбуш-эффектах. Но даже такая "консервативная" характеристика КЛ, как анизотропия, проявилась заметным снижением в последнем цикле. В таблице 6 приведены значения экваториальной составляющей первой гармоники анизотропии КЛ (*Axy*) в исследуемые периоды. Поскольку для расчетов использовались часовые значения (и для

БЕЛОВ и др.

Таблица 5.	Количество и характеристи	ки КВМ за 23-24 циклы СА
	1 1	

Параметр/Цикл СА	23	24
Общее количество КВМ	13970	16108
Средняя начальная скорость КВМ, км/с	425 ± 2.3	340 ± 1.6
Количество гало КВМ	396	325
Средняя начальная скорость гало КВМ, км/с	1040 ± 29.6	906 ± 26.0
Максимальная начальная скорость гало КВМ, км/с	3387	3163
Количество частичных гало КВМ (ширина >120°)	843	1052
Средняя начальная скорость частичных гало КВМ, км/с	624 ± 13.0	513 ± 8.1
Максимальная начальная скорость частичных гало КВМ, км/с	2505	2039

Таблица 6. Максимальные и средние значения анизотропии КЛ в разные циклы СА

Величина/Циклы СА	19	20	21	22	23	24
Axy max, %	5.12	8.17	9.67	8.43	9.91	3.45
Axy mean, %	0.62	0.62	0.61	0.62	0.60	0.55

Примечание. Данные за 19 цикл неточные, т.к. цикл начался 1 мая 1954 г., а база данных FEID содержит данные с июля 1957 г.

Таблица 7. Максимальные и средние часовые значения потока релятивистских электронов с энергиями >2 МэВ на геостационарной орбите по данным спутников серии GOES

Величина/Циклы СА	22	23	24
$E \max$, частиц см ⁻² ср ⁻¹ ч ⁻¹	611 08 3	301 417	169333
E mean, частиц см ⁻² ср ⁻¹ ч ⁻¹	1856.41 ± 28.79	2120.45 ± 25.4	1484.87 ± 16.36

Примечание. Данные за 22 цикл неполные, т.к. наблюдение за электронами началось с 1987 г.

каждого цикла получается около 100 тыс. ч), то ошибка средних значений не превышает 0.002%, поэтому не приводится. Из таблицы 6 видно, что в 19–23-м циклах СА средние величины анизотропии сильно не менялись (0.60–0.62%), а в 24-м цикле значение практически на 10% меньше. При этом максимальное зарегистрированное значение экваториальной анизотропии КЛ в 24 СЦ примерно в 2.4–2.8 раз меньше, чем в предыдущие циклы.

3.6. Высокоэнергичные магнитосферные электроны

Говоря об эффективности СА нельзя обойти обсуждение высокоэнергичных магнитосферных электронов, которые существенно влияют на спутниковую электронику [Baker, 2000; Belov et al., 2004; Pilipenko et al., 2006; Baker et al., 2018]. Максимальное зарегистрированное значение потока высокоэнергичных (>2 МэВ) магнитосферных электронов (E) в 24 СЦ примерно в 2 раза ниже, чем в 23 СЦ, и в 4 раза ниже, чем в 22 СЦ (см. табл. 7). Различия в средних значениях потока не такие явные, хотя и здесь в 24-м цикле наблюдались наименьшие величины. Можно заметить, что сравнение средних значений потока электронов является не вполне корректным, так как измерения велись в разные периоды разными детекторами с отличающимися нижними порогами чувствительности, это влияло на регистрацию слабых потоков, и, следовательно, на средние значения.

3.7. Усредненный и 24-й солнечные циклы

Мы решили сравнить 24-й цикл СА и усредненный цикл за период 17-23 СЦ. Для этого построили усредненный (по месяцам) солнечный цикл по числам пятен с усредненной (также по месяцам) ГА и сравнили с аналогичной кривой ГА 24-го цикла (рис. 4). В числах пятен явно видны два максимума: обычно первый максимум больше, чем второй. Отметим, что в 24-м цикле наоборот, второй максимум был выше первого. В поведении ГА также видны два широких максимума: первый примерно совпадает с максимумом чисел солнечных пятен, а второй приходится, в основном, на спад, когда заметно усиливается влияние потоков из КД. Также видно, что кривая 24-го цикла имеет много меньшие значения, но поведение ГА внутри цикла развивается по традиции циклов-предшественников.

Рис. 4. Среднемесячные значения *Ар*-индекса (левая шкала) на фоне среднемесячных значений числа солнечных пятен (правая шкала) типичного 11-летнего цикла солнечной активности (17–23-й циклы, усредненные по фазам). Толстая темно-серая кривая – среднемесячные значения *Ap* (±2Σ, по годам), усредненные за 17–23-й циклы, толстая светло-серая кривая – то же за 24-й цикл (с 27-дневным скользящим усреднением). На горизонтальной шкале приведены порядковые номера года СЦ.

3.8. Спокойные 2009 и 2019 гг.

Возможно, самый удивительный год последних лет наблюдений относится к 24-му циклу это 2009, который, по-видимому, можно считать самым спокойным в истории изучения солнечноземных связей. Весь 2009 г. на Солнце не было значительных вспышек, даже слабых вспышек было мало. Самые большие за год рентгеновские вспышки были зарегистрированы в самом конце года в декабре, но и они не превысили уровень С8. Практически не было больших и/или геоэффективных выбросов солнечного вешества. Соответственно, отсутствовали и значительные Форбушэффекты. Максимальная величина ФЭ, зарегистрированного в 2009 г., составила всего 1.3% (для частиц с жесткостью 10 ГВ), а среднее значение для всех $\Phi \Theta - 0.63\%$.

Никогда ранее у Земли не было такого медленного и спокойного солнечного ветра. Средние за 2009 г. значения скорости СВ (364 км/с) и напряженности межпланетного магнитного поля (3.9 нТл) – самые низкие за все время межпланетных наблюдений. Самое низкое среднемесячное значение напряженности ММП (3.52 нТл) пришлось на апрель 2009 г.

Еще удивительнее сведения о геомагнитной активности в 2009 г., точнее сказать, о ее отсутствии. 2009 г. полностью изменил наши представления о том, насколько спокойным может быть магнитное поле Земли. Во все без исключения месяцы (от января до декабря) были зарегистрированы исторические минимумы среднемесячных Ар-индексов для соответствующих месяцев. Несколько раз за год изменялся абсолютный минимум среднемесячных значений, пока, наконец, не достиг значения 1.9 (в декабре). Мало сказать, что такие низкие Ар и Кр-индексы не наблюдались ранее, трудно было предположить, что такое спокойное геомагнитное поле вообще возможно. Долгое время годом с самым низким среднегодовым Ар-индексом 7.25 был 1934 г., но в 2008 г. минимум опустился до 6.93, а в 2009 г. еще намного ниже – до 3.92. За весь 2009 г. зарегистрированы только четыре геомагнитные бури (при обычной норме около 50), да и те малые и кратковременные.

В 2019 г. (минимум 24–25 СЦ) было большее количество дней без пятен, всего 281 день (77%), тогда как в 2009 г. было 260 дней (71%). Среднее значение Ap было 6.06, что значительно больше, чем в 2009 г., но меньше, чем во все остальные го-

Рис. 5. Изменение (а) числа солнечных пятен и (б) геомагнитной активности по годам 24 и 25-го циклов СА.

ды. Но все же было 18 дней с бурями и ни одного дня с Kpmax = 0. Максимальное значение скорости СВ в 2019 г. составило 752 км/с, а среднее – 398 км/с. Напряженность межпланетного магнитного поля в этот период не превышала 18 нТл, а среднее значение составило 4.5 нТл.

Отметим также, что хотя по количеству $\Phi \Im$ 2019 г. несколько превосходил 2009 г. (135 и 98 $\Phi \Im$, соответственно), то по максимальным и средним значениям амплитуды $\Phi \Im$ был практически такой же (средний $\Phi \Im - 0.62\%$, максимальный $\Phi \Im - 1.6\%$).

Таблица 8. Рост вспышечной и геомагнитной активности в начале 25 цикла СА

События/Год	2020	2021	2022
Вспышки ≥С1	83	451	2259
Вспышки ≥М1	2	30	190
Бури <i>Кр</i> тах ≥5—	8	23	44
Бури <i>Кр</i> тах ≥7—	0	2	2

3.9. Начало 25-го цикла СА

Прошедший 2022 г. выглядит довольно активным. Солнце очень быстро перешло из фазы минимума активности в недавнем 2020 г., в 2022 г., похожий на фазу максимума. Сравним первые годы нового цикла (табл. 8). Из таблицы видно, что вспышек средней и высокой мощности стало в 27 раз больше, а магнитных бурь вместо 8 (в 2020 г.) зарегистрировано уже 44 (в 2022 г.). Такого урожайного на бури года давно не было. Правда, практически все эти бури оказались малыми или умеренными, и только три – большими и одна – очень большой (в ноябре 2021 г. с Kpmax = 8-). Отметим, что похожими по количеству бурь были 2005 и 2015 гг., в них было зарегистрировано по 48 геомагнитных бурь, и только 20 лет назад (в 2003 г.) было зарегистрировано >50 бурь, а именно 63. Также пока не было особенно мощных протонных событий среди многочисленных солнечных вспышек. Происходящее похоже на нормальное начало нормального цикла. Пик СА в 25-м солнечном цикле скорее всего случится в конце 2023 — в первой половине 2024 г.

На рис. 5*а* показано изменение сглаженных чисел солнечных пятен по годам в 24-м (серая кривая) и 25-м (черная кривая) циклах СА. Видно, что 25-й цикл развивается немного быстрее, хотя, в целом, похоже. Особенно это наглядно в последние полтора года, с конца 2021 г. А вот геомагнитная активность (рис. 5*б*) более явно повышена в 25-м цикле по сравнению с 24-м. Так, за 3 года текущего цикла только в 6 месяцах серая кривая (24-й цикл) идет выше черной (25-й цикл), и это превышение всегда небольшое. А превышение черной кривой, т.е. *Ар*-индекса ГА, в 25-м цикле более частое и более значительное.

4. ЗАКЛЮЧЕНИЕ

24-й цикл солнечной активности показал самую низкую геоэффективность за всю историю современных наблюдений, а это почти 100 лет. Практически по всем геоэффективным событиям и по протонным возрастаниям, и по геомагнитной активности, и по вариациям космических лучей, и по потокам магнитосферных электронов зарегистрированы самые низкие средние значения параметров этих событий и самые низкие экстремальные значения.

Что касается прогноза на начавшийся 25-й цикл солнечной активности — его первый максимум может случиться уже в конце 2023 г. И поскольку в этот раз не ожидается, что первый максимум будет ниже второго, велика вероятность, что максимум солнечной активности 25-го цикла будет пройден очень скоро.

ФИНАНСИРОВАНИЕ РАБОТЫ

М.А. Абунина, А.А. Абунин, А.В. Белов, Н.С. Шлык поддержаны грантом Российского научного фонда № 20-72-10023.

СПИСОК ЛИТЕРАТУРЫ

— Базилевская Г.А., Дайбог Е.И., Логачев Ю.И и др. Характерные особенности солнечных космических лучей в 21–24 циклах солнечной активности по данным каталогов солнечных протонных событий // Геомагнетизм и аэрономия. Т. 61. № 3. С. 8–15. 2021. https://doi.org/10.31857/S0016794021010028

- Безродных И.П., Морозова Е.И., Петрукович А.А., Кожухов М.А. Динамика солнечной и геомагнитной активности. III. Солнечная и геомагнитная активность в 24 цикле. Реконструкция динамики солнечной и геомагнитной // Вопросы электромеханики. Труды ВНИ-ИЭМ. Т. 172. № 5. С.10–24. 2019.

— Белов А.В. Вспышки, выбросы, протонные события // Геомагнетизм и аэрономия. Т. 57. № 6. С. 783–793. 2017. https://doi.org/10.7868/S0016794017060025

- Белов А.В., Ерошенко Е.А., Янке Г.В, Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 4 2023

мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018.

- Григорьев В.Г., Герасимова С.К., Гололобов П.Ю., Стародубцев С.А., Зверев А.С. Особенности спорадических вариаций плотности и анизотропии галактических космических лучей в 24 цикле солнечной активности // Солнечно-земная физика. Т. 8. № 1. С. 34–38. 2022. https://doi.org/10.12737/szf-81202204

— Ишков В.Н. Итоги и уроки 24 цикла — первого цикла второй эпохи пониженной солнечной активности // Астрон. журн. Т. 99. № 1. С. 54–69. 2022. https://doi.org/10.31857/S0004629922020050

- Калинин М.С., Базилевская Г.А., Крайнев М.Б., Свиржевская А.К., Свиржевский Н.С., Стародубцев С.А. Модуляция галактических космических лучей в 22– 24 солнечных циклах: анализ и физическая интерпретация // Геомагнетизм и аэрономия. Т. 57. № 5. С. 592– 601. 2017.

https://doi.org/10.7868/S001679401705011X

— Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Долгопериодные изменения количества и величины Форбуш-эффектов // Геомагнетизм и аэрономия. Т. 58. № 5. С. 638–647. 2018.

https://doi.org/10.1134/S0016794018050103

— Янке В.Г., Белов А.В., Гущина Р.Т. О долговременной модуляции космических лучей в 23–24 циклах солнечной активности // Изв. РАН. Сер. физ. Т. 85. № 9. С. 1355–1358. 2021.

https://doi.org/10.31857/S0367676521090350

- Andreeva O.A., Abramenko V.I., Malashchuk V.M. Coronal Holes of Cycle 24 in Observations at the Solar Dynamics Observatory // Geomagn. Aeron. V. 61. P. S1–S8. 2021. https://doi.org/10.1134/S001679322133001X

- *Baker D.N.* The occurrence of operational anomalies in spacecraft and their relationship to space weather // IEEE Trans. Plasma Sci. V. 28. P. 2007–2016. 2000. https://doi.org/10.1109/27.902228

- Baker D.N., Erickson P.J., Fennell J.F., Foster J.C., Jaynes A.N., Verronen P.T. Space weather effects in the Earth's radiation belts // Space Sci. Rev. V. 214. Article number 17. 2018.

https://doi.org/10.1007/s11214-017-0452-7

- Belov A., Dorman L., Iucci N., Kryakunova O., Ptitsyna N. The relation of high- and low-orbit satellite anomalies to different geophysical parameters / Effects of Space Weather on Technology Infrastructure. Ed. Daglis I.A. NATO Science Series II: Mathematics, Physics and Chemistry, Springer, Dordrecht. V. 176. P. 147–163. 2004. https://doi.org/10.1007/1-4020-2754-0 8

- Belov A., Garcia H., Kurt V., Mavromichalaki H. Gerontidou M. Proton enhancements and their relation to X-ray flares during the three last solar cycles // Solar Phys. V. 229. \mathbb{N} 1. P.135–159. 2005.

https://doi.org/10.1007/s11207-005-4721-3

- *Belov A.V.* Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena / Universal Heliophysical Processes. Proceedings of the International Astronomical Union, IAU Symposium. V. 257. P. 439– 450. 2009.

- Belov A., Kurt V., Mavromichalaki H., Gerontidou M. Peak-size distributions of proton Fluxes and Associated Soft X-Ray Flares // Solar Phys. V. 246. № 2. P. 457–470. 2007.

- Cane H.V. Coronal mass ejections and Forbush decreases // Space Sci. Rev. V. 93. № 1/2. P. 55–77. 2000.

- Chandra Y., Pande B., Mathpal M.C. et al. N-S Asymmetry and periodicity of daily sunspot number during solar cycles 22-24 // Astrophysics. V. 65. P. 404–413. 2022. https://doi.org/10.1007/s10511-022-09749-9

- Chifu I., Inhester B., Wiegelmann T. Coronal magnetic field evolution over cycle 24 // Astron.-Astrophys. V. 659. A174. 2022.

https://doi.org/10.1051/0004-6361/202038001

- *Cliver E.W., Kamide Y., Ling A.G.* The semiannual variation of geomagnetic activity: Phases and profiles for 130 years of aa data // J. Atmos. Solar-Terr. Phys. V. 64. № 1. P. 47–53. 2002.

- Forbush S.E. On the world-wide changes in cosmic-ray intensity // Phys. Rev. V. 54. P. 975. 1938.

- Hajra R., Sunny J.V., Babu M. et al. Interplanetary sheaths and sorotating snteraction segions: A comparative statistical study on their characteristics and geoeffectiveness // Solar Phys. V. 297. Article ID 97. 2022.

https://doi.org/10.1007/s11207-022-02020-6

- Lamy P.L., Floyd O., Boclet B., Wojak J., Gilardy H., Barlyaeva T. Coronal mass ejections over solar cycles 23 and 24 // Space Sci. Rev. V. 215 Article number 39. 2019.

https://doi.org/10.1007/s11214-019-0605-y

- Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci. Rev. V. 12. № 5. P. 658–715. 1971.

– Manu V., Balan N., Zhang Q.-H., Xing Z.-Y. Association of the main phase of the geomagnetic storms in solar cycles 23 and 24 with corresponding solar wind-IMF parameters // J. Geophys. Res. – Space. V. 127. Article ID e2022JA030747. 2022.

https://doi.org/10.1029/2022JA030747

- Marques de Souza Franco A., Hajra R., Echer E., Bolzan M.J.A. Seasonal features of geomagnetic activity: a study on the solar activity dependence // Ann. Geophys. V. 39. P. 929–943. 2021.

https://doi.org/10.5194/angeo-39-929-2021

- Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. Article ID e2020SW002641. 2021.

- Pandey D., Pande B., Pande S. Comparative analysis of type III solar radio bursts associated with solar particle events and its impact on space weather for solar cycle 23&24 // Astrophys. Space Sci. V. 367. Article number 91. 2022. https://doi.org/10.1007/s10509-022-04129-3

- Patel B.D., Joshi B., Cho K.S. et al. Near-Earth interplanetary coronal mass ejections and their association with DH type II radio bursts during solar cycles 23 and 24 // Solar Phys. V. 297. № 2. Article number 139. 2022. https://doi.org/10.1007/s11207-022-02073-7

- *Pilipenko V., Yagova N., Romanova N., Allen J.* Statistical relationships between satellite anomalies at geostationary orbit and high-energy particles // Adv. Space Res. V. 37. P. 1192–1205. 2006.

https://doi.org/10.1016/j.asr.2005.03.152

- Shi X., Fu H., Zhenghua Huang Z., Ma C., Xia L. The solar cycle dependence of in situ properties of two types of interplanetary CMEs during 1999–2020 // The Astrophysical J. V. 940. Article number 103. 2022.

https://doi.org/10.3847/1538-4357/ac9b20

- Yermolaev Y.I., Lodkina I.G., Khokhlachev A.A., Yermolaev M.Y. Peculiarities of the heliospheric state and the solar-wind/magnetosphere coupling in the era of weakened solar activity // Universe. V. 8. Article number 495. 2022. https://doi.org/10.3390/universe8100495

- Zhang J., Temmer M., Gopalswamy N. et al. Earth-affecting solar transients: a review of progresses in solar cycle 24 // Progress in Earth and Planetary Science. V. 8. Article number 56. 2021.

https://doi.org/10.1186/s40645-021-00426-7