УДК 550.383+550.384.3

УТОЧНЕННАЯ ПРОСТРАНСТВЕННО-ВРЕМЕННА́Я МОДЕЛЬ ПОЛЯ УСКОРЕНИЙ ГЛАВНОГО МАГНИТНОГО ПОЛЯ НА ПОВЕРХНОСТИ ЗЕМЛИ И ГЕОМАГНИТНЫЕ ДЖЕРКИ

© 2023 г. А. О. Симонян^{1, *}, М. В. Оганян^{1, **}

¹Институт геофизики и инженерной сейсмологии им. А.Г. Назарова НАН РА (ИГИС НАН РА), Гюмри, Армения *e-mail: anahit.iges@gmail.com **e-mail: marine-0882@mail.ru Поступила в редакцию 02.11.2022 г. После доработки 10.01.2023 г. Принята к публикации 26.01.2023 г.

Построены уточненные пространственные сферические гармонические модели кусочно-постоянного поля вековых ускорений главного магнитного поля Земли, исходя из концепции о геомагнитных джерках. Проанализированы данные 189-и магнитных обсерваторий, оперирующих в течение расширенного периода исследований, полагая, что джерки являются признаками резких изменений магнитогидродинамических режимов квази-стационарного процесса генерации вековых вариаций магнитного поля в области спектра высоких частот. Проведен качественный и количественный анализ, показывающий устойчивость моделей настоящей генерации, их согласованность с исходными значениями ускорений, полученных из данных прямых обсерваторских наблюдений. По расширенному временному интервалу исследований уточнено время появления джерков, выявлено, что в масштабе всей Земли они имеют квази-десятилетнюю частоту повторяемости, через которую можно оценить временную протяженность отдельных режимов стационарного эволюционирования глобального магнитного поля ядра Земли. Анализом результатов сферического гармонического моделирования по картам глобального поля постоянных ускорений доказана внутриземная природа источников всех выявленных джерков, а также особенности их морфологических структур и степень распространенности на поверхности Земли.

DOI: 10.31857/S0016794022600624, EDN: POKDOY

1. ВВЕДЕНИЕ

Важность изучения пространственно-временных характеристик вариаций магнитного поля Земли основана на том, что в них отражаются характерные времена и характерные размеры процессов, протекающих в недрах Земли и в околоземном пространстве. При этом ключевой задачей является разделение вариаций разных источников, что является фундаментальной проблемой геофизики. До 80-х годов прошлого столетия считалось, что высокочастотный диапазон вариаций главного магнитного поля, т.е. поля, генерированного во внешнем жидком ядре Земли, составляют вариации с продолжительностью в несколько десятков лет. Условно они назывались десятилетними вариациями, а все вариации с продолжительностью менее десяти лет относились к внешнему магнитному полю, источником которых являются процессы, протекающие в магнитосфере и ионосфере Земли под воздействием вариаций солнечной активности. Отдельные упоминания о существовании импульсов в вековых вариациях внутриземной природы [Калинин, 1949; Weber

and Robers, 1951; Walker and O'Dea, 1952; Орлов, 1961] не получили систематического развития. Резкие изменения вековых вариаций земного магнитного поля внутриземной природы послужили предметом широких научных дискуссий, и стали последовательно изучаться с начала 80-х годов 20 века после появления работ группы французских ученых, открывших их по временным сериям данных европейской сети магнитных обсерваторий [Courtillot et al., 1978; Achache et al., 1980; Le Mouel and Courtillot 1981; Le Mouel et al., 1982; Cire et al., 1984; Courtillot and Le Mouel, 1984]. Они были названы джерком и свидетельствовали о существовании коротких характерных времен в вариациях главного магнитного поля и отраженных в них процессов гидромагнитного динамо во внешнем жидком ядре Земли [Nevanlinna and Sucksdorff, 1981; Madden and Le Mouel, 1982; Malin and Hodder, 1982; Kerridge and Barraclough, 1985; Golovkov et al., 1989; 2003; Alexandrescu et al., 1995; Macmillan, 1996; De Michelis et al., 1998; Le Huy et al., 1998; Simonyan and Shahparonyan,

2004; Симонян и Головков, 2009; Qamili et al., 2013; Симонян, 2017].

Появление на земной поверхности джерков подразумевает тонкость скин-слоя у подошвы мантии, т.е. небольшие значения электрической проводимости нижней мантии, или тонкость слоя большой проводимости [Брагинский и Фишман, 1977]. Такое представление об электрической проводимости нижней мантии приводит к непростой задаче по определению механизма передачи земному ядру вращательного момента мантии (Брагинский, 1970; Ducruix et al., 1980; Брагинский, 1982; Backus, 1983; Braginsky, 1984; Jault et al., 1988; Jault, and Le-Mouel, 1991].

От точности определения морфологических и временны́х характеристик поля джерков в значительной степени зависит точность определения природы их источников в рамках теории гидромагнитного динамо: являются ли они результатом распространения магнитогидродинамических волн Альвена (Alfven), или связаны с переносом масс жидкого вещества ядра [Брагинский С.И. 1970; Braginsky, 1998; Gillet et al., 2010; Chulliat and Maus, 2014; Whaler and Beggan, 2015]. Решение проблемы выявления частоты повторяемости джерков в сериях данных и точное определение их морфологических особенностей также важно для определения их отношения к декадным вариациям главного магнитного поля.

Изучению современных джерков способствуют высококачественные пространственно однородные векторные данные, предоставляемые магнитными спутниками в период последних десятилетий. Однако относительно небольшая длина временных рядов данных магнитных спутников, в отличие от наземных данных магнитных обсерваторий, не позволяет выявить джерки в расширенном временном интервале и точно определить частоту их проявления. Следует отметить, что высокочастотные вариации магнитосферного и ионосферного происхождения являются серьезным препятствием в изучении джерков, из-за резкого их характера попадающих в частотный диапазон, характерный для вариаций внешних источников. Эта проблема усугубляется при выявлении и изучении джерков по спутниковым данным, в которых высокочастотные вариации ионосферных источников легко отнести к внутренним источникам, и вместе с индуцированной ими частью существенно меняют сигнал-шум соотношение в пользу последнего.

Проблема разделения вариаций разных источников, попадающих в один и тот же частотный диапазон, может быть решена путем создания физических и математических моделей вариаций внешних и внутренних источников. В рамках теоретических исследований создаются модели динамо-теории с определением потоков, сформи-

рованных в жидком ядре Земли. Решением прямой задачи определяется созданное на поверхности ядра поле геомагнитных вариаций, при сравнении которых с данными геомагнитных наблюдений выделяется часть вариаций, вызванных внутренними источниками [Chulliat et al., 2010; Chulliat and Maus, 2014; Whaler and Beggan, 2015; Whaler et al., 2016]. В результате вариации поля ядра, имеющие крупно-региональный характер проявления, можно отделить от локальных вариаций, источником которых являются структурно-динамические особенности верхних слоев Земли, и от глобальных вариаций внешних источников, проявляющих четкую широтную зависимость. Несмотря на множество работ, посвященных изучению джерков, проблема времени появления джерков, их цикличности, а также степени распространенности по поверхности Земли, продолжает оставаться предметом серьезных научных дискуссий [Olsen and Mandea, 2007; Mandea et al., 2010; Torta et al., 2015; Lesur et al., 2022].

Таким образом, выделение из спектра высоких частот сигналов главного магнитного поля Земли и построение точных моделей поля геомагнитных вариаций, основанных на учете быстротечных вариаций внутриземного происхождения, позволяют изучать особенности гидродинамических процессов, протекающих во внешнем жидком ядре Земли. Решение этой задачи важно и для развития прикладных исследований, относящихся к выделению локального характера вариаций, вызванных тектонической активностью земной коры и литосферы, от регионального фона вариаций земного ядра.

В представленной работе решается задача по построению уточненных, непрерывных в пространстве и во времени моделей поля геомагнитных ускорений за более чем столетний период времени с конца 19-го, начала 20-го веков по первое десятилетие 21-го века, обеспеченный регулярными сериями данных обсерваторских наблюдений, исходя из представления, что джерки являются резкими \/- и/или /\-образными изменениями в долгопериодном, линейном тренде вековых вариаций. При данном представлении полагается, что ускорения главного магнитного поля Земли в течение десятилетий между появлением соседних по времени джерков представляются константами, испытывающими резкие изменения значений при появлении джерков вплоть до знака их величины. Такое предположение, основанное на анализе данных регулярных наблюдений магнитного поля Земли, соответствует представлению, что процесс эволюции магнитного поля ядра Земли имеет квази-стационарный характер, с резкими изменениями режима стационарности, проявляющимися появлением джерков. Количественные оценки, основанные на статистическом анализе результатов сферического гармонического моделирования кусочно-постоянного поля ускорений за исследуемый период, свидетельствуют о высокой точности представления изменчивости главного геомагнитного поля исходя из концепции, основанной на джерках.

2. ДАННЫЕ И ИХ АНАЛИЗ

Проанализированы временные серии вековых вариаций, определенных по X, Y и Z силовым геомагнитным элементам для выявления джерков в расширенном временном интервале, охватывающем период конца 19-го—начала 20-го веков по настоящий период 21-го века и уточнения пространственно-временных характеристик изменчивости главного магнитного поля Земли. Использован наиболее полный, систематически обновляемый набор временных рядов среднегодовых значений геомагнитных элементов по данным мировой сети магнитных обсерваторий, предоставленных мировым центром по сбору и обработке данных при BGS (https://geomag.bgs.ac.uk/ data_service/data/annual_means.shtml).

Влияние высокочастотных вариаций внешних источников в рассматриваемых сериях данных подавляется применением амплитудно-частотного фильтра. С учетом того, что в вековых вариациях магнитосферно-ионосферного происхождения основной вклад имеют источники, вызванные 11-летним циклом солнечной активности, серии значений вековых вариаций были усреднены одиннадцатилетним скользящим окном [Golovkov et al., 1989; Симонян, 2017]. Сглаженные серии данных можно с высокой степенью точности представить кусочно-линейной моделью аппроксимации – дисперсия представления отдельных частей рассматриваемых серий линейными сегментами, длина которых исчисляется десятилетиями, составляет всего десятые доли

 $({\rm HT}{\rm J}/{\rm rog})^2$. При этом наклонами этих сегментов определялись значения постоянных ускорений для соответствующих периодов аппроксимации, а абсциссой точки пересечения соседних линейных отрезков определялись годы появления джерков. Только в редких случаях — по отдельным сериям *X* и/или *Z* из отдельных точек высокоширотных магнитных обсерваторий, или обсерваторий, не выделяющихся высокой точностью данных в отдельные периоды наблюдений, дисперсии линейной аппроксимации превышали

одну (нТл/год)². Однако, при этом ошибка аппроксимации продолжала оставаться значительно ниже искомого значения ускорения. Представительность построенной кусочно-линейной модели представления временных рядов вековых вариаций обеспечивается также удовлетворением следующих дополнительных условий: а) дисперсия аппроксимации для всего периода, покрытого анализируемой серией, должна быть примерно одинаковой по всем определяемым сегментам прямых, за исключением отдельных сегментов, представляющих промежуток данных, выделяющихся наличием в них некоррелированного шумового сигнала; б) период линейной аппроксимации, который не может быть короче ≈10 лет, определяется длиной ряда, при вовлечении в который дополнительных 1-2 точек резко возрастает значение лисперсии, означающего, что периол аппроксимации начинает покрывать эпоху очередного джерка; в) год появления джерка, т.е. год, соответствующий пункту пересечения соседних линейных сегментов, не должен отклониться более, чем на один год от года, соответствующего крайней точки аппроксимированного участка ряда; г) определяемое по наклону линейного сегмента значение ускорения не должно сильно выделяться на фоне значений, характерных для данного региона в данный период, а тажке не должно привести к увеличению значения девиации, полученной по уточняемой сферической гармонической модели.

Некоторые из результирующих серий вековых геомагнитных вариаций, представленных по данным магнитных обсерваторий из разных регионов мира, оперирующих за долгие периоды времени, представлены на рис. 1.

При стремлении использовать максимально полную, однородную сеть серий данных магнитных обсерваторий в представленных исследованиях мы, тем не менее, вынуждены были ограничиться только обсерваториями, период непрерывного действия которых составлял не менее 30—40 лет. Анализ регионального фона вековых вариаций показал, что при таких длинах временны́х рядов обеспечивается статистическая значимость результатов линейного представления серий данных с определением точных значений направления тренда, представляющего значения поля постоянных ускорений.

Джерки, выявленные по отдельным временным сериям вековых вариаций, нами названы "виртуальными" ввиду того, что эпоха каждого их появления зависит как от того, по какому геомагнитному элементу анализируются вековые вариации. так и от положения обсерватории на земной поверхности, предоставляющей данные для анализа. То есть, если значения вековых вариаций по X, Y и Z геомагнитным элементам представить как $\dot{u}|_{\dot{X},\dot{Y},\dot{Z}}$, а вековых ускорений как $\ddot{u}|_{\ddot{X},\ddot{Y},\ddot{Z}}$, где точки сверху означают временны́е производные соответствующих величин, то, очевидно, что $\dot{u} \equiv \dot{u}(\phi, \lambda, t), \ \ddot{u} \equiv \ddot{u}(\phi, \lambda, t); \ T_i = T_i(\dot{u}), \$ где ϕ, λ являются географическими координатами обсерватории; Т_ј является годом появления джерка по данной серии вековых вариаций и $(T_i)_{\mu} = T_i(\dot{u}, \phi, \lambda),$ где индекс "v" означает "virtual".

Рис. 1. Временны́е ряды вековых вариаций по данным обсерваторий из разных регионов мира. Светлые кружочки – серии значений вековых вариаций по данным наблюдений; темные кружочки – те же, после применения скользящего осреднения с окном в 11-лет; отрезки прямых составляют модель аппроксимации для представленных рядов, построенная по серии темных кружочек; цифры показывают время пересечения соседних прямых отрезков в годах с точностью ≤0.5 года.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 3 2023

Рис. 1. Окончание.

Переносы обсерваторий за отдельные периоды их действия приводят к искусственному укорачиванию рядов и ухудшению качества предоставляемых ими ценной и порою уникальной информации о вековых геомагнитных вариациях. Для "сшивания" рядов значений были использованы поправки, которые в ряде случаев представлены в файлах исходных данных на сайте BGS. В некоторых случаях "сшивание" рядов данных проведено в каталоге Головков и др. (1983). В наших исследованиях, для вовлечения в анализ наибольшего количества длинных непрерывных рядов, были использованы как первый, так и второй вышеуказанные источники. В табл. 1 представлен список 189 магнитных обсерваторий, обеспечивающих данными для обнаружения джерков и определения времени их появления, равно как и исходных значений ускорений для построения пространственных моделей глобального поля постоянных ускорений. Список составлен в порядке убывания географических широт, с указанием страны, поддерживающей работу обсерватории, исторических и современных названий обсерваторий, их международных кодов и географических координат, соответствующих современным названиям обсерваторий, периода действия и годов пропусков в предоставляемых ими сериях данных.

Схематические карты расположения магнитных обсерваторий, снабжающих данными постоянных геомагнитных ускорений, покрывающих периоды действия отдельных режимов, в работе представлены вместе с соответствующими картами глобального поля ускорений.

Из представленной табл. 1 следует, что только 70 из мировых магнитных обсерваторий обеспечивают данными, покрывающими период первой половины 20-го века. Еще 60 обсерватории начали действовать с 1950-х годов, а некоторые из ранее действующих обсерваторий прекратили свое действие. И, несмотря на большое количество обсерваторий в современности, предоставляемые ими ряды недостаточно длинны, чтобы в рамках принятой модели аппроксимации временных рядов обеспечить точные значения ускорений. Помимо того, сети обсерваторий присуща и значимая неравномерность по пространственному распределению почти для всех рассмотренных интервалов времени. Острая нехватка магнитных обсерваторий наблюдается в акваториях океанов и в южном полушарии, тогда как территория Европы покрыта густой сетью долгодействующих обсерваторий. Основная часть обсерваторий расположена в северном полушарии, в южном полушарии работает только 43 из представленных 189 обсерваторий. По этой причине, несмотря на приличную статистику, позволяющую выявить частоту появления джерков по годам и по регионам мира (1460 виртуальных джерков, выявленных по 567 проанализированным временным сериям данных),

полученные результаты по степени пространственной распространенности синхронных джерков, характеризующих их мощность, в определенной степени зависят от выявленной пространственно-временной неоднородности сети анализируемых данных. В результате, представленная на рис. 2 гистограмма, построенная по количеству "виртуальных" джерков по годам, позволяет выявить лишь относительные максимумы, соответствующие которым годы рассматриваются как эпохи глобальных джерков. В периоды между глобальными джерками, соответствующими периодам установленных стационарных режимов изменчивости магнитного поля ядра до- и/или после проявления джерков, выделяются годы с минимальным количеством "виртуальных" джерков, которые и рассматриваются как центральные эпохи периодов постоянства глобального поля вековых ускорений.

Определение наклона тренда, свойственного сериям вековых вариаций поля земного ядра подразумевает численное решение по методу наименьших квадратов следующих уравнений:

$$\dot{u}_{i,j} = a_{i,j} \Delta t_i(j) + b_{i,j}, \tag{1}$$

где индексом $i = i(\varphi, \lambda)$ обозначена магнитная обсерватория; j – любой год периода $\Delta t_i(j) = \Delta t(\varphi, \lambda, \dot{u})$, представленного данным линейным сегментом; $\dot{u}_{i,j}$ – аппроксимированное значение вековой вариации, определенной по одному из X, Y или Z геомагнитных элементов; $a_{i,j}$ ($\mathrm{нTn/rog}^2$) – искомые значения наклона тренда вариаций, или значение постоянного ускорения в точке i за период $\Delta t_i(j)$.

Результирующие значения $a_{i,j} \equiv a_{i,j}|_{(\ddot{X},\ddot{Y},\ddot{Z})_{i,j}} \equiv \equiv \ddot{u}|_{(\ddot{X},\ddot{Y},\ddot{Z})_{i,j}}$ были использованы для построения пространственных сферических гармонических моделей глобального поля постоянных ускорений для всех периодов между джерками, которые по времени условно были приурочены к центральным эпохам, выявленным на рис. 2. При этом создавались наборы исходных значений поля ускорений по центральным эпохам, выбранным в качестве *j* значений, и по координатам *i* точек магнитных обсерваторий, обеспечивающих сериями данных за период с центральной эпохой *j*.

В случае, когда значение ускорения было определено трендом за долгий период $\Delta t_i(j)$, включающий несколько центральных эпох *j* (сегмент аппроксимации представляет вековые вариации за несколько десятилетий), оно повторялось в соответствующих наборах исходных данных ускорений по всем *j* эпохам.

Набор искомых коэффициентов Гаусса по разложению поля ускорений в ряд для земной поверхности ($r = R_E$) отыскивается совместным

Таблица 1. Список 189 магнитных обсерваторий с указанием страны, которой они принадлежат, старых и новых названий обсерваторий, современных международных кодов и географических координат, периода действия и пропусков в предоставляемых ими рядах данных

№	Страна	Обсерватории	Код	Широта Долгота		Период	Пробелы
001	Canada	Alert	ALE	82°30′	297°39′	1961-2004	
002	USSR	Tikhaya Bay \Rightarrow Heiss Island	HIS	80°37′	58°03′	1932-1997	
003	Norway	New Alesund Closed!	NAL	78°55′	11°56′	1966-2002	
004	Russia	Cap Chelyuskin	CCS	77°43′	104°17′	1939-2007	2001
005	Greenland	Qaanaaq (Thule)	THL	77°29 ′	290°50′	1955-2019	
006	Poland	Hornsund	HRN	77°00 ′	15°33′	1978-2018	
007	Canada	Mould Bay Closed!	MBC	76°19 ′	240°38′	1962-1997	
008	Canada	Resolute Bay	RES	74°41 ′	265°06′	1954-2018	
009	Norway	Bear Island	BJN	74°30 ′	19°12′	1951-2017	
010	Russia	Dikson Island	DIK	73°33′	80°34′	1933–2016	1995; 2006–2010 <i>X</i> , <i>Y</i> : 2001–2004
011	Russia	Tiksi (TIXIE) Bay	TIK	71°35′	129°00′	1944-2016	
012	USA	Point Barrow	BRW	71°18′	203°23′	1949-2019	
013	Norway	Tromso	TRO	69°40′	18°57′	1930-2018	
014	Greenland	Godhavn1 ⇒ Qeqertarsua q (Godhavn2)	GDH	69°15′	306°28′	1927–2018	
015	Canada	Cambridge Bay	CBB	69°07′	254°58′	1972-2017	2013
016	Sweden	Abisko	ABK	68°21′	18°49′	1965-2018	
017	USSR	Murmansk ⇒ Loparskaya	MMK	68°15′	33°05′	1958-1988	
018	Sweden	Kiruna	KIR	67°51′	20°25′	1970-2018	
019	Finland	Sodankyla	SOD	67°22′	26°38′	1914-2018	
020	USSR	Uelen Closed!	CWE	66°10′	190°10′	1950-1996	1952– <i>X</i> , <i>Z</i> ; 1953– <i>Z</i>
021	USA	$College1 \Rightarrow College2 \Rightarrow College3$	СМО	64°52′	212°08′	1941-2019	
022	Canada	Baker lake	BLC	64°20′	263°58′	1951-2018	
023	Iceland	Leirvogur	LRV	64°11′	338°18′	1957-2020	
024	Canada	Yellowknife2	YKC2	62°29′	245°31′	1975-2015	
025	Norway	Dombas Magnetic Station \Rightarrow Dombas 2	DOB	62°04′	9°07′	1916-2018	
026	USSR	Yakutsk	YAK	61°58′	129°40′	1931-2018	Z: 1931–1947; 1998–2009, 2010
027	USSR	Podkamennaya Tunguska	POD	61°36′	90°00′	1969–2016	Z: 1976–1979 1993–2015
028	Greenland	Narssarssuaq	NAQ	61°10′	314°34′	1968-2019	2009–2010; 2018
029	Finland	Nurmijarvi	NUR	60°30'	24°39′	1953-2018	
030	U.K.	Lerwick	LER	60°08′	358°49′	1923-2019	
031	USSR	Srednikan \Rightarrow Stekolnyy (Magadan)	MGD	60°07 ′	151°01′	1936-2018	1999–2011
032	Russia	St.Petersburg \Rightarrow Slutsk \Rightarrow \Rightarrow Voyeykovo	LNN	59°57′	30°42′	1869–2016	1999–2001– <i>X</i> , <i>Y</i> ; 2001– <i>Z</i>
033	Norway	Oslo	OSL	59°55′	10°43′	1843-1930	

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 3 2023

NG	<u> </u>	05	V · ·	III	Π	Π	
JNº	Страна	Обсерватории	Код	широта	долгота	Период	Пробелы
034	Sweden	$Lovo \Rightarrow Uppsala (Fiby)$	UPS	59°54′	17°21′	1928-2019	
035	Canada	Fort Churchill	FCC	58°47′	265°55′	1964-2019	
036	Russia	Borok	BOX	58°04′	38°13′	1977-2019	
037	USA	Sitka 1⇒ Sitka 2	SIT	57°04′	224°40′	1902-2019	
038	Russia	Sverdlovsk ⇒ Vysokaya Dubrava ⇒ Arti	ARS	56°26′	58°34′	1887-2018	2016-2017
039	USSR	Kazan' ⇒ Zaimishche	KZN	55°50′	48°51′	1909–1992	1975-1977
040	Denmark	$\begin{array}{l} \text{Copenhagen} \Rightarrow \text{Rude} \\ \text{Skov} \Rightarrow \textbf{Brorfelde} \end{array}$	BFE	55°38′	11°40 ′	1892-2008	
041	Russia	Krasnaya Pakhra (Moscow)	MOS	55°28′	37°19′	1946-2016	
042	U.K	Eskdalemuir	ESK	55°19′	356°48′	1908-2019	
043	Canada	Great Whale River \Rightarrow \Rightarrow Poste-de-la-Baleine	PBQ	55°17′	282°15′	1965-2007	
044	Russia	Klyuchi (Novosibirsk)	NVS	54°51'	83°14′	1967-2019	
045	Canada	Meanook	MEA	54°37′	246°39′	1916-2018	
046	Poland	Hel	HLP	54°36′	18°49′	1953-2019	
047	Byelarus	Pleshchenitsi (Minsk)	MNK	54°30′	27°53′	1961-2019	
048	Gr.Britain	Stonyhurst	STO	53°51′	357°32'	1865-1967	1944-1960
049	Germany	Wilhelmshaven ⇒ Wingst	WNG	53°45′	9°04′	1884-2019	1912–1930, 1933–1938
050	Russia	$Petropavlovsk \Rightarrow Paratunka$	PET	52°58′	158°15′	1969-2019	2003-2007
051	Netherlands	Utrecht \Rightarrow De Bilt \Rightarrow Witteveen	WIT	52°49′	6°40′	1891-1987	
052	Russia	Irkutsk \Rightarrow Zuy-Patrony \Rightarrow Irkutsk	IRT	52°10′	104°27′	1887-2019	
053	Polanad	Swider Closed!	SWI	52°07′	21°15′	1921-1972	
054	Germany	$Potsdam \Rightarrow Seddin \Rightarrow Niemegk$	NGK	52°04′	12°41′	1890-2019	
055	Ireland	Valentia	VAL	51°56′	349°45′	1899-2017	
056	Poland	Belsk	BEL	51°50′	20°48′	1960-2019	
057	Gr. Britain	Kew	KEW	51°28′	349°41′	1857-1924	
058	U.K.	$Greenwich \Rightarrow Abinger \Rightarrow Hartland$	HAD	51°00′	355°31′	1846-2019	
059	USSR	$\operatorname{Kiev} \Rightarrow \mathbf{Dymer}$	KIV	50°43′	30°18′	1958-2018	1999–2003
060	Belgium	Uccle \Rightarrow Manhay	MAB	50°18′	5°41′	1896–2019	1920—1932; 1974—1982
061	Belgium	Dourbes	DOU	50°06′	4°36′	1955-2019	
062	Ukraine	Lvov	LVV	49°54′	23°45′	1952-2018	
063	China	Manzhouli	MZL	49°36′	117°24′	1984-2017	2008
064	Czechia	Budkov	BDV	49°05′	14°01′	1967-2019	
065	Canada	Victoria	VIC	48°31′	236°35′	1956-2018	
066	USA	Newport	NEW	48°16′	242°53′	1966-2019	
067	Austria (Vienna)	Wien Auhof \Rightarrow Wien Kobenzl	WIK	48°16′	16°19′	1929–2015	
068	Germany	$\begin{array}{l} \text{Munich} \Rightarrow \text{Maisach} \Rightarrow \\ \Rightarrow \textbf{Furstenfeldbruck} \end{array}$	FUR	48°10'	11°17′	1842-2019	1875–1882; 1887–1888; 1914–1926

Таблица 1. Продолжение

N⁰	Страна	Обсерватории	Код	Широта	Долгота	Период	Пробелы
069	France	Parc Saint-Maur(<i>Paris</i>) \Rightarrow \Rightarrow Val Joyeux \Rightarrow Chambon-la-Foret	CLF	48°01′	2°16′	1883–2019	
070	Slovakia	Budapest \Rightarrow Hurbanovo (O Gyalla, Stara Dala)	HRB	47°52′	18°11′	1894–2019	1919–1940; 1945–1948
071	Hungary	Nagycenk	NCK	47°38′	16°43′	1961-2019	
072	Canada	Saint John's	STJ	47°36′	307°19′	1968-2018	
073	USSR	Toyohara New⇒ Yuzhno-Sakhalinsk Closed!	YSS	46°57′	142°43′	1932–1990	
074	Hungary	Budakeszi ⇒ Tihany	THY	46°54′	17°54′	1949-2018	
075	Ukraine	Odessa (Stepanovka)	ODE	46°47 ′	30°54′	1936-2007	
076	Italy	CastelloTesino	CTS	46°03′	11°39′	1965-2018	
077	USSR	Novokazalinsk Closed!	NKK	45°46′	62°07′	1974-1993	
078	Canada	Toronto \Rightarrow Agincourt \Rightarrow Ottawa	OTT	45°24'	284°27′	1855-2018	1880
079	Romania	Surlari	SUA	44°41 ′	26°15′	1949-2019	
080	Serbia	Grocka	GCK	44°38′	20°46′	1958-2019	2014
081	Japan	Memambetsu	MMB	43°55′	144°11′	1952-2019	
082	China	Changchun (Helong)	CNH	43°50′	125°18′	1957–2017	2000–2004 2008–2010
083	China	Urumcqi (Wulumuchi)	WMQ	43°49′	87°42′	1978-2000	
084	USSR	Voroshilov (Ussuriysk) ⇒ Gornot- ayezhnaya (Vladivostok)	VLA	43°41′	132°10′	1952—1997	
085	Kazakhstan	Alma-Ata	AAA	43°15′	76°55′	1963-2015	
086	Bulgaru	Panagyurishte	PAG	42°31′	24°11′	1948-2016	
087	Italy	Pola ⇒ Genova Castellaccio ⇒ ⇒ L'Aquila	AQU	42°23′	13°19′	1883–2009	1923–1932
088	Georgia	Tiflis \Rightarrow Karsani \Rightarrow Dusheti (Tbilisi)	TFS	42°06′	44°42'	1879-2003	
089	Uzbekistan	Tashkent \Rightarrow Keles \Rightarrow Yangi Bazar	TKT	41°20′	69°37′	1936-2006	
090	Turkey	Kandilli (Istanbul)	ISK	41°04′	29°04′	1947-1997	
091	Italy	Capodimonte	CPD	40°52′	14°15′	1883-1914	
092	Spain	Ebro (Tortosa)	EBR	40°49'	0°30′	1905-2011	1981-1994
093	China	Peking 2 (Beijing) \Rightarrow Beijing Ming Tombs	BMT	40°18′	116°12′	1957–2019	
094	Portugal	Coimbra (Alto Da Baleia)	COI	40°13′	351°35′	1866-2019	
095	USA	Boulder	BOU	40°08′	254°46′	1964-2019	
096	Spain	Toledo \Rightarrow San Pablo (De Los Montes)	SPT	39°33′	355°39 ′	1947–2019	
097	Japan	Mizusawa	MIZ	39°07′	141°12′	1969-2017	
098	USA	Cheltenham \Rightarrow Fredericksburg	FRD	38°13′	282°38′	1901-2019	
099	Greece	Penteli ⇒ Penteli 2	PEG	38°05′	23°56′	1959–2016	1994–1998; Z: 1961
100	Turkmenistan	Ashkhabad (Vannovskaya)	ASH	37°57′	58°06′	1959–2006	
101	Spain	San Miguel Closed!	SMG	37°46'	334°21′	1911-1977	
102	USA	Fresno	FRN	37°05′	240°17′	1982-2019	

Таблица 1. Продолжение

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 3 2023

№	Страна	Обсерватории	Код	Широта	Долгота	Период	Пробелы
103	Spain	Almeria Closed!	ALM	36°51′	357°32′	1955-1991	
104	Spain	San Fernando \Rightarrow 2,3	SFS	36°40'	354°04′	1891-2019	1980-1990
105	Japan	Tokyo ⇒ Kakioka	KAK	36°14′	140°11′	1897-2019	
106	China	Lanzhou	LZH	36°05′	103°51′	1959-2019	
107	Japan	Kanozan	KNZ	35°15′	139°57′	1961-2017	
108	China	Qianling	QIX	34°36′	108°12′	1984-2017	2007-2008
109	Japan	Simosato ⇒ Hatizyo (Hachijojima) Closed!	HTY	33°07′	139°48′	1954–2008	1978–1979
110	USA	Tucson $(1 \Rightarrow 2)$	TUC	32°10′	249°16′	1910-2019	
111	Izrael	Amatsia ⇔ Bar Gyora	BGY	31°43′	35°05′	1976-2018	
112	Japan	Kanoya	KNY	31°25′	130°53′	1958-2019	
113	China	Lukiapang \Rightarrow Zi-Ka-Wei \Rightarrow Zo Se (Sheshan)	SSH	31°06′	121°11′	1875-2006	
114	China	Chengdu	CDP	31°00′	103°42′	1982-2017	
115	China	Wuhan	WHN	30°32'	114°34′	1959-2017	2008
116	India	Dehra Dun \Rightarrow Sabhawala	SAB	30°22'	77°48′	1903-2014	1944-1963
117	USA	Stennis (Bay St Louis)	BSL	30°21′	270°22′	1986-2019	
118	Pakistan	Quetta	QUE	30°11′	66°57′	1953-2004	
119	Egypt	Helwan ⇒ Misallat	MLT	29°31′	30°54'	1903–2003	1987–1988; 1997–2001
120	USA	Del Rio Closed!	DLR	29°29′	259°05′	1982-2008	
121	Spain	Santa Cruz De Tenerife (Las Mesas) ⇒ Guimar	GUI	28°19′	343°34′	1959–2019	
122	Japan	Chichijima	CBI	27°06′	142°11′	1973-2015	
123	Taiwan	Lunping	LNP	25°00′	121°10′	1965-2000	
124	Pakistan	Karachi	KRC	24°57'	67°08′	1985-2006	
125	China	Tonghaj	THJ	24°00'	102°42′	1985-2017	2008
126	India	Ujjain Closed!	UJJ	23°11′	75°47′	1976-2003	
127	China	Guangzhou ⇔ Zhaoqing	GZH	22°58′	112°27′	1958-2017	1998-2002
128	Cuba	La Habana (Centro Geofisico \Rightarrow \Rightarrow JBN \Rightarrow Inst. Geofis. Y Astron.)	HVN	22°58′	277°51′	1965–1999	1992–1997
129	Algeria	Tamanrasset	TAM	22°48′	5°32′	1933-2019	Z: 1943–1950
130	Korea	Hong Kong (HKC) \Rightarrow Au Tau \Rightarrow \Rightarrow Tate's Cairn	TCN	22°22′	114°13′	1884—1978	1940–1971
131	USA	Honolulu $(1 \Rightarrow 2 \Rightarrow 3)$	HON	21°19′	202°00′	1902-2019	
132	Vietnam	Phu Thuy	PHU	21°02′	105°58′	1996-2018	
133	Mexico	Teoloyucan	TEO	19°45′	260°49′	1923-2008	
134	India	Colaba (Bombay) \Rightarrow Alibag	ABG	18°38′	72°52′	1846-2019	
135	Puerto Rico	Vieques (Puerto Rico) \Rightarrow San Juan (Puerto Rico)	SJG	18°7'	293°51′	1903–2016	
136	India	Hyderabad	HYB	17°25′	78°33′	1965-2019	
137	Senegal	M'Bour	MBO	14°24′	343°03′	1952-2018	

Таблица 1. Продолжение

N⁰	Страна	Обсерватории		Широта Долгота		Период	Пробелы
138	Philippines	$Manila \Rightarrow Antipolo \Rightarrow Muntinlupa$	MUT ANO	14°22′	121°01′	1891–2002	1905–1909; 1939–1950; 1989–1994
139	USA	Guam	GUA	13°35′	144°52′	1957-2019	
140	India	Annamalainagar \Rightarrow Pondicherry	PND	12°01′	79°51′	1957-2014	
141	India	Kodaikanal	KOD	10°14 ′	77°28′	1902–2004	1924–1949; <i>Z</i> : 1998–2004
142	India	Etaiyapuram Closed!	ETT	9°10′	78°01′	1980 2002	
143	Ethiopia	Addis Abeba	AAE	9°02′	38°46′	1958-2013	
144	India	Trivandrum 2 Closed!	TRD2	8°29′	76°57′	1957-1999	
145	Colombia	Fuquene	FUQ	5°28′	286°16′	1954-2014	
146	Central African Republic	Bangui	BNG	4°20′	18°34′	1955–2010	2008–2009
147	Brazil	Tatuoca 2	TTB2	-1°12′	311°29′	1957-2018	
148	Indonesia	Batavia (Djakarta) ⇒ Kuyper ⇒ ⇒ Tangerang	TNG	-6°10'	106°38′	1884-2017	1999–2000; 2005–2010
149	Angola	Luanda Golf \Rightarrow Luanda Belas	LUA3	-8°55'	13°10′	1954-1993	
150	Australia	Port Moresby Closed!	PMG	-9°24′	147°09′	1957-1993	
151	Peru	Huancayo	HUA	-12°03′	284°40′	1922-2017	1992–1996; 2010
152	New Zealand	Apia	API	-13°48′	188°13′	1905-2018	
153	Fr. Polynesia	Tahiti ⇒ Pamatai (Papeete)	РРТ	-17°34′	210°26′	1968-2017	
154	Madagascar	Antananarivo (Tananarive) Closed!	TAN	-18°55′	47°33′	1890-2007	
155	South Africa	Tsumeb	TSU	-19°12′	17°35′	1964-2019	2009, 2014
156	Australia	Charters Towers	CTA	-20°05′	146°16′	1984-2019	
157	Mauritius Iceland	Mauritius \Rightarrow Plaisance	PLS	-20°26′	57°40 ′	1892–1971	X& Y-till 1966
158	Argentina	La Quiaca Closed!	LQA	-22°06′	294°24′	1920-1992	Z-till 1983
159	Australia	Learmonth	LRM	-22°13′	114°06′	1987-2019	
160	Brazil	Rio De Janeiro \Rightarrow Vassouras	VSS	-22°24'	316°21′	1899–2019	1907–1914
161	Australia	Alice Springs	ASP	-23°46′	133°53′	1992-2019	
162	South Africa	Hartebeesthoek	HBK	-25°53'	27°42′	1973-2019	
163	Mozambique	Maputo (Lourenco Marques)	LMM	-25°55′	32°35′	1957-2019	1990–1994
164	Argentina	Pilar	PIL	-31°40′	296°07′	1905–2019	2002–2004; 2008–2011
165	Australia	Watheroo \Rightarrow Gnangara	GNA	-31°47′	115°57′	1919-2012	
166	South Africa	Cape Town \Rightarrow Hermanus	HER	-34°25'	19°14′	1932-2019	
167	Argentina	Las Acacias	LAS	-35°00′	302°19′	1961-2018	<i>X</i> , <i>Y</i> & <i>Z</i> –till 1996, F–98–2000
168	Australia	$Melbourne \Rightarrow Toolangi \Rightarrow Canberra$	CNB	-35°19′	149°22′	1915-2019	

Таблица 1. Продолжение

N⁰	Страна	Обсерватории	Код	Широта	Долгота	Период	Пробелы
169	French Southern & Antarctic Lands	Amsterdam Island (Martin De Vivies)	AMS	-37°48'	77°34′	1981–2013	2010–2011
170	Argentina	Trelew	TRW	-43°16′	294°37′	1957-2018	2012
171	New Zealand	$Christchurch \Rightarrow Amberley \Rightarrow$ $\Rightarrow Eyrewell$	EYR	-43°24′	172°24'	1902–2019	
172	Antarctica	Port Alfred (Crozet)	CZT	-46°26′	51°52′	1974-2015	2010
173	Antarctica	Port-aux-Francais (Kerguelen)	PAF	-49°21′	70°16′	1957-2013	
174	U.K.	Port Stanley (Falkland Islands)	PST	-51°42'	302°06′	1994-2018	
175	Australia	Macquarie Island	MCQ	-54°30′	158°57'	1948-2019	
176	Argentina	Orcadas del Sur (Laurie Island)	ORC	-60°44′	315°13′	1929-2001	1963-1998
177	Spain	Livingston Island	LIV	-62°40′	299°36′	1997-2020	
178	U.K.	Argentine Islands (Faraday)	AIA	-65°15′	295°45′	1957-2017	
179	Australia	Casey	CSY	-66°17′	110°32′	1978–2019	2006; 2009–2010; <i>Z</i> : 1984
180	Russia	Mirny	MIR	-66°33′	93°01′	1956-2016	
181	Antarctica	Dumont d'Urville	DRV	-66°40'	140°01′	1957-2013	2012
182	Australia	Mawson	MAW	-67°36′	62°53′	1955-2019	
183	Russia	Molodezhnaya	MOL	-67°40'	45°51′	1965-1998	
184	Japan	Syowa Station	SYO	-69°00′	39°35′	1958-2019	
185	Germany	Neumayer Station	VNA	-70°39′	351°45′	1993-2019	2006
186	Russia	Novolazarevskaya	NVL	-70°46'	11°49′	1961-2016	1988–2002; 2010–2011
187	Antarctica	Terra Nova Bay	TNB	-74°41′	164°07′	1987-2016	2007
188	New Zealand	Scott Base	SBA	-77°51'	166°47′	1957-2018	1961-1963
189	Russia	Vostok	VOS	-78°27'	106°52′	1958-2019	

Таблица 1. Окончание

решением по методу наименьших квадратов следующего набора уравнений:

$$\begin{split} (\ddot{X}_{i})_{j} &= \sum_{n=1}^{N} \sum_{m=0}^{n} \left(\left(\ddot{g}_{n}^{m} \right)_{j} \cos m\lambda_{i} + \left(\ddot{h}_{n}^{m} \right)_{j} \sin m\lambda_{i} \right) \times \\ &\times \frac{dP_{n}^{m} (\cos \theta_{i})}{d\theta_{i}}, \\ (\ddot{Y}_{i})_{j} &= \sum_{n=1}^{N} \sum_{m=0}^{n} \left(\left(\ddot{g}_{n}^{m} \right)_{j} \sin m\lambda_{i} - \left(\ddot{h}_{n}^{m} \right)_{j} \cos m\lambda_{i} \right) \times \\ &\times \frac{mP_{n}^{m} (\cos \theta_{i})}{\sin \theta_{i}}, \\ (\ddot{Z}_{i})_{j} &= -\sum_{n=1}^{N} \sum_{m=0}^{n} \left(\left(\ddot{g}_{n}^{m} \right)_{j} \cos m\lambda_{i} + \left(\ddot{h}_{n}^{m} \right)_{j} \sin m\lambda_{i} \right) \times \\ &\times (n+1)P_{n}^{m} (\cos \theta_{i}), \end{split}$$

i-той геомагнитной обсерватории; $P_n^m(\cos \theta)$ – присоединенные полиномы Лежандра в нормировке Шмидта; $\ddot{g}_n^m(t) \equiv (\ddot{g}_n^m)_j$, $\ddot{h}_n^m(t) \equiv (\ddot{h}_n^m)_j$ – составляют искомый набор коэффициентов по разложению в сферический гармонический ряд на эпоху *j*; *n* – степень; *m* – порядок модели; *N* – число используемых пространственных гармоник, определяемое качеством и количеством исходных данных, а также степенью их пространственной однородности.

где λ_i – долгота; $\theta_i = 90^\circ - \phi_i$ – ко-широта точки

Наши возможности по построению моделей высокой степени ограничиваются в основном неравномерностью распределения магнитных обсерваторий, предоставляющих серии данных для настоящего анализа и наличием в данных высокочастотного шума, связанного с вариациями

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 3 2023

Рис. 2. Гистограмма встречаемости виртуальных джерков по годам, выявленных во временных сериях вековых вариаций, представленных по всем трем *X*, *Y* и *Z* геомагнитным элементам.

внешних источников и индуцированным ими полем вариаций. Важны также проблемы, связанные с полем земной коры, которое также может проявить вариации с характерным временем в несколько лет; ухудшение качества данных в результате переносов, а также обнаруженный факт наличия случайного шума, свойственного некоторым обсерваториям в ранние периоды их действия. Количество искомых коэффициентов разложения поля в сферический гармонический ряд — *l*, зависит от длины числа используемых сфериче-

ских гармоник как l = N(N+2) ($\ddot{h}_n^m \equiv 0$ при m = 0) и определяет число нормальных уравнений, сформированных из переопределенной системы условных уравнений, составленных по (2). Устойчивость решения, его точность при решении системы условных уравнений методом наименьших квадратов определяются степенью переопределенности решаемой системы условных уравнений. Установлено, что качественно и количественно точные результаты сферического гармонического моделирования исследуемого поля ускорений достигается при переопределении не менее 4–5 раз. Обеспеченность установленного переопределения, в зависимости от количества исходных значений постоянных ускорений опреде-

ляется отношением $\frac{K_j}{l} \equiv ((k_X)_j + (k_Y)_j + (k_Z)_j)/l$, где $(k_X)_j$, $(k_Y)_j$ и $(k_Z)_j$ являются количеством исходных значений ускорений по *X*, *Y* и *Z* геомагнитным элементам соответственно. Если обозначить через k_j количество обсерваторий, покрывающих сериями данных эпоху *j*, то в нашем случае $(k_X)_j + (k_Y)_j + (k_Z)_j \leq 3k_j$ ввиду того, что иногда, из-за плохого качества серий данных наблюдений, или короткости временно́го ряда вековых вариаций не удается обеспечить статистически значимую линейную аппроксимацию серий данных с последующим определением на данную эпоху постоянного значения геомагнитного ускорения.

Скудность данных обсерваторских наблюдений в период до второй половины 20-го века заполняется экстраполированием значений ускорений, исходя из того, что джерки в региональном масштабе, в основном, разделены друг от друга несколькими десятилетиями (рис. 1). Благодаря этому совместный анализ значений исходных ускорений с полученными значениями по уточняемым моделям для данного периода, позволил экстраполировать первые на предшествующие и/или последующие периоды моделирования повторением начальных и конечных значений ускорений по данной серии наблюдений, ограниченных во времени. Процесс экстраполяции значений ускорений был прерван с появлением нового модельного значения, отличающегося по знаку от рассматриваемого значения, ввиду появления нового джерка, ограничивающего период постоянства данного – крайнего по этой серии, значения поля ускорений. Аналогично, была проведена интерполяция на эпохи, не покрытые серией значений вековых вариаций из-за наличия пробелов в данных наблюдений из-за переноса обсерваторий и т.п.

Использование экстра- и интерполированных значений поля ускорений, в числе исходных, в итерационном процессе генерации нового набора коэффициентов Гаусса (2), позволило в некоторой степени устранить проблему простран-

Центальные эпохи (j)	K_{j}	k_{j}	D_{j} , нТл/год ²	d_j , нТл/год ²	$d_j/D_j,\%$
1898	56(24)	119(32)	2.04	0.56	27.22
1909	66(23)	146(29)	2.11	0.58	27.39
1920	96(49)	203(66)	1.67	0.52	31.32
1931	103(47)	229(74)	1.74	0.53	30.58
1943	117(53)	278(92)	1.49	0.47	31.34
1953	138(50)	346(90)	1.65	0.50	30.36
1963	141(13)	363(18)	1.65	0.51	30.58
1975	167(15)	462(19)	2.27	0.59	26.11
1983	175(13)	484(22)	1.90	0.60	31.32
1997	175(16)	483(33)	1.81	0.56	31.05
2007	156(20)	416(23)	1.72	0.52	30.16

Таблица 2. Некоторые статистические характеристики по оценке точности построенных сферических гармонических моделей глобального кусочно-постоянного поля вековых геомагнитных ускорений

ственной неоднородности данных обсерваторских наблюдений, повысив точность моделей по описанию пространственных структур поля ускорений в период первой половины 20-го столетия. Для более поздних эпох экстраполированные данные позволили точнее оценить региональные особенности вариаций дополнением когерентных данных из точек близлежащих обсерваторий.

Результаты по количеству данных из разных точек земной поверхности, обеспечивающих модели на все периоды моделирования, указанные их центральными эпохами, представлены в соответствующих колонках табл. 2, где K_j — суммарное количество обсерваторий, снабжающих данными на соответствующие центральные эпохи; k_j — количество предоставляемых ими исходные значения поля ускорений. Цифры, указанные в скобках показывают количество экстраполированных значений в соответствующих величинах.

Из представленной табл. 2 видно, что количество магнитных обсерваторий, обеспечивающих данными период конца 19-го-начала 20-го вв., не превышает 56 (32 обсерватории обеспечивают данными прямых наблюдений, а в 24-и точках обеспечиваются экстраполированные значения вековых ускорений). При этом их расположение на поверхности Земли крайне неравномерное, в южном полушарии действует лишь несколько обсерваторий. Если учитывать также, что обсерваторские данные за этот период не отличаются высокой точностью в основном из-за низкого качества применяемой магнитометрической аппаратуры, становится очевидным, что необходимое переопределение системы уравнений сферического гармонического анализа можно обеспечить ограничением длины ряда до четвертой пространственной гармоники, подразумевающей использование 24-х коэффициентов разложения.

Со второй половины 20-го столетия, особенно после МГГ-1957, с увеличением количества действующих магнитных обсерваторий. сеть становится более равномерной, а качество предоставляемых ими данных – высокой. Появляется возможность для построения моделей степени, существенно превышающей четыре. Однако, для обеспечения однородной точности представления поля ускорений для всего периода исследований, было принято решение построить модели с точностью до 4-х пространственных гармоник и на более поздние эпохи. Разумность такого подхода обосновывается еще и тем, что мелкомасштабные структуры, появляющиеся при привлечении гармоник высокой степени. трудно идентифицировать как вариации поля, генерированные в жидком ядре Земли [Симонян и др., 2004]. Радиус распространения сигнала, или характерные линейные размеры структур поля – $2\pi R_e/N$, при N = 4 составляют величину порядка 10^4 км, что

N = 4 составляют величину порядка 10⁻ км, что является представительным при описании поля вариаций, источником которых являются магнитогидродинамические процессы, протекающие в приповерхностных слоях жидкого ядра Земли.

Наборы сферических гармонических коэффициентов, представляющих модели глобального кусочно-постоянного поля геомагнитных ускорений за исследуемый период, построенные по результирующим наборам данных с точностью n = m = 4, представлены в табл. 3. Центральные эпохи периодов действия отдельных стационарных режимов генерации вековых вариаций, к которым приурочены модели, указаны сверху соответствующих столбиков по коэффициентам Гаусса.

Расчет модельных значений вековых ускорений в точках магнитных обсерваторий позволяет количественно оценить погрешность построенных сферических гармонических моделей путем

СИМОНЯН, ОГАНЯН

10.10 100											
	1898	1909	1920	1931	1943	1953	1963	1975	1983	1997	2007
g_1^0	1.42	0.72	-0.81	-1.02	-0.18	0.98	0.87	-0.26	-0.13	-0.43	-0.16
g_1^1	-0.10	-0.59	0.56	-0.11	0.52	0.16	0.31	0.02	0.16	0.09	0.56
g_2^0	1.24	1.09	-0.37	-0.56	-0.24	-0.19	-0.13	0.86	0.45	0.16	0.28
g_2^1	0.21	-0.10	0.09	-0.41	0.26	0.00	0.03	0.42	-0.14	-0.51	-0.22
g_2^2	0.26	-0.50	-1.24	-0.64	-0.57	0.33	0.02	0.12	-0.72	-0.07	0.37
g_3^0	-0.42	0.08	0.00	0.01	-0.17	-0.51	-0.37	0.55	0.37	-0.34	0.27
g_3^1	-0.62	-0.29	-0.09	0.04	-0.06	0.00	-0.08	0.40	0.10	0.07	-0.09
g_{3}^{2}	0.47	0.51	0.15	0.43	0.06	-0.51	-0.49	0.00	0.03	-0.12	0.10
g_{3}^{3}	-0.28	-0.01	-0.44	-0.64	-0.23	-0.08	-0.09	0.25	-0.56	-0.17	-0.19
g_4^0	0.33	0.03	0.13	0.17	0.14	-0.14	-0.15	0.03	0.41	-0.31	0.17
g_4^1	0.42	-0.11	0.00	0.17	-0.30	-0.11	-0.18	-0.12	0.09	0.23	-0.19
g_4^2	-0.75	-0.69	0.18	0.06	0.41	-0.04	0.04	-0.44	0.14	-0.19	0.07
g_4^3	0.38	0.33	0.03	0.18	-0.10	-0.13	-0.12	-0.11	0.31	0.54	0.05
g_4^4	0.11	0.25	-0.20	0.19	-0.46	-0.11	0.06	-0.28	0.06	0.11	-0.05
$h_{\rm l}^1$	0.02	-0.22	0.36	0.50	-0.54	-0.30	-0.57	-0.96	-0.02	-0.05	-0.84
h_2^1	0.03	-0.43	-0.31	-0.21	0.07	0.89	1.00	-0.66	-0.26	-0.55	-0.49
h_2^2	-0.47	-0.46	0.08	0.64	-0.68	0.03	-0.29	-0.50	0.99	-0.10	-0.16
h_3^1	-0.58	-0.05	0.13	0.44	0.17	-0.18	-0.05	-0.11	-0.01	0.03	0.21
h_3^2	0.72	-0.10	-0.16	0.00	0.24	-0.03	0.05	-0.10	0.06	-0.57	0.23
h_3^3	-0.66	-0.43	0.31	-0.12	0.86	-0.11	0.33	-0.02	-0.30	0.61	0.77
h_4^1	0.36	-0.20	-0.24	-0.29	0.35	0.32	0.27	-0.22	-0.31	0.00	-0.16
h_4^2	-0.33	-0.34	-0.17	0.01	0.41	-0.05	-0.01	0.07	-0.05	0.09	0.37
h_4^3	0.68	0.21	-0.12	-0.07	-0.21	-0.02	-0.12	0.15	0.11	0.28	-0.35
h_4^4	-0.32	-0.41	-0.32	-0.09	-0.05	0.34	0.18	0.05	-0.20	0.15	-0.29

Таблица 3. Наборы сферических гармонических коэффициентов, моделирующих глобальное кусочно-постоянное поле геомагнитных ускорений за исследуемый период времени

анализа поля девиаций геомагнитных ускорений, полученных для каждой эпохи моделирования. Анализ показал, что в отдельных случаях различие между исходными и смоделированными значениями может достичь до 20% исходных. В этих случаях небольшими изменениями интервалов линейной аппроксимации определялись новые значения исходных ускорений, для которых девиации составляли наименьшие величины, определяемые в основном точностью исходных рядов данных по вековым вариациям магнитного поля ядра Земли. В качестве численных оценок точности построенных моделей, использованы средне-квадратичные значения поля девиаций *d*, и их отношение к среднеквадратичным значениям исходных значений поля ускорений *D*, которые для

каждой *j* эпохи моделирования вычисляются по уравнениям:

$$D_{j} = \sqrt{\sum_{i=1}^{k_{j}} \ddot{u}_{i,j}^{2} / k_{j}}, \quad d_{j} = \sqrt{\sum_{i=1}^{k_{j}} (\ddot{u}_{obs} - \ddot{u}_{m})_{i,j}^{2} / k_{j}}, \quad (3)$$

где индексами obs и m обозначены соответственно исходные и модельные значения ускорений (табл. 2).

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Предпосылки

Анализ временно однородных серий вековых вариаций по X. Y и Z геомагнитным элементам. предоставленных сетью мировых магнитных обсерваторий, действующих за период с середины 30-х по 80-е годы прошлого столетия, позволил методом линейной аппроксимации выявить джерки, снимая представление об уникальности джерка 1969 года [Головков и Симонян, 1989; Golovkov et al., 1989]. Именно этим джерком, обнаруженным впервые по менее зашумленной внешними вариациями *Y* компоненте, как резкое \/-образное изменение в тренде вековых вариаций, в основном из-за его появления на территории Европы, покрытой густой сетью высококачественных обсерваторий, было положено начало изучения феномена джерков. Накопление регулярных данных обсерваторских наблюдений с течением времени позволило выявить и джерк конца 1970-х годов [Головков и Симонян, 1991]. Применение метода естественных ортогональных составляющих к остаточным, относительно сглаженным сериям вековых вариаций, позволило определить точную морфологию джерка, количественно оценить амплитудно-временную характеристику его резкой части и выделить из высокочастотной области спектра вековых вариаций быстротечное явление джерка из вариаций внешних источников [Головков и др., 1992]. Была доказана достоверность и целесообразность применения кусочно-линейной модели для представления временны́х рядов вековых вариаций магнитного поля Земли. Построение сферических гармонических моделей глобального поля кусочно-постоянных геомагнитных ускорений для периодов до, и после появления джерков, отражали пятнистую структуру поля ускорений в виде знакопеременных фокусов крупно-региональных размеров, характерных для вариаций поля внутренних источников. Важно. что при этом не было обнаружено ложных океанических фокусов [Головков и др., 1989; Golovkov et al., 1989]. Полученные модели поля ускорений позволили построить и модели джерков, позволившие выявить, что, несмотря на морфологические особенности поля изученных джерков, они все имеют общую природу генерации, и что их источником являются гидродинамические течения, сформированные на поверхности жидкого ядра Земли [Golovkov et al., 2003; Simonyan and Shahparonvan, 2004]. Отработанная методика выявления и изучения джерков позволила расширить временной интервал исследований и выявить явления джерков за период первой половины 20-го века, покрытый редкой сетью данных магнитных обсерваторий. Соответственно выявлено, что модели джерков за период первой половины века не выделяются высокой точностью в отличие от моделей периода второй половины века. Достигнутые качественные результаты позволили выявить, что за период 20-го столетия поле ускорений главного магнитного поля Земли с достаточной степенью точности во временном масштабе является кусочно-постоянным, с резкими переходами в эпохи появления джерков от одного постоянного уровня значений в другое. Это позволило выдвинуть гипотезу о том, что высокочастотные вековые вариации магнитного поля ядра Земли формируются джерками, появляющимся в регионах через несколько десятков лет (от 10 до 40-60) в результате резких изменений в квази-стационарном процессе развития магнитогидродинамических течений в приповерхностных слоях жидкого ядра [Симонян, 2006; Simonyan, 2017].

3.2. Развитие

Построение усовершенствованных, количественно уточненных моделей, с применением единой методики изучения вариаций земного магнитного поля в период более 100-лет, и джерков, как явлений, проявляющих смену режимов квази-стационарного процесса эволюции поля, нацелено на уточнение их морфологических и временных характеристик, определение степени глобальности отдельных джерков и сравнение их интенсивности между собой. Создание точных сферических гармонических моделей временных вариаций геомагнитного поля, представленных с точностью вторых временных производных, создает надежную базу для решения обратной кинематической задачи гидромагнитного динамо с определением пространственных и динамических характеристик течений, сформированных на поверхности внешнего ядра Земли. При этом стационарность магнитогидродинамических процессов, подразумевающаяся в рамках предлагаемой модели представления изменчивости поля ядра, может сыграть решающую роль в решении проблемы о единственности результатов обратной задачи по определению поверхностных течений жидкого вещества ядра Земли [Backus, 1983; Voorhies and Nishihama, 1994].

Построенные пространственные сферические гармонические модели глобального поля кусочно-постоянных геомагнитных ускорений были

использованы для их дополнения и усовершенствования так, чтобы они наиболее однородно и точно отражали пространственные и временны́е особенности изменчивости главного магнитного поля в расширенном периоде времени, покрытом регулярными данными наблюдений мировой сети магнитных обсерваторий.

При точном определении $\Delta t_i(j)$ — интервала линейной аппроксимации, дисперсия аппроксимации и, следовательно, точность определяемого постоянного значения геомагнитного ускорения (1), зависит в основном от качества, т.е. степени зашумленности исследуемых временны́х рядов по вековым геомагнитным вариациям.

Зашумленность данных наблюдений, равно как и факт неравномерного распределения обсерваторий на земной поверхности, их острая нехватка в южном полушарии и в акваториях океанов, приводит к понижению точности моделей, построенных для ранних эпох прошлого столетия. Но в целом анализ остаточного поля ускорений показывает, что дисперсия моделей в основном растет из-за относительно больших значений поля девиаций (достигающих 20-30% исходных значений поля ускорений) по сериям высокоширотных обсерваторий, или обсерваторий, не выделяющихся высоким качеством. При этом для большинства серий из среднеширотных, высокоточных обсерваторий, отклонения между исходными и модельными значениями не превышают 10% исходных значений поля ускорений. Совместный анализ исходных и модельных значений, полученных для всего, более чем столетнего периода исследований с начала 20-го века, показал важность ограничения соответствия результатов линейной аппроксимации со значениями, полученными по сферическим гармоническим моделям в точках обсерваторий. Обеспечение согласованности этих результатов позволило решить вопрос о включении, или исключении некоторых джеркобразных явлений небольших амплитуд. В результате достигнута более высокая точность моделей ускорений, равно как и результатов по выявлению частоты повторяемости джерков во времени (рис. 2).

Из табл. 2 видно, что значения дисперсии поля девиаций на разные эпохи моделирования существенным образом не отличаются друг от друга, составляя не более 32% соответствующих величин, определенных по исходным значениям поля. Если учитывать также, что анализируемое поле девиаций лишь в небольшом количестве случаев — в основном по сериям, предоставленным высокоширотными и южными обсерваториями, не превышает десятые доли нTл/год², то можно оценить, что точность моделей нынешней генерации, непрерывных в периоде более ста лет, кроме однородности, является также достаточно высокой.

Надо отметить, что минимальные значения отношения дисперсий, полученных для моделей на центральные эпохи 1898 г., 1909 г. и 1975 г., скорее связаны с высоким уровнем значений поля ускорений (D_j в табл. 2) в соответствующие периоды стационарного развития поля, нежели с относительно высокой точностью моделей, построенных для соответствующих периодов.

Построение квази-энергетических спектров моделей по пространственным гармоникам [Lowes, 1966] по формуле $W_n = (n+1) \sum_{m=0}^n [(g_n^m)^2 + (h_n^m)^2],$ показывает их сходяшийся характер с преобладанием не-дипольных гармоник второй-третьей степени, свойственным высокочастотным вековым вариациям поля ядра (рис. 3). Некоторое отклонение от этой закономерности представляют спектры моделей за периоды конца 19-го и начала 20-го вв., а также на эпоху 1943 г. Если в первом случае усиленное влияние гармоник высоких степеней может быть связано с относительно невысокой точностью пространственного представления поля вариаций за соответствующий период, то во втором случае это, вероятно связано с относительным мелкомасштабным характером пространственных структур поля ускорений [см. также Golovkov et al., 2003].

Глобальное кусочно-постоянное поле геомагнитных ускорений на центральные эпохи периодов, характерных для отдельных режимов стационарного развития поля вековых геомагнитных вариаций, на рис. 4 представлено по вертикальной Z-составляющей, направленной к центру Земли. Здесь же представлена соответствующая сеть магнитных обсерваторий, снабжающих сериями исходных значений ускорений за периоды, соответствующие представленным картам. Светлыми треугольниками представлены обсерватории, обеспечивающие экстраполированными значениями ускорений на данную центральную эпоху.

Из рисунка 4 видно, что карта поля за период конца 19-го, начала 20-го вв. выделяется в основном неподтвержденным по данным наблюдений сильным океаническим фокусом с центром на юге Африки, простирающимся вплоть до Антарктики. Другой фокус более умеренных значений, появляющийся в средних южных широтах западной части Тихого океана, тоже не обеспечен данными наблюдений в центральной части фокуса. Однако, небольшие значения поля, появляющиеся во внешней части фокуса, достаточно хорошо согласуются со значениями, полученными в результате экстраполяции исходных данных в точках обсерваторий, оперирующих в данном регионе позднее. При этом мощность фокусов, появляющихся в остальных регионах мира, обеспеченных

Рис. 3. Квази-энергетические спектры по пространственным гармоникам (*n*) сферических гармонических моделей глобального кусочно-постоянного поля ускорений вековой изменяемости магнитного поля ядра Земли.

Рис. 4. Карты вертикальной *Z*-составляющей глобального кусочно-постоянного поля ускорений вековой изменяемости главного магнитного поля Земли, представленные на центральные эпохи (см. наверху соответствующих карт) каждого периода стационарности, а также сеть обсерваторий, обеспечивающих исходными данными на соответствующие центральные эпохи. Треугольниками показаны обсерватории, обеспечивающие соответствующую центральную эпоху экстраполированными значениями ускорений.

данными прямых наблюдений, является весьма умеренной, а полученные значения хорошо согласуются с данными наблюдений. Доказательством этому служат результаты анализа остаточного поля девиаций и низкое значение отношения дисперсий, полученных для модели за данный период (табл. 3). Карта на центральную эпоху 1909 г., обеспеченная данными более равномерной сети магнитных обсерваторий, благодаря экстраполированным данным территорий Антарктики, Австралии, Южной Америки, а также обсерватории Кейптаун на юге Африки, отличается разумными значениями фокусов. Рассматривая эту карту легко обнару-

жить, что на ней не появляются аномально сильные фокусы, и полученные значения в фокусах хорошо подкреплены значениями, полученными из серий данных прямых наблюдений. При этом сильный тихоокеанский фокус исчезает, распадаясь на две пятнистые структуры с небольшими значениями ускорений, хорошо согласующихся с данными наблюдений, доступными для данного региона. Арабско-Атлантический фокус проявляет более точные значения в его центральной части, благодаря появлению исходных данных обсерватории Кейптаун. Распространяясь на север, этот фокус охватывает территории, в достаточной степени обеспеченные данными обсерваторских наблюдений за данный период. которыми и подтверждаются смоделированные значения ускорений, появляющиеся на этой карте по данному региону. Низкое значение дисперсионного отношения, основанного на более плотной сети магнитных обсерваторий, свидетельствует о представительности модели, построенной для периода с центральной эпохой 1909 г.

Начиная с периода, представленного центральной эпохой 1920 г. проблема нехватки данных для всей поверхности Земли начинает устраняться, благодаря появлению прямых и экстраполированных значений ускорений по сгущающейся сети мировых магнитных обсерваторий. Фокусы, обнаруживающиеся в средних широтах по карте на 1920 г., хорошо покрыты данными прямых наблюдений, тогда как в высоких северных и южных широтах превалируют экстраполированные значения исходного поля ускорений. Ими и достигается точность этой модели, существенным образом не отличающаяся от точности моделей на последующие центральные эпохи, покрытые более точными данными сравнительно равномерной сети магнитных обсерваторий. Ввиду этого можно заключить, что почти повсеместное изменение знака ускорений, наблюдаемое на этой карте по сравнению с картой на предыдущую эпоху, связано, по-видимому, с мощным характером джерка 1915 года.

Значения ускорений меняются в знаке только на ограниченной территории поверхности Земли при сравнении карты на 1920 г. с картой на следующую центральную эпоху 1931 г. При этом легко обнаружить изменение структуры поля вариаций, сопровождаемое изменением знака ускорений на ограниченной территории центральной части Тихого океана, обеспеченной длинными сериями данных обсерваторий Апиа и Гонолулу.

Сравнивая карту на центральную эпоху 1943 г. с настоящей картой на 1931 г. выявляется, что изменение значений ускорений сопровождается изменением знака почти на всей территории Восточного полушария, и в тихоокеанском регионе Западного полушария. На территории Американского континента знаки в основном не меняются в области высоких широт Северной Америки и в средних южных широтах Южной Америки. Однако структура поля в этом регионе, особенно в области Южно-Атлантической геомагнитной аномалии, испытывает существенные изменения ускорений. Следует отметить, что на этой карте тоже не обнаруживаются мелкомасштабные структуры в вековой изменчивости земного магнитного поля. Все обнаруженные фокусы имеют пространственные размеры, характерные вариациям внутриземного происхождения. При этом по своей интенсивности выделяются австралийский, тихоокеанический и южноамериканский фокусы, значения которых хорошо согласуются с данными наблюдений обсерваторий из этого региона.

На карте по модели на центральную эпоху 1953 г., квази-постоянное поле вековых геомагнитных ускорений носит гладкий характер. Вся территория Западного полушария охвачена фокусами слабой интенсивности, и соответственно, относительно мелких пространственных размеров. Фокусы на территории Восточного полушария, наоборот, имеют значимую интенсивность и соответственно, охватывают большие территории. Все Восточное полушарие охвачено двумя обратного знака фокусами. По сравнению с картой на предыдущую центральную эпоху выявляется почти повсеместное изменение знака значений поля ускорений, свидетельствующее об интенсивном характере джерка конца 40-х годов прошлого столетия, датированное в этой работе 1948 годом.

За следующий период моделирования глобального поля постоянных вековых ускорений с центральной эпохой 1963 г., упомянутые большие фокусы Восточного полушария сохраняются, наблюдаются лишь небольшие изменения в их пространственном распределении. Небольшие по интенсивности и по пространственному простиранию фокусы в средних широтах Западного полушария, наоборот, испытывают сильные изменения: положительный тихоокеанический фокус у западных берегов Южной Америки практически распадается, уступая увеличенному по пространственному размеру отрицательному фокусу, а вместо отрицательного фокуса в центральной части Тихого океана появляется фокус положительных значений ускорений. Благодаря появлению достаточного количества обсерваторий в Канаде и Антарктиде, в частности, эта карта выделяется от предыдущих практически полным обеспечением земной поверхности данными обсерваторских наблюдений.

Структура поля сильно меняется при сравнении карты на 1963 г. с картой на следующую центральную эпоху 1975 г.: два фокуса Восточного полушария сливаются, образуя сильный положи-

тельный фокус с центром на юге Индийского полуострова, а черты отрицательного евроазиатского фокуса сохраняются лишь в области высоких широт. Интенсивный положительный фокус в области восточной Антарктики в этом периоде заменяется отрицательной структурой поля, расширяющей регион охвата отрицательного фокуса, простирающегося с низких и средних широт Южного полушария вплоть до восточной части Антарктики за исключением территории Африки, охваченной основной структурой большого положительного фокуса, простирающегося по территории Азии и Индийского океана. При этом положительный фокус в высоких северных широтах Американского континента и Гренландии заменяется сильным отрицательным фокусом, меняя всю структуру поля на этой части земной поверхности. Высокий уровень значений поля ускорений за этот период наряду с существенными изменениями их значений, вплоть до изменения знака относительно значений за предыдущий период, также как и множество качественных магнитных обсерваторий, способствовали раннему обнаружению и всестороннему изучению явления джерка 1969 года.

Сильные изменения поля вековых ускорений, сопровожлаюшиеся изменением положительных значений ускорений на отрицательные и наоборот, легко обнаружить при сравнении карты на эпоху 1983 г. с предыдущей картой на 1975 г. Изменение знака значений ускорений наблюдается почти по всей территории земной поверхности, за исключением области высоких северных широт. Отрицательные значения с центром фокуса между Канадой и Гренландией с севера сливаются с существующей отрицательной структурой, охватывающей всю область Арктики, а с юга – с вновь образованным слабым фокусом с центром в низких широтах Тихого океана. Таким образом, наблюдаюшиеся почти повсеместные изменения значений поля ускорений в целом свидетельствует о мощном характере джерка конца 1970-х гг. с максимумом на гистограмме, соответствующим на 1979 г. (рис. 2).

Отрицательный фокус, охватывающий территорию высоких северных широт за предыдущие два периода, заменяется положительным в период с центральной эпохой 1997 г. В то же время наблюдаются интенсивные изменения поля ускорений и по остальной части территории Земли. Не меняются знаком только положительный и отрицательный фокусы, покрывающие территории Австралии и восточной Антарктиды соответственно. Одновременно австралийский фокус оказывается заметно ослабленным, примыкая к большому положительному фокусу со структурой, появившейся на месте отрицательного Индийского фокуса, который за последний 30-и летний период выделяется сильной изменчивостью, сопровождающейся изменением знака от одной центральной эпохи к следующей. В результате отрицательный фокус с центром в Индийском океане оказывается смещенным к средним и высоким южным широтам, хорошо обеспеченным данными наблюдений за рассмотренный период. Если учитывать, что при этом существенно – вплоть до изменения знака ускорений, меняется структура поля, охватывающая территорию Африканского континента, а также появление нового отрицательного фокуса на территории Восточной Азии, то можно сказать, что вся территория Восточного полушария за этот период оказывается охваченной сильными изменениями поля. Сушественные изменения происходят и в Западном полушарии: структуры положительного и отрицательного фокусов в Атлантическом океана и Америке, становятся более четкими и гладкими. На месте отрицательного фокуса в Тихом океане появляется хорошо обеспеченный данными наблюдений фокус относительно небольших положительных значений поля ускорений. В целом картина соответствует представлению о глобальном характере джерка 1989 года.

В течение периода начала 21-го века процесс распада положительных фокусов в областях Атлантической геомагнитной аномалии и Австралии, сформированных за период после джерка 1979 г., заканчивается с появлением в этих регионах отрицательных значений ускорений. Исчезает также положительный фокус в области высоких северных широт, уступая место расширяющемуся отрицательному фокусу. В результате существующий четкий Американский фокус распадается на два центра: северного центра, сосредоточенного в северо-западной части Америки и охватывающего всю высокоширотную область отрицательных значений ускорений, и Перуанско-Мексиканского центра, охватывающего низкоширотную область западного полушария от Тихого океана по Атлантическому океану до Африки. Структура поля сильно меняется и в Тихоокеанском регионе Восточного полушария. За счет усиления и распространения положительного Евроазиатского фокуса исчезает отрицательный фокус с центром в Китайско-Японском регионе. Одновременно, положительный фокус, охватывающий всю территорию Австралии за предыдущие два периода, за этот период пространственно ограничивается появившимся отрицательным фокусом, охватывающим восточную часть территории континента. В результате усиления восточноазиатского, и распада Атлантического положительных фокусов, отрицательный Антарктический фокус, сформированный в результате джерка 1969 г., за этот период оказывается смещенным на запад, и, примыкая к области отрицательных значений Перуанско-Мексиканского центра, образует огромную территорию, простирающуюся от северо-запада Америки до центрально-восточной части Антарктики, покрытую отрицательными значениями поля ускорений. Положительный Тихоокеанский фокус, сформированный в результате джерка 1989 г., за этот период, не меняясь в знаке, испытывает структурные изменения.

Следует отметить, что ограниченность временных рядов за современный период иногда препятствует точному определению наклона тренда вековых вариаций, или значений поля ускорений. установившихся после джерка 2003 г., а также амплитудно-временных характеристик джерка второй декады 21-го века, проявившегося в более длинных сериях данных современных высококачественных обсерваторий. Ограничение периода линейной аппроксимации точным определением эпохи появления этого джерка, может привести к уточнению модели поля ускорений за период с центральной эпохой 2007 г., способствуя построению модели более высокой точности с возможно упрощенной структурой поля. Тем не менее, полученная картина поля не противоречит данным наблюдений и по среднестатистическим характеристикам эта модель не уступает по точности модели на предыдущие центральные эпохи.

4. ЗАКЛЮЧЕНИЕ

Выявлены джерки, как особые точки во временны́х сериях вековых вариаций, когда резко меняется направление присущего им линейного тренда, т.е. годы, когда постоянное ускорение геомагнитного поля испытывает скачок, меняя свой знак с положительного на отрицательный, или наоборот. Преимуществом метода линейной аппроксимации тренда вариаций являются небольшие значения дисперсии и малое количество искомых параметров аппроксимации.

Годы появления джерков во временны́х сериях данных обсерваторских наблюдений оказываются разными как для обсерваторий из разных регионов мира, так и для разных геомагнитных элементов. Причиной этому могут быть относительно низкая точность линейной аппроксимации из-за влияния шумового сигнала равно также как латеральные неоднородности электрической проводимости среды проникновения и геометрические особенности траектории появившегося на поверхности Земли сигнала локального источника на поверхности жидкого ядра.

Статистический анализ времени появления джерков в рядах значений геомагнитных элементов из всей поверхности Земли путем построения гистограммы по количеству обнаруженных джерков по годам, позволил выявить годы синхронных джерков или эпох появления глобальных джерков, соответствующих годам относительных максимумов, проявившихся на гистограмме. Выявленные годы глобальных джерков позволили обнаружить их квази-десятилетнюю повторяемость. Годы, соответствующие минимальному количеству джерков выявленных по сериям данных, рассмотрены как центральные эпохи периодов установленных постоянных значений глобального поля ускорений вековой геомагнитной изменчивости, или режимов стационарного эволюционирования земного магнитного поля.

Таким образом, получено, что джерки, проявляющиеся в регионах через несколько десятков лет, в глобальном отношении имеют частоту повторяемости, равной около десяти годам. Следует подчеркнуть, что этому результату, полученному для исследованного нами столетнего периода с применением унифицированного метода обнаружения джерков, противоречат результаты некоторых современных работ, полученных применением развитых методов обработки пространственно однородных спутниковых данных, или их сочетаний с обсерваторскими данными, в которых частота повторяемости джерков составляет 2–5 лет (напр., Brown et al., 2013; Torta et al., 2015; Soloviev et al., 2017).

Сопоставительный анализ смоделированных значений поля ускорений с исходными значениями позволил экстраполировать некоторые из последних на смежные центральные эпохи. Их использование в итерационном процессе построения моделей следующей генерации в качестве исходных, способствовало улучшению обеспеченности построенных моделей данными наблюдений. В результате среднестатистическая точность полученных непрерывных пространственновременных сферических гармонических моделей кусочно-постоянного поля ускорений, приуроченных к центральным эпохам стационарных режимов, установленных в течение исследуемого более чем столетнего периода, оказалась однородно высокой.

По схематическим картам, построенным на основе построенных сферических гармонических моделей, выявлены крупно-регионального масштаба фокусы положительных и отрицательных значений ускорений вековой геомагнитной изменчивости за столетний период времени, которые характерны для вариаций, генерированных в жидком ядре Земли. На основе качественного и количественного анализа выявленных структур поля с оценкой поля девиаций показана высокая степень согласованности смоделированных значений поля с исходными значениями. Погрешность моделей в виде океанических фокусов, не обеспеченных данными наблюдений, оказалась относительно высокой для моделей, покрывающих период конца 19-го-начала 20-го вв. В то же время выявленные за этот период структурные особенности поля в целом, существенным обра-

зом не отличаются от особенностей, выявленных по картам, основанным на моделях для более поздних периодов. Детальным анализом морфологических структур кусочно-постоянного поля геомагнитных ускорений, путем сравнения карт на соседние центральные эпохи, выявлены региональные особенности проявления джерков и степень их распространенности по поверхности Земли. Оказалось, что джерки 1925 и 1958 гг. выделяются относительно небольшими изменениями значений поля ускорений и ограниченностью территории их проявления на поверхности Земли. Выявлен аномально высокий уровень значений ускорений за период центральной эпохи 1975 г., с чем, по-видтмому, связана относительно высокая интенсивность джерков 1969 и 1979 гг.

Сложная структура отрицательных значений поля ускорений, выявленных на карте на центральную эпоху 2007 г., может быть связана с ограниченностью современных временных рядов наблюдений. Ее достоверность так же, как и точное время появления джерка во втором десятилетии 21-го века, признаки которого обнаружены при нынешних исследованиях, требуют проверки и уточнения в процессе дальнейших исследований. Полученные уточненные модели, представляющие высокочастотную вековую изменчивость магнитного поля земного ядра с точностью вторых временных производных, будут использованы в развитии исследований по определению источников джерков в рамках теории гидромагнитного динамо Земли. Их вклад может оказаться существенным также в планированных комплексных исследованиях по выявлению возможной связи геомагнитных джерков с вариациями сопутствующих геофизических явлений планетарного масштаба, как вариации скорости суточного вращения Земли и ее сейсмичность.

В целом, обнаруженная высокая качественная и количественная точность пространственных моделей поля ускорений позволяет заключить о точности результатов по времени (в годах) и частоте проявления глобальных джерков, оцениваемой примерно десятью годами.

БЛАГОДАРНОСТИ

Авторы работы выражают свою признательность ст. н. с. Института геофизики и инженерной сейсмологии им. А.Г. Назарова Национальной академии наук Республики Армения М.Б. Мкртчян, за помощь, оказанную при редактировании текста работы и благодарны анонимным рецензентам работы за конструктивные и полезные замечания.

ФИНАНСИРОВАНИЕ

Исследование выполнено при финансовой поддержке Государственного Комитета Науки при Мини-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 63 № 3 2023

стерстве Образования и Науки Республики Армения и Российского фонда фундаментальных исследований (Российская Федерация) в рамках совместной научной программы 18RF-096 и 18-55-05006 соответственно.

СПИСОК ЛИТЕРАТУРЫ

- Брагинский С.И. Магнитогидродинамические крутильные колебания в земном ядре и вариации длины суток. // Геомагнетизм и аэрономия. Т. 10. № 1. С. 3– 12. 1970.

— Брагинский С.И., Фишман В. М. Экранирование магнитного поля в мантии при электропроводности, сосредоточенной вблизи границы с ядром. // Геомагнетизм и аэрономия. Т. 17. № 5. С. 907–915. 1977.

- Брагинский С.И. Аналитическое описание вековых вариаций геомагнитного поля и скорости вращения Земли. // Геомагнетизм и аэрономия. Т. 22. № 1. С. 115–122. 1982.

– Головков В.П., Симонян А.О. Джерки в вековых геомагнитных вариациях на интервале 1930–1980 гг. // Геомагнетизм и аэрономия. Т. 29. № 1. С. 164–167. 1989.

— Головков В.П., Симонян А.О., Зверева Т.И. Глобальная структура ускорения вековых вариаций геомагнитного поля. // Геомагнетизм и аэрономия. Т. 29. № 3. С. 481–486. 1989.

— Головков В.П., Симонян А.О. О резких изменениях вековых вариаций геомагнитного поля в конце 1970-х годов // Геомагнетизм и аэрономия. Т. 31. № 1. С. 165–171. 1991.

— Головков В.П., Кожоева Г.М., Симонян А.О. О природе резких изменений геомагнитного векового хода в конце 70-х гг. // Геомагнетизм и аэрономия. Т. 32. № 6. С. 147–152. 1992.

— Калинин Ю.Д. Вековые геомагнитные вариации и изменения длины суток // Метрология и гидрология. № 3. С. 15–19. 1949.

— Орлов В.П. Вековой ход геомагнитного поля и его необычно резкие изменения // Тр. ИЗМИРАН СССР. Вып. 18(28). С. 77–87. 1961.

– Симонян А.О., Шахпаронян С.Р., Оганесян А.С. Моделирование земного магнитного поля с учетом существования геомагнитных джерков // Геомагнетизм и аэрономия. Т. 44. № 6. С. 849–856. 2004.

— Симонян А.О., Головков В.П. Пространственные особенности проявления западного дрейфа геомагнитного поля // Геомагнетизм и аэрономия. Т. 49. № 6. С. 843–850. 2009.

https://doi.org/10.1134/S0016793209060140

— Симонян А.О. Высокочастотные вариации главного магнитного поля Земли. Palmarium Academic Publishing. Project#3710. ISBN: 978-3-659-72422-0, 390 с. 2017.

- Achache J., Courtillot V., Ducruix J., Le Mouel J.-L. The late 1960's impulse: further constraints on deep mantle conductivity // Phys. Earth Planet. Inter. V. 23. P. 72–75. 1980.

- Alexandrescu M., Gibert D.G., Hulot J.-L., Le Mouel, Saracco G. Detection of geomagnetic jerks using wavelet analysis // J. Geophys. Res. V. 100. P. 12.557–12.572. 1995.

– Backus G.E. Application of mantle filter theory to the geomagnetic jerk of 1969 // Geophys. J. R. Astron. Soc. V. 74. P. 713–746. 1983.

– Braginsky S.I. Short-period geomagnetic secular variation // Geophys. Astrophys. Fluid Dynamics. V. 30. P. 1–78. 1984.

- *Braginsky S.I.* Magnetic Rossby waves in the stratified ocean of the core, and topographic core-mantle coupling // Earths Planets Space. V. 50. P. 641–649. 1998.

– Brown W.J, Mound J.E., Livermore P.W. Jerks abound: An analysis of geomagnetic observatory data from 1957 to 2008 // Phys. Earth Planet. Inter. V.223. P. 62–76. 2013.

- *Chulliat A., Thebault E., Hulot G.* Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks // Geophys.Res.Lett. V. 37. L07301. 2010.

https://doi.org/10.1029/2009GL042019

– Chulliat A., Maus S. Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010 // J. Geophys. Res. Solid Earth, V. 119. P. 1531–1543. 2014.

https://doi.org/10.1002/2013JB010604

- *Cire C., Le Mouel J.L., Ducruix J.* Evolution of the geomagnetic secular variation field from the beginning of the century // Nature. V. 307. P. 349–352. 1984.

- Courtillot V, Ducruix J., Le Mouel J.L. Sur une acceleleration recente de la variation seculaire du champ magnetique terrestre. // C. r. Acad. sci. V. 287. Série D. P. 1095–1098. 1978.

– Courtillot V., Le Mouel J.L. Geomagnetic secular variation impulses // Nature. V. 311. P. 709–715. 1984.

- *De Michelis P., Cafarella L., Meloni A*. Worldwide character of the 1991 geomagnetic jerk // Geophys. Res. Lett. V. 25. P. 377–380. 1998.

- Ducruix J., Courtillot V., Le Mouel J.-L. The Late 1960's secular variation impulse, the eleven year magnetic variation and the electrical conductivity of the deep mantle // Geophys. J. R. Astr. Soc. V. 61. P. 73–94. 1980.

– Gillet N., Jault D., Canet E., Fournier A. Fast torsional waves and strong magnetic field within the Earth's core // Nature. V. 465. P. 74–77. 2010.

https://doi.org/10.1038/nature09010

- Golovkov V.P., Zvereva T.I., Simonyan A.O. Common features and differences between the "Jerks" of 1947, 1957 and 1969 // Geophys. Astrophys. Fluid Dyn. V. 49. P. 81–96. 1989.

- Golovkov V.P., Simonyan A.O., Shahparonyan S.R. The jerks in the main geomagnetic field / Proc. "OIST-4 Conference, DK, 23–27 Sep., 2002"/ Ed. Peter Stauning, Copenhagen, Denmark. P. 69–74. 2003.

- Jault, D., Cire C., Le-Mouel J.L. Westward drift, core motions and exchange of angular momentum between core and mantle // Nature. V. 333. № 6171. P. 353–356. 1988.

– Jault D., Le-Mouel J.L. Exchange of angular momentum between the core and the mantle // J. Geomag. Geoelectr. V. 43. P. 111–129. 1991.

– Kerridge D.J., Barraclough D.R. Evidence for geomagnetic jerks from 1931 to 1971 // Phys. Earth Planet. Inter. V. 39. P. 228236. 1985.

– Le Huy M., Alexandrescu M., Hulo G., Le Mouel J.L. On the characteristics of successive geomagnetic jerks // Earth Planets Space. V. 50. P. 723–732. 1998.

- *Le Mouel J.L., Courtillot V.* Core motions, electromagnetic core-mantle coupling and variations in the Earth's rotation: New constraint from geomagnetic secular variation impulses // Phys. Earth Planet. Inter. V. 24. P. 236–241. 1981. - *Le Mouel J.L., Ducruix J., Duyen C.H.* The worldwide character of the 1969–1970 impulse of the secular acceleration rate // Phys. Earth Planet. Inter. V. 28. P. 337–350. 1982.

- Lesur V., Gillet N., Hammer M.D., Mandea M. Rapid variations of Earth's core magnetic field // Surveys in Geophysics. V. 43. P. 41–69. 2022.

https://doi.org/10.1007/s10712-021-09662-4

– Lowes F.J. Mean-square values on sphere of spherical harmonic vector field // J. Geophys. Res. V. 71. P. 2179–2179. 1966.

- Macmillan S. A Geomagnetic Jerk for the Early 1990's // Earth Planet Sci. Lett. V. 137. P. 189–192. 1996.

- *Madden T., Le Mouel J.L.* The recent secular variation and the motions at the core surface // Phil. Trans. R. Soc. Lond. A306. P. 271–280. 1982.

- Malin S.R.C., Hodder B.M. Was the 1970 jerk of internal or external origin? // Nature. V. 296 P. 726–728. 1982.

- Mandea M., Holme R., Pais A., Pinhero K., Jackson A., Verbanas G. Geomagnetic jerks: Rapid core field variations and core dynamics // Space Sci.Rev. V. 155. P. 147–175. 2010.

https://doi.org/10.1007/s11214-010-9663-x

– Nevanlinna H., Sucksdorff C. Impulse in global geomagnetic "secular variation", 1977–1979 // J. Geophys. V. 50. P. 68–69. 1981.

– Olsen N., Mandea M. Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk // Earth Planet. Lett. V. 255. P. 94–105. 2007.

- Qamili E., De Santis A., Isac A., Mandea M., Duka B., Simonyan A.H. Geomagnetic jerks as chaotic fluctuations of the Earth's magnetic field // Geochem. Geophys. Geosyst (G3). V. 14. P. 839–850. 2013. Doi https://doi.org/10.1029/2012GC004398

- Simonyan A.O., Shahparonyan S.R. Earth's liquid core motions under the constraint of geomagnetic secular variations of short periods / Proc. 5th Int. Conf. "Problems of Geocosmos". Ed. A.A. Kovtun et al. St. Petersburg. Russia. P. 319–324. 2004.

– Soloviev A., Chulliat A., Bogoutdinov S. Detection of secular acceleration pulses from magnetic observatory data // Phys. Earth Planet. Inter. V. 270. P. 128–142. 2017

- Torta J.M., Pavon-Carraso F.J., Marspal S., Finlay C.C. Evidence for a new geomagnetic jerk in 2014 // Geophys Res. Lett. V. 42. P. 7933–7940. 2015.

https://doi.org/10.1002/2015GL065501

- Voorhies C.V., Nishihama M. Simultaneous solution for core magnetic field and fluid flow beneath an electrically conductive mantle // J. Geophys. Res. V. 99. P. 6685–6693. 1994.

- Walker G.B., O'Dea P.L. Geomagnetic secular-change impulses. // Eos Trans. AGU. V. 33(6). P. 797–800. 1952.

- Weber A.M., Roberts E.B. The 1950 world isogonic chart // J. Geophys. Res. V. 56. P. 81-84. 1951.

- Whaler K.A., Beggan C.D. Derivation and use of core surface flows for forecasting secular variation // J. Geophys. Res. Solid Earth. V. 120. P. 1400–1414. 2015.

https://doi.org/10.1002/2014JB011697

- Whaler K.A., Olsen N., Finlay C.C. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means // Geophys. J. Int. V. 207. P. 228–243. 2016.

https://doi.org/10.1093/gji/ggw268