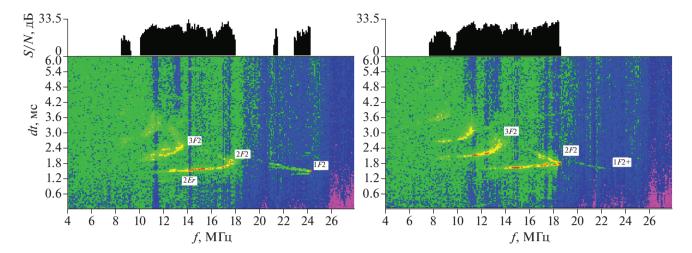
УЛК 550.388.1

ОСОБЕННОСТИ ПРОГНОЗИРОВАНИЯ РАБОТЫ ИОНОСФЕРНЫХ РАДИОЛИНИЙ НА ВЕРХНЕЛУЧЕВЫХ МОДАХ

© 2023 г. И. В. Крашенинников^{1, *}, В. Н. Шубин^{1, **}

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), Москва, Троицк, Россия

*e-mail: krash@izmiran.ru
**e-mail: shubin@izmiran.ru
Поступила в редакцию 03.02.2023 г.
После доработки 07.03.2023 г.
Принята к публикации 28.03.2023 г.


Анализируется частотная зависимость качественных показателей передачи информации на примере двух реальных радиолиний меридиональной направленности односкачкового (~2600 км) и доминирующего двухскачкового (~5100 км) режимов прохождения радиоволн в ионосфере. Показано, что наличие в системе радиосвязи высокоэффективных приемно-передающих антенн приводит к необходимости учитывать в задаче прогнозирования радиотрасс существование априори энергетически крайне слабых мод, формирующихся исключительно механизмом переноса излучения по лучевым траекториям семейства верхних лучей в ионосферном распространении радиоволн. В случае совпадения углов выхода и прихода таких мод и направлений главных лепестков диаграмм направленности антенн в конечных точках радиотрассы соотношение сигнал/шум для волнового поля может достичь требуемого порогового значения и обеспечить успешную работу радиокоммуникационной системы. Это обстоятельство расширяет верхнюю частотную границу прохождения радиоволн в переходных областях скачкового распространения радиоволн в ионосфере, и его следует учитывать в прогнозировании работы ионосферных радиолиний.

DOI: 10.31857/S0016794023600096, EDN: ONBNOB

1. ВВЕДЕНИЕ

Ключевым элементом прогнозирования работы радиолинии является расчет частотного диапазона прохождения радиоволн между ее терминальными точками: верхней границы максимальной применимой частоты (МПЧ) и нижней – наименьшей применимой частоты (НПЧ). В подавляющем большинстве случаев общая МПЧ радиотрассы определяется МПЧ слоя F2 ионосферы — МПЧ F2. Для односкачкового режима прохождения радиоволн существует специальный параметр — МПЧ 1F2(3000) [Руководство URSI 1978], т.е. дальность в 3000 км рассматривается как определенный стандарт распространения радиоволн при однократном отражении от ионосферы, для которого с высокой вероятностью существует наибольшая возможная частота переноса волнового поля в двухточечной задаче. При этом, в классическом смысле теории ионосферного распространения радиоволн, под МПЧ ионосферного слоя понимается частота, определяющая точку смыкания семейств нижних и верхних лучей [Дэвис, 1973] (низкоугловые и высокоугловые лучи [Verhulst et al., 2017]). С увеличением дальности радиотрассы, вследствие кривизны земной поверхности, уменьшается частотный диапазон прохождения нижних лучей — его нижняя граница (НПЧ) возрастает быстрее, чем верхняя (МПЧ), и классическая МПЧ 1F2 практически не формируется для расстояний, превышающих 4000 км из-за вырождения "нижнелучевого" механизма прохождения. Однако при этом "верхнелучевая" мода — 1F2+ физически существует, но с очень слабым значением напряженности волнового поля, вследствие фундаментальной особенности данного способа переноса излучения — высокой волновой расходимости в условиях малого показателя преломления.

Пример многочастотного наклонного радиозондирования ионосферы (H3) — регистрация ионограмм H3 на дальности \sim 4200 км, где наблюдаются следы односкачкового прохождения на трассе Иркутск (ИСЗФ) — Москва (ИЗМИРАН), приведен на рис. 1. Расстояние в 4000 км рассматривается как определенный предел в практическом прогнозировании работы односкачковой радиолинии, и отсутствие классически определяемой МПЧ 1F2 является критерием, когда радиотрасса переходит в статус двухскачковой (доминирующей двухскачковой) и основным способом

Рис. 1. Модовая структура волнового поля (ионограммы наклонного радиозондирования ионосферы с линейно-частотным модулированным сигналом) для дальности ~4200 км Иркутск (ИСЗФ) — Москва (ИЗМИРАН) 08.09.2011 г. 11:32 UT (левая панель) и 12:45 UT (правая панель) со слабонаправленными диапазонными антеннами.

переноса излучения становится мода 2F2. Однако в силу разнообразия ионосферных условий распространения радиоволн, односкачковое прохождение может реализоваться и для дальностей более 4000 км, осуществляемое уже, практически, только верхнелучевым механизмом распространения. В этом случае, как правило, считается, что напряженность волнового поля недостаточна для корректного функционирования системы радиосвязи в силу малой энергетики и большой вариативности данной моды. Ослабление волнового поля верхних лучей в большой степени зависит от продольной неоднородности электронной плотности на радиотрассе, в частности, градиента плазменной частоты foF2 в максимуме слоя F2. Данное свойство иллюстрируют результаты НЗ (рис. 1, трек 1F2+). При переходе от дневных (практически однородного распределения) к вечерним (со значительным продольным градиентом) условиям распространения радиоволн наблюдается резкое ослабление напряженности волнового поля моды 1F2+ (рис. 1, правая панель). Следует отметить, что при таком режиме переноса излучения частотный диапазон прохождения может иметь глубокие энергетические провалы (рис. 1, левая панель), особенно в области сразу за МПЧ 2F2, что и определяет низкий уровень надежности работы радиокоммуникационных систем на модах такого типа.

В данной работе, на основе экспериментальных данных, анализируются особенности прогнозирования в системе "Прогноз—ИЗМИРАН" работы классических по критерию формирования МПЧ 1F2 двух радиолиний: типичного односкачкового и доминирующего двухскачкового (в переходной области) прохождения радиоволн меридионального направления с дальностями ~ 2600

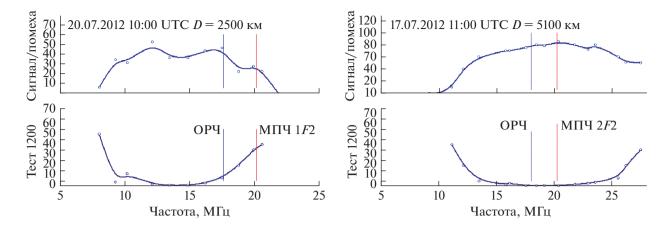
и \sim 5100 км, имеющих в своем составе высокоэффективные, но узконаправленные, приемные антенны.

2. МОДЕЛЬ ИОНОСФЕРЫ

Базовой моделью ионосферы в комплексе прогнозирования и планирования радиотрасс "Прогноз-ИЗМИРАН" является глобальная динамическая модель ионосферы GDMI (Global Dynamic Model of the Ionosphere), включающая в себя динамическую модель слоя F2 — GDMF2 [Шубин и Деминов, 2019] с базовым суточным рабочим интервалом. Управляющими параметрами модели GDMF2 являются: интегральный индекс солнечной активности (параметр F на основе данных о потоке солнечного радиоизлучения F10.7) и интегральный индикатор геомагнитной активности трехчасовые индексы Кр в текущем дне (прогнозные) и двух предшествующих днях. Система "Прогноз-ИЗМИРАН" имеет три режима прогнозирования: долгосрочный (среднемесячный), краткосрочный (интервал применения – сутки с данными двух предшествующих дней и двух дней вперед) и оперативный (на текущий час и два часа вперед с дополнительными данными радиозондирования ионосферы за три предшествующих часа). В режиме долгосрочного прогнозирования модель GDMF2 используется в медианном режиме с оптимизированными среднемесячными индексами солнечной активности и фиксированным (медианным) уровнем геомагнитной активности $(Kp \sim 2)$. В основе всех видов прогнозирования лежит расчет модовой структуры волнового поля в заданный момент времени, на основе решения краевой задачи в геометрооптическом приближении распространения радиоволн в неоднородной ионосфере [Крашенинников и Шубин, 2020].

Когда говорят об ионосферном мониторинге, то, в основном, имеют в виду область F, где располагается основной ионосферный максимум и которая в периоды геомагнитных возмущений демонстрирует большие и нерегулярные вариации. Развиваемый в модели GDMI подход к прогнозу foF2 может быть назван "аэрономическим", поскольку в нем используются соотношения, следующие из теории формирования слоя F2, которые связывают NmF2 с основными аэрономическими параметрами: нейтральный состав, температура, скорости ионно-молекулярных реакций для основного иона О+. Термин "динамическая модель" обозначает зависимость изменения электронной концентрации на средних, субавроральных и авроральных широтах от текущего уровня геомагнитной активности с учетом предыстории ее развития. Отличительной чертой модели является использование эмпирического подхода к созданию медианной (фоновой) модели foF2 для спокойных геомагнитных условий и ряда аэрономических поправок к ней, связанных с формированием главного ионосферного провала (ГИП), аврорального максимума ионизации, изменением температуры и состава термосферы. Все поправки зависят от изменяющихся геомагнитных условий, индикаторами которых являются трехчасовые геомагнитные индексы ар и Кр. Модели положения минимума ГИП и аврорального пика F2-слоя основаны на данных зондовых измерений плотности электронов спутником СНАМР с июля 2000 г. по декабрь 2007 г. на высотах от ~450 до ~350 км. С помощью ручной обработки данных каждого анализируемого витка спутника были определены географические координаты минимума ГИП. Затем по международной модели геомагнитного поля IGRF и полученным географическим широтам были определены исправленные геомагнитные широты минимума ГИП $-\Phi_{ ext{MIT}}$ и максимума аврорального пика ионизации — Φ_{AVR} . Модели Φ_{MIT} и Φ_{AVR} представлены в виде аналитических зависимостей инвариантной широты минимума провала и аврорального пика критической частоты от местного солнечного времени, геомагнитной активности и географической долготы [Деминов и др., 2021]. Главным отличием разработанной модели от модели IRI-2016 [Bilitza et al., 2017] является включение в foF2 поправок, связанных с формированием ГИП, аврорального пика ионизации, изменением температуры и состава термосферы.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ


На рис. 2 представлены результаты работы в исследовательском режиме двух ионосферных

радиолиний меридиональной направленности (южного азимутального направления) с приемом в Москве со стандартной узкополосной системой радиосвязи, использующей информационный сигнал МЧТ (многопозиционная частотная телеграфия [Маковий и Чупеев, 2010]). Азимуты обеих радиотрасс близки. Мощность излучения корреспондентов в обоих случаях составляла 100 Вт. Приемные и передающие антенны радиотрасс сопряжены по азимутам. Излучающая антенна: для дальности 2500 км - горизонтальный диполь -ВГД (вибратор горизонтальный диапазонный), а для дальности 5100 км — горизонтальная логопериодическая антенна [Айзенберг, 1962]. Обе антенны имеют сравнимый и относительно невысокий коэффициент усиления (~10 дБ) и, соответственно, достаточно широкую диаграмму направленности. Приемная антенна - СГДРА (синфазная горизонтальная диапазонная с апериодическим рефлектором [Айзенберг, 1962]), имеющая высокий коэффициент усиления (~25-30 дБ в зависимости от частоты). Частотная полоса сигнала составляет 2.4 кГц. Пороговое значение сигнал/шум для штатного функционирования радиокоммуникационной системы -20 дБ. Система работала в тестовом режиме с перестройкой рабочей частоты. Скорость передачи стандартного информационного сообщения составляла 1200 бит/с. Верхние панели рис. 2 отражают линейное соотношение сигнал/помеха (radio-frequency interference - RFI):

$$RFI = A_m / \sqrt{A_N^2 + \sum_{k \neq m} A_k^2},$$

где A_m — амплитуда максимальной моды из множества A_k , A_N — среднеквадратичная амплитуда фонового электромагнитного шума. Величина RFI определяется не только классическим отношением сигнала к постороннему электромагнитному излучению, но и многомодовым характером самого волнового поля, и, в целом, отражает отношение амплитуды наиболее энергетически выгодной моды к суммарной энергетике остальных мод и фонового электромагнитного шума. В предельном случае одномодового (или преимущественно одномодового) прохождения отношение сигнал/помеха совпадает с отношением сигнал/ шум — SNR (signal to noise ratio) SNR = A_0/A_N .

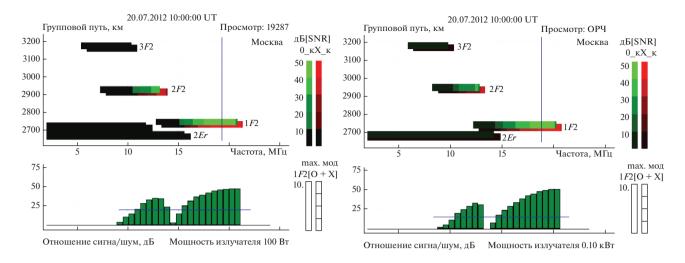
На рис. 2 хорошо проявляются факторы, формирующие частотный диапазон работы радиокоммуникационной системы — нижняя граница определяется слабым значением SNR, ввиду роста поглощения радиоволн ионосферной плазмой с уменьшением частоты, а в верхней части — качество передачи информации ограничивается интерференцией верхних и нижних лучей вблизи МПЧ, имеющих сравнимые амплитуды волнового поля. Надежность передачи информации отоб-

Рис. 2. Результаты тестовой работы радиолиний в частотном разрезе: односкачковая (\sim 2600 км) 20.07.2012 г. 10:00 UT (левая панель) и двухскачковая (\sim 5100 км) 17.07.2012 г. 11:00 UT. Верхняя часть рисунков отражает соотношение сигнал/помеха (RFI), а нижняя — достоверность передачи (уровень ошибочных символов на тысячу знаков) в тестовом сообщении.

ражается в нижней части рисунка и отражает уровень погрешности в принятом тестовом символьном сообщении. Вертикальными линиями отмечены расчетные значения МПЧ доминирующих скачковых мод и оптимальные рабочие частоты (ОРЧ), рассчитанные с прогнозными параметрами модели ионосферы на момент сеансов связи. Из частотной зависимости качества работы радиолинии видно, что в обоих случаях существует оптимальный интервал рабочих частот, на которых имеет место наиболее эффективный режим передачи информации через ионосферный радиоканал.

4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

Время проведения экспериментальных исследований характеризуется средним уровнем солнечной активности. Для июля 2012 г. сглаженные среднемесячные значения числа солнечных пятен — Rms и потока солнечного радиоизлучения — Fms составляли 85 и 120 соответственно. Оптимизированные среднемесячные значения, как входные параметры для работы с медианными ионосферными моделями, в частности, с IRI—2016 [Крашенинников и др., 2017] — Rms = 72.9 и Fms = 123.0. День 20.07.2012 г.— геомагнитно спокойный ($Ap \sim 10$), а 17.07.2012 — слабовозмущенный ($Ap \sim 14$), с суббурей в интервале 00—06 UT.


4.1. Односкачковая радиотрасса

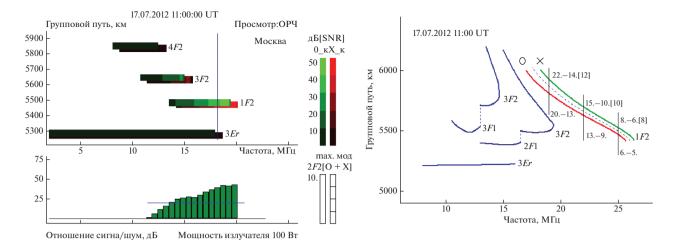
Синтезированная модовая структура волнового поля для 20.07.2012 г. 10:00 UT в моделях ионосферы GDMI (на данный день) и IRI-2016 с оптимизированными среднемесячными параметрами солнечной активности представлена на рис. 3 и

отражает зависимость как парциального (по модам), так и общего отношения сигнал/шум в логарифмической шкале

$$SNR = 20 \lg \left(\sqrt{\sum_{k} A_{k}^{2}} / A_{N} \right),$$

где под амплитудой сигнала понимается суммарная амплитуда волнового поля. Для односкачковой радиолинии степень общего соответствия расчетных и экспериментальных результатов достаточно высока, как и принципиальная близость результатов для обеих ионосферных моделей. Так, МПЧ 1F2 в обоих случаях практически одинаковы (~21 и ~20.5 МГц, экспериментальное значение в форме максимально наблюдаемой частоты – МНЧ ~ 21 МГц), минимальные частоты срабатывания системы радиосвязи также близки (экспериментальное значение ~8 МГц и модельные расчетные ~8-9 МГц). Можно отметить даже общее наличие провала в частотном разрезе характеристик работы радиолинии: интервал 13-16 МГц в экспериментальных данных и 13-15 МГц в модельном расчете SNR (рис. 3). Однако следует отметить, что в модельном представлении энергетический провал выражен существенно более значимо, чем в экспериментальных результатах, особенно для модели IRI. Имеется определенное соответствие по пороговому значению уверенной работы радиокоммуникационной системы (отмечено горизонтальной линией на рис. 3) — минимальное значение, когда радиолиния входит в штатный режим, составляет ~10 МГц, как в эксперименте, так и в модельном расчете. Причем, в данном случае, физическим носителем является мода 2F2 (рис. 3). Выбор оптимальной рабочей частоты - ОРЧ достаточно неплохо соответствует своему статусу, хотя и не является наилучшим выбором рабочей частоты в диапазоне

Рис. 3. Модовая структура волнового поля на дальности \sim 2600 км 20.07.2012 г. 10:00 UT: модель GDMI (левая панель) и модель IRI (правая панель).


прохождения с точки зрения эффективности передачи информации (рис. 2).

Для частоты 15 МГц, лежащей в области оптимальной работы односкачковой радиолинии очевидно, что реализуется доминирующий одномодовый режим прохождения — верхние лучи 1F2 практически отсутствуют (рис. 3). Теоретически они существуют, но в силу почти экспоненциального спада амплитуды волнового поля верхних лучей по частоте от МПЧ 1F2 их вклад в суммарное поле крайне незначителен. Также очень мал возможный вклад моды 2Er из-за поглошения в D- и E-слоях ионосферы при двукратном отражении, и перенос излучения осуществляется, главным образом, только нижними лучами моды 1F2, и расчетное SNR превосходит пороговое значение радиолинии. Как отмечалось выше, для одномодового (преимущественно одномодового характера волнового поля) коэффициенты RFI и SNR эквивалентны. Это свойство проявляется на рис. 2 и 3 — величины экспериментальной RFI и расчетного SNR достаточно близки для данной частоты: $RFI \sim 31$ дБ и $SNR \sim 30$ дБ, что и обуславливает качественную работу радиолинии. На верхней границе частотного диапазона хорошо проявляется эффект интерференции верхних и нижних лучей при приближении к МПЧ 1F2 со сравнимыми энергетическими параметрами, что снижает радиотехническое отношение сигнал/помеха и приводит к повышению уровня ошибки передачи информации. Т.е., несмотря на высокий суммарный уровень превышения волнового поля над фоновым электромагнитным шумом качество работы радиолинии невысокое из-за взаимного мешающего действия парциальных полей многомодового сигнала.

4.2. Двухскачковая радиотрасса

Для более протяженной радиотрассы 5100 км. классифицируемой как двухскачковая по доминирующему регулярному способу переноса излучения, расхождение между экспериментальным результатом — верхней границей диапазона и расчетным — МПЧ 2F2 гораздо больше — рис. 2 и рис. 4. Разность между зарегистрированной верхней частотой успешной работы радиолинии и расчетной МПЧ 2F2 составляет ~7 МГц (~27 МГц рис. 2 и \sim 20 МГц — рис. 4, левая панель). Такое большое расхождение невозможно объяснить несоответствием модели реальному распределению электронной плотности по радиотрассе, хотя прохождение радиоволн и происходит частично в проблемной, с точки зрения глобальных моделей ионосферы, зоне - северном гребне приэкваториальной аномалии. Так же, как и в предыдущем случае, расчетная ОРЧ достаточно качественно реализует потенциал радиолинии.

На рис. 4, правая панель, приведена синтезированная ионограмма наклонного радиозондирования ионосферы с включением следа, сформированного верхними лучами моды 1F2 - 1F2+. Следы кратных мод даны в изотропном представлении, а следы верхних лучей одного скачка — в магнитоионном представлении — обыкновенная (О) и необыкновенная (Х) компоненты волнового поля. Наличие ветвей моды 1F2+ на ионограмме НЗ принципиально расширяет потенциально возможный частотный интервал прохождения радиоволн на данной радиотрассе до, практически, зарегисрированного экспериментального значения в 27 МГц. Вертикальными линиями отмечены фиксированные частоты: 19, 22 и 25 МГц с вертикальными углами прихода в терминальных точках радиотрассы. Хорошо видна

Рис. 4. Синтезированные в модели GDMI для радиотрассы 5100 км на 17.07.2012 г. 11:00 UT: апостериорный прогноз работы радиокоммуникационной системы (левая панель) и синтезированная ионограмма наклонного радиозондирования ионосферы (правая панель).

асимметрия в углах возвышения — так для Х-компоненты на частоте 19 МГц их значения составляют 22° и 14°, что отражает весьма существенную продольную неоднородность электронной плотности. В квадратных скобках приведены значения вертикального угла для максимума диаграммы направленности приемной антенны, имеювысокий коэффициент усиления. Для необыкновенной компоненты на частоте 22 МГш имеет место практически полное совпадение между углом прихода и направлением диаграммы направленности; для 19 МГц – разность положительная $(+2^{\circ})$, а для 25 МГц — отрицательная (— 2°). Для О-компоненты на данных частотах углы возвышения несколько меньше ($\sim 1^{\circ}-2^{\circ}$), чем для Х-компоненты. Тем не менее, учитывая, что ширина диаграммы направленности на 22 МГц по половинному уровню составляет 10° ($\pm 5^{\circ}$), она также принимается антенной достаточно эффективно. А поскольку ее интенсивность в данном способе переноса излучения существенно выше на фиксированной частоте, чем у необыкновенной компоненты (по амплитуде соотношение $AO/AX \sim 2$), она и является по факту доминирующей составляющей волнового поля. В передающем пункте для частоты 22 МГц направление главного лепестка ДН антенны составляет 15° с шириной по половинному уровню в 30°, что также практически совпадает с углами возвышения: 15° для X- и 13° для О-компоненты (рис. 4). Таким образом, имеет место резонансное совпадение угловых параметров волнового поля с направлениями главного лепестка диаграмм направленности как приемной, так и передающей антенн в вертикальной плоскости, т.е. обе антенны работают, практически, в максимуме своей эффективности и, следовательно, реализуется максимальный по-

тенциал выделения сигнала из фоновых электромагнитных шумов.

Оценим соотношение SNR на частоте 22 МГц. В базовой постановке задачи (фундаментальное решение): 1 кВт излучение и изотропные антенны; амплитуда волнового поля в модели GDMI (с учетом поглощения через частоту столкновений электронов [Крашенинников и Шубин, 2020]) составляет $A_b \sim 0.3$ мкВ/м. Для 100 Вт амплитуда поля соответственно уменьшается до $A_0 \sim 0.1$ мкВ/м. С учетом коэффициентов усиления антенн [Кравцов и Орлов, 1980; Maslin, 1987] напряженность поля E_c :

$$E_S = \sqrt{G_t G_r} A_0,$$

где G_r и G_r — коэффициенты усиления передающей и приемной антенн, составляет $\sqrt{10 \times 400} \times 0.1 \approx$ ≈ 6 мкВ/м. В принципе, напряженность волнового поля небольшая, но для работы устройств важно не столько само значение напряженности поля, сколько соотношение сигнал/шум и параметр многомодовости. Значение фонового уровня электромагнитного шума можно получить из глобальной модели шумов, реализованной в "Прогноз-ИЗМИРАН", по методике [Maslin, 1987]. Для данного приемного пункта и следующих его свойств: удаленная область относительно антропогенного фактора, лето, интервал локального времени 08:00—12:00, номинал частоты 22 МГц и для полосы 2.4 кГц среднеквадратичная напряженность электромагнитного шума составляет $E_N \sim 0.22$ мкВ/м. Т.е. без усилительных свойств антенн сигнал был бы ниже уровня шумов. Нужно отметить, что рассматриваемая ситуация для энергетических параметров верхних лучей значительно хуже, чем на рис. 1, правая панель. Во-

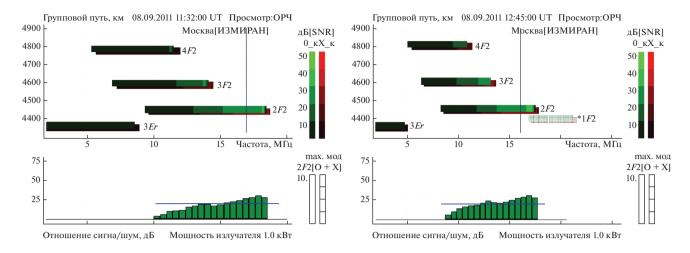


Рис. 5. Апостериорный прогноз условий прохождения радиоволн в модели GDMI для радиотрассы Иркутск (ИСЗФ) — Москва (ИЗМИРАН) на 08.09.2011 г. 11:32 UT и 12:45 UT.

первых, расстояние больше почти на $1000 \, \mathrm{km}$, вовторых, выше продольная неоднородность радиотрассы практически в 4 раза (в критической частоте $0.41.\mathrm{u}~0.12~\mathrm{MTu}$ на $1000 \, \mathrm{km}$). С учетом усиления антенн $\mathrm{SNR} = 20 \, \mathrm{lg} \, E_S / E_N$, численно составляет $20 \, \mathrm{lg} \, 30 \approx 30 \, \mathrm{дБ}$, что превышает пороговое значение штатной работы системы связи ($20 \, \mathrm{дБ}$). Для сравнения, оно сопоставимо со значением SNR на $15 \, \mathrm{MTu}$ (рис. $5 \, \mathrm{u}$ рис. 2, правая панель), и также имеет место близкое качество работы радиолинии. Такое высокое значение SNR объясняет отсутствие скачка в работе радиолинии при переходе с моды 2F2 на моду 1F2+, хотя разность в напряженности поля довольно большая.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Анализ экспериментальных результатов является обобщением нескольких факторов, определяющих перенос излучения через ионосферу модель ионосферы (с частотой соударений электронов), описание технических средств (антенн), расчет напряженности волнового поля в задаче с граничными условиями и расчетом среднеквадратичной напряженности поля электромагнитных шумов. Для модели GDMI рассчитанные величины углов выхода и прихода в условиях сильного продольного градиента foF2 существенно различаются по величине (рис. 4) и разность может доходить до 8°. Антенны в анализе данных описывались аналитически для классических типов коротковолновых антенн: СГДРА и ВГД [Айзенберг, 1962] и численно для логопериодического типа. Полуширина диаграммы направленности антенны СГДРА, например, для частоты 25 МГц составляет всего ~4°. Т.е., если гипотетически поменять местами антенные системы в конечных пунктах, то энергетика радиолинии снизится настолько, что система связи функционировать не будет, несмотря на общие высокие показатели эффективности антенн.

Комплекс прогнозирования радиотрасс "Прогноз-ИЗМИРАН" в принципе анализирует возможность прохождения радиоволн при отсутствии классической МПЧ 1F2, т.е. только верхними лучами (рис. 1) и отмечает такой механизм переноса излучения как вероятностную моду. Критерием ее существования является небольшая высота прохождения рикошетирующих лучевых траекторий в расчете МПЧ над приемным концом радиотрассы. В этом случае напряженность волнового поля не может быть рассчитана прямым вариационным методом [Крашенинников и Шубин, 2020], в силу отсутствия корректного решения в двухточечной задаче. Но в реальных условиях относительно небольшие изменения в текущем распределении электронной плотности могут привести к физическому формированию данной моды. Так, увеличение продольной неоднородности в приведенном примере данных наклонного радиозондирования (рис. 1) в 12:45 UT является стимулирующим фактором для появления вероятностной моды 1F2. (рис. 5, правая панель).

В случае с радиотрассами, превышающими 4500 км, предполагается, что такой возможности уже нет (рис. 4, левая панель). Однако в данном случае семейство верхних лучей для моды 1F2 все же формируется — рис. 4 (правая панель, мода 1F2+), что, по-видимому, и дает принципиальную возможность существования физического носителя волнового поля на частотах выше классической МПЧ 2F2. Близость верхних границ частотных диапазонов прохождения в эксперименте и в модельном расчете дает основание считать, что именно этот механизм и реализуется в рас-

сматриваемом примере успешной работы радиолинии. В данном случае в энергетике радиолинии большое значение имеют антенны, особенно приемная антенна с высоким коэффициентом усиления. В анализируемом случае для верхних лучей моды 1F2 антенны дают практически максимально возможный выигрыш, что в значительной степени компенсирует энергетические потери "верхнелучевой" волны в ионосферной плазме и обеспечивает качественную работу радиолинии даже, казалось бы, на энергетически слабом механизме переноса излучения. Высокий уровень достоверности передачи информации обеспечивается фактическим одномодовым характером волнового поля - имеются лишь магнитоионные компоненты моды с доминированием обыкновенной составляющей. Лишь по мере приближения рабочей частоты к максимальной частоте моды 1F2+ начинает сказываться сближение амплитуд парциальных компонент, т.е. происходит усиление интерференции магнитоионных мод и, как следствие, ухудшение параметров радиолинии. Но, как и следует ожидать, оно не имеет такого кардинального значения как в случае односкачковой радиотрассы (рис. 2), где сильно интерферируют близкие по энергетике нижние и верхние лучи моды 1F2 при приближении к МПЧ.

6. ЗАКЛЮЧЕНИЕ

Анализ работы радиотрасс односкачковой и доминирующей двухскачковой (переходной) дальности показывает, что в реальных условиях, с наличием высокоэффективных антенн, необходимо учитывать в задаче прогнозирования работы радиокоммуникационных систем существование энергетически слабых мод, формирующихся механизмом переноса излучения исключительно верхними геометрооптическими лучами в ионосферной плазме. То обстоятельство, что удалось не только качественно (по максимальной возможной частоте прохождения), но и количественно, в терминах энергетических соотношений, объяснить экспериментальные данные, в частности, позволяет заключить об общей корректности аналитического описания сложных антенн в функционировании ионосферных радиокоммуникационных систем.

СПИСОК ЛИТЕРАТУРЫ

- Айзенберг Г.З. Коротковолновые антенны. М.: Радио и связь, 815 с. 1962.
- Деминов М.Г., Шубин В.Н., Бадин В.И. Модель критической частоты Е-слоя для авроральной области // Геомагнетизм и аэрономия. Т. 61. № 5. С. 610—617. 2021. https://doi.org/10.31857/S0016794021050059
- Дэвис К. Радиоволны в ионосфере. М.: Мир, 502 с. 1973.
- *Кравцов Ю.А., Орлов Ю.И.* Геометрическая оптика неоднородных сред, М.: Наука, 304 с., 1980.
- Крашениников И.В., Павлова Н.М., Ситнов Ю.С. Модель IRI в задаче прогнозирования ионосферного прохождения радиоволн в условиях высокой солнечной активности // Геомагнетизм и аэрономия. Т. 57. № 6. С. 774—782. 2017.
- *Крашенинников И.В., Шубин В.Н.* Частотная зависимость энергетических параметров волнового поля на предельной дальности односкачкового распространения радиоволн в условиях низкой солнечной активности // Геомагнетизм и аэрономия. Т. 60. № 2. С. 220—228. 2020.
- *Маковий В.А., Чупеев С.А.* Сигналы с перестановочной модуляцией и их свойства // Теория и техника радиосвязи, изд. ОАО "Концерн "Созвездие". № 1. 13—24. 2010.
- Руководство URSI по интерпретации и обработке ионограмм. Перевод с англ. второго издания "URSI Handbook of Ionogram Interpretation and Reduction". Ред. Н.В. Медникова. М.: Наука. 342 с. 1978.
- Шубин В.Н., Деминов М.Г. Глобальная динамическая модель критической частоты *F*2-слоя ионосферы // Геомагнетизм и аэрономия. Т. 59. № 4. С. 461—473. 2019.
- Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions // Space Weather. V. 15. P. 418–429. 2017. https://doi.org/10.1002/2016SW001593
- Maslin N.M. HF Communication: A System Approach.
 Pitman Publishing. 240 p. 1987.
- Verhulst T., Altadill D., Mielich J. et al. Vertical and oblique HF sounding with a network of synchronized ionosondes // Adv. Space Res. V. 60. I. 8. P. 1644–1656. 2017. https://doi.org/10.1016/j.asr.2017.06.033