УДК 550.388.2

ОЦЕНКА ИОНИЗАЦИИ НИЖНЕЙ ИОНОСФЕРЫ ВО ВРЕМЯ СОЛНЕЧНЫХ ВСПЫШЕК X КЛАССА ПО ДАННЫМ ОНЧ-НАБЛЮДЕНИЙ

© 2023 г. И. А. Ряховский^{1,} *, Ю. В. Поклад^{1,} **, Б. Г. Гаврилов^{1,} ***

¹Института динамики геосфер им. акад. М.А. Садовского РАН (ИДГ РАН), Москва, Россия

*e-mail: ryakhovskiy88@yandex.ru **e-mail: poklad@mail.ru ***e-mail: boris.gavrilov34@gmail.com Поступила в редакцию 17.11.2022 г. После доработки 28.11.2022 г. Принята к публикации 26.01.2023 г.

Представлены результаты анализа данных измерений амплитуд и фаз сигналов СДВ-передатчиков GQD (19.6 кГц) и GBZ (22.1 кГц) в обс. ИДГ РАН Михнево с целью оценки воздействия солнечных вспышек X 2.2 и X 1.5 10.06.2014 г. на электронную концентрацию в нижней ионосфере. По данным измерения потока рентгеновского излучения спутником GOES на длинах волн 0.05–0.4 нм и 0.1–0.8 нм был рассчитан поток излучения в более жестких спектральных диапазонах 0.01–0.3, 0.01–0.26 и 0.01–0.22 нм. Это позволило определить скорости ионизации и спектральные диапазоны излучения, оказавшие наибольшее влияние на динамику электронной концентрации. Показано, что, если длительность переднего фронта существенно меньше характерного времени рекомбинации, изменение профиля электронной концентрации в нижней ионосфере на фронте вспышки линейно связано с изменением потока рентгеновского излучения.

DOI: 10.31857/S0016794022600648, EDN: PLAMRF

1. ВВЕДЕНИЕ

Электромагнитное излучение в широком диапазоне частот, вызванное солнечными вспышками различного класса, оказывает существенное влияние на высотный профиль электронной концентрации всей ионосферы. Наиболее трудной для экспериментального и теоретического исследования является *D*-область ионосферы. Во время солнечных вспышек поток рентгеновского излучения Солнца проникает в *D*-область и увеличивает концентрацию электронов в несколько раз за счет дополнительной ионизации [Mitra, 1974; Киmar and Kumar, 2018]. Результаты многочисленных исследований показали, что изменения электронной концентрации в нижней ионосфере оказывают влияние на параметры электромагнитных сигналов ОНЧ-диапазона, распространяющихся в волноводе Земля-ионосфера [Thomson, 2010; Thomson et al., 2011]. Анализ вариаций амплитудно-фазовых характеристик ОНЧ-сигналов позволяет исследовать состояние и динамику нижней ионосферы во время воздействия рентгеновского излучения вспышки [Gavrilov et al., 2020; Bekker et al., 2021, 2022].

В работе [Gavrilov et al., 2020] была апробирована методика восстановления параметров

ионосферы в рамках двухпараметрической модели Фергюсона—Уайта [Ferguson, 1995] по данным измерений параметров радиосигналов на двухчастотной среднеширотной СДВ трассе GQD/GBZ— Михнево. В рамках этой модели высотный профиль электронной концентрации задается уравнением:

$$Ne(h) = 1.43 \times 10^{7} \times \\ \times \exp(\beta - 0.15)(h - h')\exp(-0.15h'),$$
(1)

где h' (км) — эффективная высота отражения радиосигнала и β (км⁻¹) — скорость увеличения электронной концентрации (см⁻³) с высотой. Использование двухчастотной трассы позволило оценивать не только динамику ионосферы во время вспышки, но и ее состояние перед вспышкой.

Основными процессами, оказывающими влияние на состояние и динамику ионосферы (без учета процессов диффузии и дрейфа плазмы) являются ионизация нейтральных компонент и рекомбинация заряженных частиц. В работе представлены результаты оценки ионизации нижней ионосферы во время солнечных вспышек X 2.2 и X 1.5 класса, произошедших 10.06.2014 г.

2. ПОСТАНОВКА И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

С 2014 г. в ГФО Михнево (54°57' N, 37°46' E) ведется мониторинг амплитудно-фазовых характеристик сигналов СДВ-радиостанций, расположенных по всему миру [Ryakhovskii et al., 2021]. Регистрация сигналов выполняется высокочастотным измерительным комплексом Metronix-ADU07 на горизонтальные магнитные антенны, ориентированные в направлениях Север-Юг и Восток-Запад. Полученные волновые формы вариаций магнитного поля с частотой оцифровки 128 кГц позволяют исследовать временной ход амплитуды и относительной фазы сигналов на частотах СДВ-передатчиков с шагом 1 с.

В данной работе использовались данные, полученные в ГФО Михнево во время солнечной вспышки класса Х2.2, произошедшей 10.06.2014 г. в 11:40 UT. Результаты регистрации потока рентгеновского излучения на спутнике GOES (https:// satdat.ngdc.noaa.gov/sem/goes/data/full/) в диапазонах длин волн 0.1-0.8 нм и 0.05-0.4 нм представлены на рис. 1. Особенностями этой вспышки являются крутой передний фронт и малая длительность. Для диапазона 0.1-0.8 нм время нарастания потока от уровня 0.1 до максимального значения составило 2 мин, а полная длительность вспышки по уровню 0.1 от максимума составила 7.5 мин. Для диапазона излучения 0.05-0.4 нм эти значения составили 1.5 мин и 5.5 мин соответственно. На том же рисунке показаны результаты регистрации амплитуды и фазы сигналов передатчиков GQD и GBZ в ГФО Михнево.

Использование методики, описанной в работе [Gavrilov et al., 2020], позволило оценить временной ход электронной концентрации во время вспышки на разных высотах. Результаты расчетов концентрации N_e во время вспышки с использованием модели Фергюсона—Уайта для высот 52, 56, 60, 64, 68 и 72 км представлены на рис. 2.

Высотный профиль, описываемый уравнением (1), является экспоненциальным. Возникает вопрос о границах применимости этого профиля для оценки электронных концентраций. Модель Фергюсона-Уайта является радиофизической и строилась на основе данных о распространении СДВ-радиосигналов. То есть модель корректно описывает диапазон концентраций электронов, который влияет на параметры отражения радиоволн на этих частотах. В нашем анализе мы использовали диапазон концентраций от 10 см⁻³ до 3500 см^{-3} . Этот диапазон отмечен на рис. 2 горизонтальными штриховыми линиями. Меньшие концентрации электронов не оказывают влияния на параметры электромагнитной волны СДВ-диапазона, а при более высоких значениях концентрации электронов радиоволны ОНЧ-диапазона испытывают полное отражение. Так как на высотах

68 и 72 км концентрации *Ne* во время вспышки значительно превышают величину 3500 см⁻³, в настоящей работе мы ограничились анализом данных для диапазона высот 52-64 км.

Изменения электронной концентрации в ионосфере во время солнечных вспышек может быть описано уравнением неразрывности в общем виде [Nina et al., 2018]:

$$\frac{dNe(h,t)}{dt} = G(h,t) - L(h,t), \quad G(h,t) = K_i I, \quad (2)$$

где G(h, t) и L(h, t) – скорости ионизации и потерь электронов соответственно. Скорость ионизации G(h, t) в свою очередь определяется потоком излучения *I* с коэффициентом пропорциональности K_i .

Для расчета потока ионизирующего излучения использовались данные спутника GOES в спектральных диапазонах 0.05–0.4 нм и 0.1–0.8 нм. В предположении, что источник излучения при рентгеновской вспышке является черным телом [Levine et al., 2019; Gavrilov et al., 2022], его спектральная плотность подчиняется закону Планка:

$$I(\lambda,T) = \frac{2\pi\hbar c^2}{\lambda^5} \frac{1}{\exp\left(\frac{\hbar c}{\lambda k T}\right) - 1},$$
(3)

где \hbar — постоянная Планка; *с* — скорость света; *k* — постоянная Больцмана; λ — длина волны; *T* температура черного тела. Тогда использование данных измерений потока излучения спутником GOES позволяет оценить яркостную температуру (*T*) источника, т.е. такую температуру, для которой выполняется условие:

$$\int_{0.05}^{0.8} I(\lambda, T) d\lambda$$

$$\int_{0.05}^{0.1} I(\lambda, T) d\lambda = \frac{F_2}{F_1},$$
(4)

где F_1 — поток излучения в диапазоне 0.05—0.4 нм, а F_2 — в диапазоне 0.1—0.8 нм.

Использование найденной яркостной температуры дало возможность рассчитать потоки излучения в других спектральных диапазонах. На рис. 3 показаны потоки рентгеновского излучения, зарегистрированные спутником GOES во время вспышки X 2.2. 10.06.2014 г. в 11:40 UTC в диапазонах 0.05–0.4 нм и 0.1–0.8 нм, а также рассчитанные потоки излучения для диапазонов длин волн 0.01–0.3, 0.01–0.26 и 0.01–0.22 нм.

Отметим, что с уменьшением верхней границы диапазона, поток падает, а крутизна переднего и заднего фронтов нарастает.

Из рис. 1 видно, что спустя 50 мин после начала вспышки амплитуда и фаза сигналов не вернулась к предвспышечному состоянию. Учитывая, что характерные времена рекомбинационных про-

Рис. 1. Поток рентгеновского излучения по данным спутника GOES в диапазоне 0.1–0.8 нм (пунктирная линия) и 0.05–0.4 нм (сплошная линия) (*a*); амплитуды сигналов от ст. GBZ (сплошная линия) и GQD (пунктирная линия) (*б*); фазы сигналов от ст. GBZ (сплошная линия) и GQD (пунктирная линия) и GQD (пунктирная линия), зарегистрированных в ГФО Михнево во время солнечной вспышки X2.2 10.06.2014 г. (*в*).

цессов существенно больше времени нарастания фронта, для оценки изменения концентрации электронов на переднем фронте вспышки уравнение (2) можно свести к виду

$$\frac{dNe(h,t)}{dt} = K_i(h,\lambda) I(\lambda,t).$$
(5)

Проинтегрировав его по времени, получим:

$$Ne(h,t) = K_i(h,\lambda) E(\lambda,t), \qquad (6)$$

где E — энергия излучения. Таким образом, на переднем фронте короткой вспышки концентрация электронов должна быть пропорциональна энергии излучения.

На рис. 4 показаны зависимости концентраций Ne(h,t), рассчитанных по модели Фергюсона—Уайта (уравнение (1)) от энергий $E(\lambda,t)$ рентгеновского излучения на высотах 52, 56, 60 и 64 км в различных спектральных диапазонах. При расчетах энергии излучения учитывалось значение зенитного угла Солнца.

Из рис. 4 видно, что зависимость электронных концентраций от энергии излучения на фронте вспышки близка к линейной, что соответствует модели, описываемой уравнением (6).

Дальнейшие расчеты проводились для спектральных диапазонов, в которых нижняя граница

Рис. 2. Динамика концентрации *Ne* на высотах 52, 56, 60, 64, 68 и 72 км во время солнечной вспышки X2.2 10.06.2014 г., рассчитанная по модели Фергюсона–Уайта.

Рис. 3. Потоки рентгеновского излучения в различных спектральных диапазонах во время вспышки Х2.2 10.06.2014 г.

составляла 0.01 нм, а верхняя граница менялась от 0.18 нм до 0.32 нм. Для каждого из этих спектральных диапазонов на высотах 52, 56, 60 и 64 км определялся коэффициент $K_i(h, \lambda)$ в уравнении (6).

Для расчета коэффициента $K_i(h,\lambda)$ брались точки от момента начала вспышки до момента достижения 95% от максимума потока излучения в спектральном диапазоне 0.05–0.4 нм. Результа-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 4 2023

РЯХОВСКИЙ и др.

Рис. 4. Зависимости концентраций, рассчитанных по модели Фергюсона–Уайта (уравнение (1)) от энергий рентгеновского излучения на высотах 52, 56, 60 и 64 км.

Рис. 5. Результаты расчета изменения концентрации электронов *Ne* (уравнение (6)) на фронте вспышки X 2.2 10.06.2014 г. на высотах 52, 56, 60 и 64 км в зависимости от потока рентгеновского излучения различной жесткости с использованием коэффициента, толстые кривые – концентрации *Ne*, рассчитанные по методике Фергюсона–Уайта (уравнение (1)) с использованием данных ОНЧ.

ты расчетов изменения концентрации электронов на различных высотах с использованием полученных значений коэффициентов K_i представлены на рис. 5. Здесь же для сравнения показаны данные расчета динамики *Ne* по методике Фергюсона–Уайта (уравнение (1)). Видно, что для каждого диапазона энергии рентгеновского излучения можно подобрать значение коэффициента $K_i(h,\lambda)$ в уравнении (6) так, чтобы полученная зависимость Ne(t) достоверно описывала ход электронной концентрации на данной высоте. В табл. 1 приведены результаты

Рис. 6. Результаты расчета изменения концентрации электронов *Ne* (уравнение (6)) на фронте вспышки X 1.5 10.06.2014 г. на высотах 52, 56, 60 и 64 км в зависимости от потока рентгеновского излучения различной жесткости с использованием коэффициента, толстые кривые – концентрации *Ne*, рассчитанные по методике Фергюсона–Уайта (1) с использованием данных ОНЧ.

оценки коэффициентов $K_i(h,\lambda)$ для различных спектральных диапазонов на высотах 52, 56, 60 и 64 км.

Для того чтобы разрешить неопределенность, в подборе коэффициентов $K_i(h,\lambda)$ и определить какой спектральный диапазон играет основную роль на каждой высоте, мы провели такую же оценку для вспышки X1.5, которая произошла в этот же день в 12:50 UT. На рис. 6 показаны результаты расчета *Ne* на фронте вспышки X1.5 с использованием коэффициентов из таблицы

Таблица 1. Оценка коэффициентов ионизации нижней ионосферы для различных диапазонов рентгеновского излучения

<i>h</i> , км	$K_{i}(h,\lambda)$	Диапазон излучения, нм
52	1.6×10^{5}	0.01-0.18
	7.9×10^{4}	0.01-0.20
	2.0×10^{4}	0.01-0.26
56	1.2×10^{6}	0.01-0.18
	2.7×10^{5}	0.01-0.22
	1.5×10^{5}	0.01-0.26
60	7.3×10^{6}	0.1-0.18
	1.3×10^{6}	0.01-0.24
	9.3×10^{5}	0.01-0.28
64	3.4×10^{7}	0.1-0.22
	4.1×10^{6}	0.01-0.26
	2.3×10^{6}	0.01-0.30

для каждого диапазона длин волн и значения Ne, рассчитанного по экспериментальным данным (уравнение (1)).

Видно, что для второй вспышки на каждой высоте один из спектральных диапазонов наиболее достоверно описывает ход электронной концентрации на фронте вспышки. В табл. 1 эти диапазоны и соответствующие коэффициенты выделены серым цветом.

Полученные результаты демонстрируют возможность экспериментальной оценки скоростей ионизации нижней ионосферы и определения спектральных диапазонов излучения, оказывающих наибольшее влияние на динамику электронной концентрации на различных высотах во время солнечных вспышек X класса.

3. ЗАКЛЮЧЕНИЕ

Исследование параметров электромагнитного излучения ОНЧ-диапазона является эффективным инструментом для оценки состояния и динамики нижней ионосферы в спокойных и возмущенных условиях.

Используемые в работе экспериментальные наблюдения на двухчастотной трассе GQD/GBZ– ГФО Михнево и модель Фергюсона–Уайта позволили оценить динамику Ne(h, t) в нижней ионосфере во время двух солнечных вспышек X 2.2 и X 1.5, произошедших 10.06.2014 г. [Gavrilov et al., 2022].

Использование данных измерения потока рентгеновского излучения спутником GOES в спектральных диапазонах 0.05–0.4 нм и 0.1–0.8 нм позволило оценить яркостную температуру источника (в предположении абсолютно черного тела) и динамику потоков рентгеновского излучения в более жестких спектральных диапазонах для этих двух вспышек.

Было показано, что если длительность переднего фронта существенно меньше характерного времени рекомбинации в нижней ионосфере, динамика профиля электронной концентрации на фронте вспышки будет линейно зависеть от потока рентгеновского излучения.

Комплексный анализ динамики Ne(h, t), рассчитанной по модели Фергюсона—Уайта, и потоков рентгеновского излучения в различных диапазонах длин волн позволил оценить значения коэффициентов скоростей ионизации и определить спектральные диапазоны излучения, оказавшие наибольшее влияние на динамику электронной концентрации на различных высотах нижней ионосферы для вспышек X 2.2 и X 1.5 10.06.2014 г.

Представленная в работе методика может быть использована для оценки скоростей ионизации нижней ионосферы во время солнечных вспышек разных энергетических классов.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского научного фонда (проект РНФ № 22-77-00051).

СПИСОК ЛИТЕРАТУРЫ

- Bekker S.Z., Ryakhovsky I.A., Korsunskaya J.A. Modeling of the lower ionosphere during solar X-ray flares of different classes // J. Geophys. Res. - Space. V. 126. № 2. e2020-JA028767. 2021.

https://doi.org/10.1029/2020JA028767

- Bekker S.Z., Kozlov S.I., Kudryavcev V.P. Comparison and verification of the different schemes for the ionizationrecombination cycle of the ionospheric D-region // J. Geophys. Res. - Space. V. 127. N 10. e2022JA030579. 2022. https://doi.org/10.1029/2022JA030579

- *Ferguson J.A.* Ionospheric model validation at VLF and LF // Radio Sci. V. 30. № 3. P. 775–782. 1995. https://doi.org/10.1029/94RS03190

- Gavrilov B.G., Ermak V.M., Lyakhov A.N., Poklad Y.V., Rybakov V.A., Ryakhovsky I.A Reconstruction of the parameters of the lower midlatitude ionosphere in M- and X-class solar flares // Geomagn. Aeronomy. V. 60. № 6. P. 747-753. 2020. https://doi.org/10.1134/S0016793220060043

- Gavrilov B.G., Poklad Y.V., Ryakhovsky I.A., Ermak V.M. Dependence of D-region perturbations of the midlatitude ionosphere on the spectral composition of the X-ray radiation of solar flares according to experimental data // Geomagn. Aeronomy. V. 62. \mathbb{N} 1–2. P. 98–103. 2022. https://doi.org/10.1134/S0016793222020086

- *Kumar A., Kumar S.* Solar flare effects on D-region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24 // Earth Planets Space. V. 70. № 1. Art. № 29. 2018.

https://doi.org/10.1186/s40623-018-0794-8

- Levine E.V., Sultan P.J., Teig L.J. A parameterized model of X-ray solar flare effects on the lower ionosphere and HF propagation // Radio Sci. V. 54. № 2. P. 168–180. 2019. https://doi.org/10.1029/2018RS006666

Mitra A.P. Ionospheric effects of solar flares. Dordrecht:
 D. Reidel Publishing Company, 307 p. 1974.

https://doi.org/10.1007/978-94-010-2231-6

− Nina A., Čadež V.M., Bajčetić J., Mitrović S.T., Popović L.Č. Analysis of the relationship between the Solar X-ray radiation intensity and the D-region electron density using satellite and ground-based radio data // Sol. Phys. V. 293. № 4. Art. № 64. 2018.

https://doi.org/10.1007/s11207-018-1279-4

- Ryakhovskii I.A., Gavrilov B.G., Poklad Y.V., Bekker S.Z., Ermak V.M. The state and dynamics of the ionosphere from synchronous records of ULF/VLF and HF/VHF radio signals at geophysical observatory "Mikhnevo" // Izv., Phys. Solid Earth. V. 57. № 5. P. 718–730. 2021. https://doi.org/10.1134/S1069351321050177

- *Thomson N.R.* Daytime tropical D region parameters from short path VLF phase and amplitude // J. Geophys. Res. - Space. V. 115. A09313. 2010. https://doi.org/10.1029/2010JA015355

https://doi.org/10.1029/2010JA015555

- Thomson N.R., Rodger C.J., Clilverd M.A. Daytime D region parameters from long-path VLF phase and amplitude // J. Geophys. Res. - Space. V. 116. A11305. 2011. https://doi.org/10.1029/2011JA016910

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 4 2023